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Introduction

� Networks of interacting biomolecules are important in living 
cells

� Network organization is poorly understood, despite 
intensive analysis of simple systems
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� Complementary Approach:

design and construction of a synthetic network with a 
certain function

build an oscillating network in E. coli called “the 
repressilator”



The Repressilator: Design

� Negative feedbackloop of 
three transcriptional 
repressor systems, which are 
not part of a biological clock

– LacI inhibits tetR expression
– tetR inhibits cI expression

cI inhibits LacI expression TetR

LacI λ cI
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– cI inhibits LacI expression

� Network induces synthesis of 
GFP

– tetR inhibits GFP expression

� Resulting oscillations are 
slower then the cell-division 
cycle

GFP

TetR



The Repressilator: Design

TetR

LacI λ cI
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GFP

TetR



Theoretical Model

� Simple mathematical model of transcriptional regulation

� System behavior could not be described exactly due to a 
lack of knowledge in molecular interactions inside the cell

Identify possible classes of dynamic behavior
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Identify possible classes of dynamic behavior

Determine experimental parameters which have to be 
adjusted to obtain sustained oscillations



Theoretical Model

� Repressor protein concentrations pi and mRNA 
concentrations mi are continuous dynamical variables

� These dynamics depends on transcription, translation and 
degradation

� Repressors are treated identical except of their DNA-
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Repressors are treated identical except of their DNA-
binding specifities
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Theoretical Model
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� α0 protein copies per cell when promotor is saturated with repressor

� α+α0 protein copies per cell when repressor is absent

� β  ratio of protein and mRNA decay rate

� n  Hill coefficient

� Timescale: mRNA lifetime

� Protein concentrations: units of KM

� mRNA concentrations: rescaled by translation efficiency



Theoretical Model: Stability Diagram

� Unique steady state solution: 
stable and unstable

� A, B, C boundary between 
stable and unstable region: 

– A: n = 2.1, α0 = 0
– B: n = 2.0, α0 = 0
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– B: n = 2.0, α0 = 0
– C: n = 2.1, α0/α = 10-3

increasing Hill coefficients 
leads to no limitation of β for 
large α

if α0 is comparable to KM, the 
unstable domain shrinks



Theoretical Model: Numerical Solution

� Promoter strength: from 5 x 10-4

to 0.5 transcripts per second

� Average translation efficiency: 
20 proteins per transcript
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20 proteins per transcript

� Hill coefficient n = 2

� Protein half-life T1/2,p = 10 min, 
mRNA half-life T1/2,mRNA = 2 min

� KM = 40 monomers per cell



Experimental Setup

� Mathematical Model shows that negative feedback loops 
can lead to oscillations in protein concentrations

� Oscillations are favored by:

– Strong promoters coupled to efficient RBS
– Tight transcriptional repression (low “leakiness”)
– Cooperative repression characteristics
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– Cooperative repression characteristics
– Comparable protein and mRNA decay rates

� Alterations of natural components

1. Combine strong, tightly repressible λ PL hybrid promoter with 
lac and tet operator sequence

2. Reduce protein lifetime of repressor proteins with carboxy-
terminal tags (ssrA RNA)



Experimental Setup: ssrA RNA

� ssrA gene codes for the 10Sa RNA which codes for an 11 
aa peptid residue

� This residue is linked to the C-terminal side of truncated 
protein products during translation
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� Proteases, e.g. Tsp, recognize this tag and degrade the 
protein

� Fusion proteins with the ssrA gene are degraded faster:   
Tλ-Repressor = 4 min instead of 60 min



The Repressilator: Plasmid Design
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Experimental Results
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Experimental Results
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4 µm



Experimental Results

� Fluorescence intensity of 100 individual tracked cell 
lineages was quantified (30 °C)

� 40% exhibit oscillatory behaviour
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� Mean periods: T = 160 +/- 40 min (3 x cell-division time)



Experimental Results: Synchronization

� IPTG interferes with repression by LacI

� A short pulse of IPTG could be able to synchronize a 
repressilator-population

� E. coli population grew over night in media containing 
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� E. coli population grew over night in media containing 
IPTG, showed no oscillation 

� After transfer to media lacking IPTG, they showed a single 
damped oscillation



Experimental Results
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� GFP levels of sibling cells remain correlated for 95 +/- 10 min after septation 
(typical cell division time 50-70 min)

network state is transmitted to progenity cell

� Observed effects:

– Post septation phase delays (a)

– Phase maintained, amplitude varies significantly (b)

– Reduced period (green) and long delay (blue) (c)



Experimental Results
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� Variability in different experiments (d): large variability in 
amplitude and period of oscillations

� Negative Controls (e, f)

(e) Oscillation was inhibited by 50 µM IPTG in the media
(f) Cells only with reporter plasmids



Experimental Results: Noise

� Results show strong influence of noise

� Recent work (McAdams et al., 1999) has shown that 
stochastic effects may be responsible for noise in gene-
expression networks

� Stochastic simulations shows large variability
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Stochastic simulations shows large variability



Comparison With Circadian Clocks

� Circadian rhythms in Cyanobacteria: Oscillating system which 
have a longer period then cell division time

� Reliable oscillation in contrast to the noisy and variable one of 
the repressilator

� Circadian oscillators use positive and negative control elements

A synthetic oscillatory network of transcriptional regulators20

� Barkai et al. have shown in theoretical analysis that combination 
of positive and negative elements lead to bistable behavior and 
high noise-resistance behavior

� Further design of an oscillating network consisting of positive 
and negative control elements can possibly give an conclusion 
for noise and temperature resistance



Summary

� Design and construction of an artificial genetic network with 
new functional properties

� Use of parts which come from other contexts in nature

� Work is analog to the design of functional proteins out of 
different motifs
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different motifs

� Further characterization of components and alteration of 
network connectivity provide a basis for the design of 
applications

� Network design can help to understand design principles of 
natural genetic networks



Thanks for your attention!
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