
A System Architecture Exploration on the Configurable HW/SW Co-design for H.264 Video
Decoder

Guo-An Jian, Jui-Chin Chu, Ting-Yu Huang, Tao-Cheng Chang, and Jiun-In Guo

Department of Computer Science and Information Engineering, National Chung Cheng University, Chia-Yi, Taiwan, R.O.C.

E-mail: {chienka, cjc, htyu95m, u93410075, jiguo}@cs.ccu.edu.tw

Abstract - In this paper we focus on the design methodology to
propose a design that is more flexible than ASIC solution and
more efficient than the processor-based solution for H.264 video
decoder. We explore the memory access bandwidth requirement
and different software/hardware partitions so as to propose a
configurable architecture adopting a DEM (Data Exchange
Mechanism) controller to fit the best tradeoff between
performance and cost when realizing H.264 video decoder for
different applications. The proposed architecture can achieve
more than three times acceleration in performance.

I. INTRODUCTION

With the progress of science and technology, there are more
and more multimedia applications realized on embedded systems.
Multimedia applications typically involve the transfer of large
amounts of data. Therefore, compression of video, audio, and image
data is essential for a cost-efficient use of existing communication
channels and storage media. The progress of video compression
techniques is getting mature after years of effort on developing
many standards. The well-known Moving Picture Expert Group
(MPEG) and the Video Coding Experts Group (VCEG) have
worked out the latest version of video codec, H.264 [1], which
consumes relatively low bit-rate but yields high quality, as compared
with the widely popular video CODEC of MPEG series.

In previous works, most researches focused on specific
applications such as HDTV, Mobile TV, and so on. They have
concentrated on how to meet video compression and processing
requirements since video processing require significant amount of
computation power. So they proposed solutions, either Application
Specific Integrated Circuit (ASIC) [2-3] or processor-based [4-11]
solutions, to achieve this target. The ASIC solution offers the best
speed performance. But it is limited by its inflexible hardware
structure for various requirements on applications. In addition to the
ASIC solution, the processor-based solution is the other feasible
solution. Due to the limitations of ASIC solutions and the growing
interests in computationally intensive multimedia applications,
many general-purpose processors for embedded systems now have
multimedia extensions. However, the processors adopted in
embedded systems are always lack of computational power and
cannot achieve the real-time processing requirement.

For this reason, we focus on the exploration of memory access
requirement for different software/hardware partitions in an
application-specific processor architecture. We propose a
configurable architecture adopting the DEM (Data Exchange
Mechanism) controller. Such a configurable architecture is more
flexible than the ASIC solution and more efficient than the
processor-based solution as well. Moreover, users can consider their
requirements and modify the system parameters to make the best
tradeoff between performance and cost.

The rest of this paper is organized as follows. In Section II, we
propose a configurable architecture adopting the DEM controller.
Then we perform the design exploration of memory access and
analyze different software/hardware partitions on the proposed

design in Section III and IV, respectively. In Section V, we evaluate
the performance of the proposed design. Finally, we conclude this
paper in Section VI.

II. PROPOSED CONFIGURABLE ARCHITECTURE

In the proposed configurable architecture, DEM controller is
the most important component that serves as the bridge between the
software (tasks executed in processors) and the hardware
accelerators. As shown in Fig. 1, DEM controller is the only one
master in the architecture and the other hardware accelerators are all
slaves. Hence, DEM controller dominates all the I/O access of the
hardware accelerators. On the other hand, DEM controller will also
dispatch the data and the parameters passed by the processor to the
corresponding hardware accelerators. As a result, users can add or
delete hardware accelerators easily since there is no data
dependency among hardware accelerators. H.264 video decoding
can be partitioned into several stages. As shown in Fig. 2, parallel
processing will be carried out because each stage of the macroblock
can execute its computation concurrently with the stages of other
macroblocks. In consequence, the proposed architecture adopting
the DEM controller will provide both the flexibility and the
computation power.

External
System

System
Controller

System
Stage

IPs

CPU

AHB

Inter/Intra
Stage

Memory

DEM Controller

IQ
Stage

IT
Stage

Reconstruct
Stage

Deblocking
Stage

YUV2RGB
Stage

IP IP IP IP IP IP

Fig. 1. Proposed configurable architecture for H.264 video decoder

VLD VLD VLD VLD VLD VLD VLD

Deblock Deblock

IT

IQ

IT IT IT IT

IQ IQ IQ IQ IQ

Reconst. Reconst.

Deblock

Reconst. Reconst.

