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Abstract - In this paper we focus on the design methodology to 
propose a design that is more flexible than ASIC solution and 
more efficient than the processor-based solution for H.264 video 
decoder. We explore the memory access bandwidth requirement 
and different software/hardware partitions so as to propose a 
configurable architecture adopting a DEM (Data Exchange 
Mechanism) controller to fit the best tradeoff between 
performance and cost when realizing H.264 video decoder for 
different applications. The proposed architecture can achieve 
more than three times acceleration in performance. 
 

I. INTRODUCTION 

With the progress of science and technology, there are more 
and more multimedia applications realized on embedded systems. 
Multimedia applications typically involve the transfer of large 
amounts of data. Therefore, compression of video, audio, and image 
data is essential for a cost-efficient use of existing communication 
channels and storage media. The progress of video compression 
techniques is getting mature after years of effort on developing 
many standards. The well-known Moving Picture Expert Group 
(MPEG) and the Video Coding Experts Group (VCEG) have 
worked out the latest version of video codec, H.264 [1], which 
consumes relatively low bit-rate but yields high quality, as compared 
with the widely popular video CODEC of MPEG series. 

In previous works, most researches focused on specific 
applications such as HDTV, Mobile TV, and so on. They have 
concentrated on how to meet video compression and processing 
requirements since video processing require significant amount of 
computation power. So they proposed solutions, either Application 
Specific Integrated Circuit (ASIC) [2-3] or processor-based [4-11] 
solutions, to achieve this target. The ASIC solution offers the best 
speed performance. But it is limited by its inflexible hardware 
structure for various requirements on applications. In addition to the 
ASIC solution, the processor-based solution is the other feasible 
solution. Due to the limitations of ASIC solutions and the growing 
interests in computationally intensive multimedia applications, 
many general-purpose processors for embedded systems now have 
multimedia extensions. However, the processors adopted in 
embedded systems are always lack of computational power and 
cannot achieve the real-time processing requirement. 

For this reason, we focus on the exploration of memory access 
requirement for different software/hardware partitions in an 
application-specific processor architecture. We propose a 
configurable architecture adopting the DEM (Data Exchange 
Mechanism) controller. Such a configurable architecture is more 
flexible than the ASIC solution and more efficient than the 
processor-based solution as well. Moreover, users can consider their 
requirements and modify the system parameters to make the best 
tradeoff between performance and cost. 

The rest of this paper is organized as follows. In Section II, we 
propose a configurable architecture adopting the DEM controller. 
Then we perform the design exploration of memory access and 
analyze different software/hardware partitions on the proposed 

design in Section III and IV, respectively. In Section V, we evaluate 
the performance of the proposed design. Finally, we conclude this 
paper in Section VI. 

II. PROPOSED CONFIGURABLE ARCHITECTURE 

In the proposed configurable architecture, DEM controller is 
the most important component that serves as the bridge between the 
software (tasks executed in processors) and the hardware 
accelerators. As shown in Fig. 1, DEM controller is the only one 
master in the architecture and the other hardware accelerators are all 
slaves. Hence, DEM controller dominates all the I/O access of the 
hardware accelerators. On the other hand, DEM controller will also 
dispatch the data and the parameters passed by the processor to the 
corresponding hardware accelerators. As a result, users can add or 
delete hardware accelerators easily since there is no data 
dependency among hardware accelerators. H.264 video decoding 
can be partitioned into several stages. As shown in Fig. 2, parallel 
processing will be carried out because each stage of the macroblock 
can execute its computation concurrently with the stages of other 
macroblocks. In consequence, the proposed architecture adopting 
the DEM controller will provide both the flexibility and the 
computation power. 
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Fig. 1. Proposed configurable architecture for H.264 video decoder 
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Fig. 2. An example for the processing schedule in the proposed design 

III. EXPLORATION ON MEMORY ACCESS 

Memory access is an important issue in HW/SW co-design for 
H.264 video decoding. Major memory access often falls on loading 
reference data. In this section, we will discuss several methods 
about minimizing memory access for the bandwidth bottlenecks, 
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such as intra prediction, inter prediction, and deblocking. 

A. Intra Prediction 

In H.264 intra prediction, luminance data will be processed in 
Intra4×4 type or Intra16×16 type. However, chrominance data will 
be processed only in Intra8×8 type since it is usually smoother than 
luminance data. 

In order to realize a software and hardware partition system, we 
should consider about where the reference data come from. In Intra4
×4 prediction, modes 0, 2, 3, 4, 5, 6, 7 need the reference data from 
the upper macroblock and modes 1, 2, 4, 5, 6, 7, 8 need the 
reference data from the left macroblock. In Intra16×16 modes, mode 
0 uses the reference data from the left macroblock and mode 1 needs 
the data from the upper macroblock, but mode 2 and 3 need both. 
Therefore, we explore three solutions for getting the reference data. 

In the first solution, we get all the reference data from the 
external memory as shown in Fig. 3(a). This solution does not need 
any extra local memory. All the reference data will be grabbed from 
outside. 

In the second solution, we get all the reference data from the 
internal memory as shown in Fig. 3(b). In this way, we need a buffer 
whose size is one row of a frame to store the upper reference data 
and a 16-byte buffer to store the reference data of the left 
macroblock. The advantage of this solution is the reduction of the 
external memory access because all the reference data have been 
stored in the local buffer. But such a solution also has two 
shortcomings. First, the buffer is very huge when decoding 
high-resolution video. Second, the buffer is usually idle during 
decoding P frames. 

In the third solution, we get the reference data of the left 
macroblock from the internal memory and get the upper reference 
data from the external memory as shown in Fig. 3(c). In this way, it 
just needs a 16-byte extra local buffer to store the rightmost column 
data of the left macroblock. Once the prediction mode does not need 
the reference data from the upper macroblock, we can omit 
accessing external memory. 

We analyzed these three solutions by using SystemC coded 
hardware modules and C code to do hardware/software 
co-simulation. Table 1 shows the analysis result. We can see that 
solution 3 is a better method among them under the consideration 
between cost and performance. 
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Fig. 3. The way of getting the reference data under different solutions 

Table 1. Memory access analysis of intra prediction 

 Extra internal 
memory 

Required access data 
(32 bit bus) 

Data bandwidth 
reduction 

Sol. 1 0 byte 10 words - 

Sol. 2 (ImageWidth+16) 
bytes 0 words 100% 

Sol. 3 16 bytes 6 words 40% 

B. Inter Prediction 

The realization of motion compensation on data blocks with 
1/4-pel motion vectors in H.264 reference software (JM) [12] 

fetches reference data in unit of 9×9 pixels for each 4×4 block 
without eliminating the redundant data access among neighboring 
blocks. Fig. 4 shows the data fetching of 4×4 block. As shown in Fig. 
5, redundant reference data will be fetched since the data fetching 
for any type of block is always based on the data fetching of 4×4 
block. However, according to our experience, motion compensation 
using large block size occupies higher probability than that using 
small block size. In consequence, a large amount of data will be 
redundantly fetched. 
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Fig. 4. The data fetching of the 4×4 block 
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Fig. 5. Overlapped reference data caused by the data fetching of the 4×8 

block 

Therefore, we have another solution for reducing the data 
bandwidth for inter prediction, i.e. Variable Block Size Motion 
Compensation (VBSMC). The VBSMC scheme is proposed to 
provide the flexibility to respectively fetch reference data in units of 
21×21, 21×13, 13×21, 13×13, 13×9, 9×13, and 9×9 pixels for data 
encoded by 16×16, 16×8, 8×16, 8×8, 8×4, 4×8, and 4×4 types. 

As shown in Table 2, comparing the proposed VBSMC scheme 
to the design adopting only 4×4 block size in the memory access, 
there are 27%, 33%, 52% , 62%, 64% and 70% reduction of the 
memory access cycles in the 4×8, 8×4, 8×8 , 8×16, 16×8 and 16×16 
modes, respectively. In summary, VBSMC scheme can eliminate the 
overlapped access and contribute to 48% reduction of data 
bandwidth. 

C. Deblocking 

In H.264 decoder, the deblocking filter is applied to each 
decoded macroblock for the sake of reducing block effects. It 
smoothes block edges so as to improve the appearance of the 
decoded frames. Fig. 6 shows the edges filtered by the deblocking 
filter in a macroblock. 

Table 2. Memory access analysis of VBSMC scheme 

 Required access data 
(32 bit bus) 

Data bandwidth 
reduction 

4×4 block only 3×9×16 blocks - 

Merge to 4×8 
block 

3×13×8 blocks 27% 

Merge to 8×4 
block 

4×9×8 blocks 33% 

Merge to 8×8 
block 

4×13×4 blocks 52% 

Merge to 8×16 
block 

4×21×2 blocks 62% 

Merge to 16×8 
block 

6×13×2 blocks 64% 

Merge to 16×16 
block 

6×21×1 blocks 70% 
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Fig. 6. The edges filtered by the deblocking filter in a macroblock 

When filtering the top of horizontal edges, the last four row 
data of the upper macroblock will be filtered. On the other hand, the 
rightmost four column data in the left macroblock will be filtered 
when filtering the leftmost of vertical edges. For this reason, we 
should consider about where the data come from. As a result, we 
explore three solutions for getting the reference data. 