Fig. 2. An example for the processing schedule in the proposed design

III. EXPLORATION ON MEMORY ACCESS

Memory access is an important issue in HW/SW co-design for
H.264 video decoding. Major memory access often falls on loading
reference data. In this section, we will discuss several methods
about minimizing memory access for the bandwidth bottlenecks,

978-1-4244-3828-0/09/$25.00 ©2009 IEEE 2237

such as intra prediction, inter prediction, and deblocking.

A. Intra Prediction

In H.264 intra prediction, luminance data will be processed in
Intra4×4 type or Intra16×16 type. However, chrominance data will
be processed only in Intra8×8 type since it is usually smoother than
luminance data.

In order to realize a software and hardware partition system, we
should consider about where the reference data come from. In Intra4
×4 prediction, modes 0, 2, 3, 4, 5, 6, 7 need the reference data from
the upper macroblock and modes 1, 2, 4, 5, 6, 7, 8 need the
reference data from the left macroblock. In Intra16×16 modes, mode
0 uses the reference data from the left macroblock and mode 1 needs
the data from the upper macroblock, but mode 2 and 3 need both.
Therefore, we explore three solutions for getting the reference data.

In the first solution, we get all the reference data from the
external memory as shown in Fig. 3(a). This solution does not need
any extra local memory. All the reference data will be grabbed from
outside.

In the second solution, we get all the reference data from the
internal memory as shown in Fig. 3(b). In this way, we need a buffer
whose size is one row of a frame to store the upper reference data
and a 16-byte buffer to store the reference data of the left
macroblock. The advantage of this solution is the reduction of the
external memory access because all the reference data have been
stored in the local buffer. But such a solution also has two
shortcomings. First, the buffer is very huge when decoding
high-resolution video. Second, the buffer is usually idle during
decoding P frames.

In the third solution, we get the reference data of the left
macroblock from the internal memory and get the upper reference
data from the external memory as shown in Fig. 3(c). In this way, it
just needs a 16-byte extra local buffer to store the rightmost column
data of the left macroblock. Once the prediction mode does not need
the reference data from the upper macroblock, we can omit
accessing external memory.

We analyzed these three solutions by using SystemC coded
hardware modules and C code to do hardware/software
co-simulation. Table 1 shows the analysis result. We can see that
solution 3 is a better method among them under the consideration
between cost and performance.

Internal
memory

External
memory

(a) (b) (c)
Fig. 3. The way of getting the reference data under different solutions

Table 1. Memory access analysis of intra prediction

 Extra internal
memory

Required access data
(32 bit bus)

Data bandwidth
reduction

Sol. 1 0 byte 10 words -

Sol. 2 (ImageWidth+16)
bytes 0 words 100%

Sol. 3 16 bytes 6 words 40%

B. Inter Prediction

The realization of motion compensation on data blocks with
1/4-pel motion vectors in H.264 reference software (JM) [12]

fetches reference data in unit of 9×9 pixels for each 4×4 block
without eliminating the redundant data access among neighboring
blocks. Fig. 4 shows the data fetching of 4×4 block. As shown in Fig.
5, redundant reference data will be fetched since the data fetching
for any type of block is always based on the data fetching of 4×4
block. However, according to our experience, motion compensation
using large block size occupies higher probability than that using
small block size. In consequence, a large amount of data will be
redundantly fetched.

9

9
Fig. 4. The data fetching of the 4×4 block

9

9

9

5

Fig. 5. Overlapped reference data caused by the data fetching of the 4×8

block

Therefore, we have another solution for reducing the data
bandwidth for inter prediction, i.e. Variable Block Size Motion
Compensation (VBSMC). The VBSMC scheme is proposed to
provide the flexibility to respectively fetch reference data in units of
21×21, 21×13, 13×21, 13×13, 13×9, 9×13, and 9×9 pixels for data
encoded by 16×16, 16×8, 8×16, 8×8, 8×4, 4×8, and 4×4 types.

As shown in Table 2, comparing the proposed VBSMC scheme
to the design adopting only 4×4 block size in the memory access,
there are 27%, 33%, 52% , 62%, 64% and 70% reduction of the
memory access cycles in the 4×8, 8×4, 8×8 , 8×16, 16×8 and 16×16
modes, respectively. In summary, VBSMC scheme can eliminate the
overlapped access and contribute to 48% reduction of data
bandwidth.

C. Deblocking

In H.264 decoder, the deblocking filter is applied to each
decoded macroblock for the sake of reducing block effects. It
smoothes block edges so as to improve the appearance of the
decoded frames. Fig. 6 shows the edges filtered by the deblocking
filter in a macroblock.