In the first solution, we get all the reference data from the 
external memory as shown in Fig. 7(a). This solution does not need 
any extra local memory. All the reference data will be grabbed from 
outside. 

In the second solution, we get all the reference data from the 
internal memory as shown in Fig. 7(b). In this way, we need a buffer 
whose size is four rows of a frame to store the reference data of the 
upper macroblock and a 64-byte buffer to store the reference data of 
the left macroblock. The advantage of this solution is the reduction 
of the external memory access because all the reference data have 
been stored in the local buffer. But its shortcoming is the buffer will 
be very huge when decoding high-resolution video. 

In the third solution, we get the reference data of the left 
macroblock from the internal memory and get the reference data of 
the upper macroblock from the external memory as shown in Fig. 
7(c). In this way, it just needs a 64-byte extra local buffer to store 
the rightmost column data of the left macroblock. 

We also analyzed these three solutions by using SystemC 
coded hardware module and C code to do hardware/software 
co-simulation. The analysis result is shown in Table 3. We can see 
that solution 3 is the best choice among them. This is similar to the 
analysis result of intra prediction. 
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Fig. 7. The way of getting the reference blocks under different solutions 

Table 3. Memory access analysis of deblocking 

 Extra internal 
memory 

Required access data 
(32 bit bus) 

Data bandwidth 
reduction 

Sol. 1 0 byte 32 words - 

Sol. 2 (ImageWidth×4+64) 
bytes 0 words 100% 

Sol. 3 64 bytes 16 words 50% 

IV. EXPLORATION ON SOFTWARE AND HARDWARE 
PARTITIONS 

In this section, we propose several configurations of software 
and hardware partition for H.264 decoder and analyze the data 
exchange between hardware and software. 

A. Partition 1 

According to the complexity profiling of H.264 decoder, we 
refer the intra prediction and inter prediction to the hardware part 
since they occupy the most part of computation. Based on this 
partition, we modified the reference software and created hardware 
model using SystemC. The system architecture is shown in Fig. 8. 
The architectures of the following three partitions are similar to the 
one of partition 1 but have some differences in software and 
hardware levels. As shown in Table 4, we make a summary to show 
the implementation details of each function under different 
partitions. 
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Fig. 8. Architecture of partition 1 

Table 4. The implementation of each function under different partitions 
 VLD IQ IT Intra Inter Reconst. DB 

Partition 1 SW SW SW HW HW SW SW

Partition 2 SW SW SW HW HW HW SW

Partition 3 SW HW HW HW HW HW SW

Partition 4 SW HW HW HW HW HW HW

B. Partition 2 

Based on partition 1, we add the second most part of 
computation, i.e. deblocking, into the hardware part in partition 2. 
The most important issue of partition 2 is the data exchange between 
the external memory and the internal memory. Reconstruct IP needs 
the output data of IT module from the external memory and Deblock 
IP needs the previous reconstructed macroblock from the internal 
memory and the upper macroblock from the external memory. Inter 
IP needs to fetch reference data from the external memory pointed 
by the motion vector and Intra IP needs the previous macroblock 
from the internal memory and the upper macroblock from external 
memory. 

C. Partition 3 

In partition 3, we consider about the memory access of 
Deblock IP so that we move Deblocking to the software part and 
added IQ and IT into the hardware part. For Reconstruct IP, two 
input data, i.e. reference data and residual data, both come from the 
internal memory. Reconstructed data will just be exported to the 
external memory so that Deblocking module can get them. The 
major memory access rises when IQ fetches the output of VLD, 
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Inter/Intra fetches the reference data from the external memory, and 
Reconstruct IP exports the reconstructed data to the external 
memory. 

D. Partition 4 

In partition 4, we add most components into the hardware part, 
except VLD. In this partition, the major memory rises when IQ 
fetches the output data from VLD, Intra/Inter fetches reference data, 
and Deblock fetches the reference data from the upper macroblock. 
This partition has the most hardware accelerators and the maximal 
size of the internal memory. It also has the best performance and 
less memory access of system. 

V. VERIFICATION AND PERFORMANCE EVALUATION 

In this section we discuss the simulation environment and 
experimental results by adopting different partitions and 
configurations. Here we use ARM926EJS virtual platform on SoC 
Designer to evaluate performance of the proposed partitions and 
configurations. The simulator is able to report CPU core cycles, total 
instructions and memory access. The CPU target frequency is set to 
be 200 MHz. 