Table 2. Memory access analysis of VBSMC scheme

 Required access data
(32 bit bus)

Data bandwidth
reduction

4×4 block only 3×9×16 blocks -

Merge to 4×8
block

3×13×8 blocks 27%

Merge to 8×4
block

4×9×8 blocks 33%

Merge to 8×8
block

4×13×4 blocks 52%

Merge to 8×16
block

4×21×2 blocks 62%

Merge to 16×8
block

6×13×2 blocks 64%

Merge to 16×16
block

6×21×1 blocks 70%

2238

Fig. 6. The edges filtered by the deblocking filter in a macroblock

When filtering the top of horizontal edges, the last four row
data of the upper macroblock will be filtered. On the other hand, the
rightmost four column data in the left macroblock will be filtered
when filtering the leftmost of vertical edges. For this reason, we
should consider about where the data come from. As a result, we
explore three solutions for getting the reference data.

In the first solution, we get all the reference data from the
external memory as shown in Fig. 7(a). This solution does not need
any extra local memory. All the reference data will be grabbed from
outside.

In the second solution, we get all the reference data from the
internal memory as shown in Fig. 7(b). In this way, we need a buffer
whose size is four rows of a frame to store the reference data of the
upper macroblock and a 64-byte buffer to store the reference data of
the left macroblock. The advantage of this solution is the reduction
of the external memory access because all the reference data have
been stored in the local buffer. But its shortcoming is the buffer will
be very huge when decoding high-resolution video.

In the third solution, we get the reference data of the left
macroblock from the internal memory and get the reference data of
the upper macroblock from the external memory as shown in Fig.
7(c). In this way, it just needs a 64-byte extra local buffer to store
the rightmost column data of the left macroblock.

We also analyzed these three solutions by using SystemC
coded hardware module and C code to do hardware/software
co-simulation. The analysis result is shown in Table 3. We can see
that solution 3 is the best choice among them. This is similar to the
analysis result of intra prediction.

Internal
memory

External
memory

(a) (b) (c)
Fig. 7. The way of getting the reference blocks under different solutions

Table 3. Memory access analysis of deblocking

 Extra internal
memory

Required access data
(32 bit bus)

Data bandwidth
reduction

Sol. 1 0 byte 32 words -

Sol. 2 (ImageWidth×4+64)
bytes 0 words 100%

Sol. 3 64 bytes 16 words 50%

IV. EXPLORATION ON SOFTWARE AND HARDWARE
PARTITIONS

In this section, we propose several configurations of software
and hardware partition for H.264 decoder and analyze the data
exchange between hardware and software.

A. Partition 1

According to the complexity profiling of H.264 decoder, we
refer the intra prediction and inter prediction to the hardware part
since they occupy the most part of computation. Based on this
partition, we modified the reference software and created hardware
model using SystemC. The system architecture is shown in Fig. 8.
The architectures of the following three partitions are similar to the
one of partition 1 but have some differences in software and
hardware levels. As shown in Table 4, we make a summary to show
the implementation details of each function under different
partitions.

VLD IQ ITParser

Reconstruct

External memory

Software
level

DEM
Control

Hardware
level

Deblock

DEM Controller

Reference Buffer

Parameter

Reference Data

Inter Intra

Fig. 8. Architecture of partition 1

Table 4. The implementation of each function under different partitions
 VLD IQ IT Intra Inter Reconst. DB

Partition 1 SW SW SW HW HW SW SW

Partition 2 SW SW SW HW HW HW SW

Partition 3 SW HW HW HW HW HW SW

Partition 4 SW HW HW HW HW HW HW

B. Partition 2

Based on partition 1, we add the second most part of
computation, i.e. deblocking, into the hardware part in partition 2.
The most important issue of partition 2 is the data exchange between
the external memory and the internal memory. Reconstruct IP needs
the output data of IT module from the external memory and Deblock
IP needs the previous reconstructed macroblock from the internal
memory and the upper macroblock from the external memory. Inter
IP needs to fetch reference data from the external memory pointed
by the motion vector and Intra IP needs the previous macroblock
from the internal memory and the upper macroblock from external
memory.

C. Partition 3

In partition 3, we consider about the memory access of
Deblock IP so that we move Deblocking to the software part and
added IQ and IT into the hardware part. For Reconstruct IP, two
input data, i.e. reference data and residual data, both come from the
internal memory. Reconstructed data will just be exported to the
external memory so that Deblocking module can get them. The
major memory access rises when IQ fetches the output of VLD,

2239

Inter/Intra fetches the reference data from the external memory, and
Reconstruct IP exports the reconstructed data to the external
memory.

D. Partition 4

In partition 4, we add most components into the hardware part,
except VLD. In this partition, the major memory rises when IQ
fetches the output data from VLD, Intra/Inter fetches reference data,
and Deblock fetches the reference data from the upper macroblock.
This partition has the most hardware accelerators and the maximal
size of the internal memory. It also has the best performance and
less memory access of system.