Fig. 9 shows the co-design verification flow. In step 1, we 
make a decision for the hardware components and then we construct 
the hardware model by SystemC in step 2. In step 3, we modify the 
software structure to fit the hardware part. In step 4, we perform 
firmware coding so as to exchange information between the 
hardware and the software part. After finishing the steps mentioned 
above, we perform the simulation that runs software and hardware 
co-design system on SoC Designer. Finally, we check the execution 
results and make the profiling. 

According to Section IV, we have provided four partitions for 
realizing H.264 video decoder. We implement them and put them on 
the virtual platform of SoC Designer for evaluating the performance. 
The test video sequences are Foreman and Akiyo and the bit-rate is 
set 128kbps and 256kbps for QCIF resolution and set 256kbps and 
512kbps for CIF resolution. The results of software and hardware 
co-simulation under different system architectures are shown in Fig. 
10. Fig. 11 shows the average performance. Under partition 4, we 
can get more than three times acceleration in performance. 

VI. CONCLUSION 

In this paper, we explore memory access bandwidth and 
different software/hardware partitions for H.264 video decoder and 
propose a configurable architecture adopting the DEM (Data 
Exchange Mechanism) controller. The proposed architecture can 
achieve more than three times acceleration in performance. Such a 
configurable architecture involves the advantages of both ASIC and 
processor-based solutions so that users can make the best trade-off 
between performance and cost when realizing any application of 
H.264 video decoder. 
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Fig. 9. Verification flow of software/hardware co-design 
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Fig. 10. Performance of different kinds of video sequences under different 

system architectures 
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Fig. 11. Average performance under different system architectures 

REFERENCES 
[1] ITU-T Recommendation H.264 & ISO/IEC 14496-10, “Advanced 

Video Coding for Generic Audiovisual Services”, Version 4, 2005. 
[2] Y. Kun, Z. Chun, D. Guoze, X. Jiangxiang, and W. Zhihua, “A 

Hardware-Software Co-design for H.264/AVC Decoder”, IEEE Asian 
Solid-State Circuits Conference, pp. 119-122, Nov. 2006. 

[3] Y. Hu, A. Simpson, K. McAdoo, and J. Cush, “A high definition 
H.264/AVC hardware video decoder core for multimedia SoC's”, IEEE 
International Symposium on Consumer Electronics, pp. 385-389, Sep. 
2004. 

[4] Q. Xue, J. Liu, S. Wang, and J. Zhao, ”H.264/AVC baseline profile 
decoder optimization on independent platform”, International 
Conference on Wireless Communications, Networking and Mobile 
Computing, vol. 2, pp. 1253-1256, Sep. 2005. 

[5] Z. Wei, K. L. Tang, and K. N. Ngan, “Implementation of H.264 on 
Mobile Device”, IEEE Transactions on Consumer Electronics, vol. 53, 
no. 3, pp. 1109-1116, Aug. 2007. 

[6] G. Berger, R. Goedeken, and J. Richardson, “Motivation and 
Implementation of a Software H.264 Real-Time CIF Encoder for 
Mobile TV Broadcast Applications”, IEEE Transactions on 
Broadcasting, vol. 53, no. 2, pp. 584-587, Jun. 2007. 

[7] L. Zhuo, Q. Wang, D. D. Feng, and L. Shen, “Optimization and 
Implementation of H.264 Encoder on DSP Platform”, IEEE 
International Conference on Multimedia and Expo, pp. 232-235, Jul. 
2007. 

[8] C. Peng, H. Wang, C. Li, and Q. Zhang, ”The Optimization of H.264 
Encoder Based On TI TMS320DM642”, International Conference on 
Future Generation Communication and Networking, vol. 1, pp. 38-42, 
Dec. 2007. 

[9] F. Pescador, M. J. Garrido, C. Sanz, E. Juarez, M. C. Rodriguez, and D. 
Samper, ”A real-time H.264 MP decoder based on a DM642 DSP”, 
IEEE International Conference on Electronics, Circuits and Systems, pp. 
1248-1251, Dec. 2007. 

[10] V. Ramadurai, S. Jinturkar, M. Moudgill, and J. Glossner, 
“Implementation of H.264 decoder on Sandblaster DSP”, IEEE 
International Conference on Multimedia and Expo, pp. 694-698, Jul. 
2005. 

[11] H. C. Lin, Y. J. Wang, K. T. Cheng, S. Y. Yeh, W. N. Chen, C. Y. Tsai, T. 
S. Chang, and H. M. Hang, “Algorithms and DSP implementation of 
H.264/AVC”, Asia and South Pacific Conference on Design Automation, 
pp. 742-749, Jan. 2006. 

[12] Available via http://iphome.hhi.de/suehring/tml/ 

2240