V. VERIFICATION AND PERFORMANCE EVALUATION

In this section we discuss the simulation environment and
experimental results by adopting different partitions and
configurations. Here we use ARM926EJS virtual platform on SoC
Designer to evaluate performance of the proposed partitions and
configurations. The simulator is able to report CPU core cycles, total
instructions and memory access. The CPU target frequency is set to
be 200 MHz.

Fig. 9 shows the co-design verification flow. In step 1, we
make a decision for the hardware components and then we construct
the hardware model by SystemC in step 2. In step 3, we modify the
software structure to fit the hardware part. In step 4, we perform
firmware coding so as to exchange information between the
hardware and the software part. After finishing the steps mentioned
above, we perform the simulation that runs software and hardware
co-design system on SoC Designer. Finally, we check the execution
results and make the profiling.

According to Section IV, we have provided four partitions for
realizing H.264 video decoder. We implement them and put them on
the virtual platform of SoC Designer for evaluating the performance.
The test video sequences are Foreman and Akiyo and the bit-rate is
set 128kbps and 256kbps for QCIF resolution and set 256kbps and
512kbps for CIF resolution. The results of software and hardware
co-simulation under different system architectures are shown in Fig.
10. Fig. 11 shows the average performance. Under partition 4, we
can get more than three times acceleration in performance.

VI. CONCLUSION

In this paper, we explore memory access bandwidth and
different software/hardware partitions for H.264 video decoder and
propose a configurable architecture adopting the DEM (Data
Exchange Mechanism) controller. The proposed architecture can
achieve more than three times acceleration in performance. Such a
configurable architecture involves the advantages of both ASIC and
processor-based solutions so that users can make the best trade-off
between performance and cost when realizing any application of
H.264 video decoder.

Decide
hardware part

Modify
software
structure

Firmware
coding

Simulation

Check result
And

Profiling

Hardware
model coding

Fig. 9. Verification flow of software/hardware co-design

0

20

40

60

80

100

120

Software Partition 1 Partition 2 Partition 3 Partition 4

F
P

S

Foreman 256k QCIF

Foreman 128k QCIF

Akiyo 256k QCIF

Akiyo 128k QCIF

Foreman 256k CIF

Foreman 512k CIF

Akiyo 256k CIF

Akiyo 512k CIF

Fig. 10. Performance of different kinds of video sequences under different

system architectures

19.75

28.01

38.50

5.88 8.90 13.85 10.69

19.72

44.00

74.00

0

10

20

30

40

50

60

70

80

Software Partition 1 Partition 2 Partition 3 Partition 4

F
P
S

CIF

QCIF

Fig. 11. Average performance under different system architectures

REFERENCES
[1] ITU-T Recommendation H.264 & ISO/IEC 14496-10, “Advanced

Video Coding for Generic Audiovisual Services”, Version 4, 2005.
[2] Y. Kun, Z. Chun, D. Guoze, X. Jiangxiang, and W. Zhihua, “A

Hardware-Software Co-design for H.264/AVC Decoder”, IEEE Asian
Solid-State Circuits Conference, pp. 119-122, Nov. 2006.

[3] Y. Hu, A. Simpson, K. McAdoo, and J. Cush, “A high definition
H.264/AVC hardware video decoder core for multimedia SoC's”, IEEE
International Symposium on Consumer Electronics, pp. 385-389, Sep.
2004.

[4] Q. Xue, J. Liu, S. Wang, and J. Zhao, ”H.264/AVC baseline profile
decoder optimization on independent platform”, International
Conference on Wireless Communications, Networking and Mobile
Computing, vol. 2, pp. 1253-1256, Sep. 2005.

[5] Z. Wei, K. L. Tang, and K. N. Ngan, “Implementation of H.264 on
Mobile Device”, IEEE Transactions on Consumer Electronics, vol. 53,
no. 3, pp. 1109-1116, Aug. 2007.

[6] G. Berger, R. Goedeken, and J. Richardson, “Motivation and
Implementation of a Software H.264 Real-Time CIF Encoder for
Mobile TV Broadcast Applications”, IEEE Transactions on
Broadcasting, vol. 53, no. 2, pp. 584-587, Jun. 2007.

[7] L. Zhuo, Q. Wang, D. D. Feng, and L. Shen, “Optimization and
Implementation of H.264 Encoder on DSP Platform”, IEEE
International Conference on Multimedia and Expo, pp. 232-235, Jul.
2007.

[8] C. Peng, H. Wang, C. Li, and Q. Zhang, ”The Optimization of H.264
Encoder Based On TI TMS320DM642”, International Conference on
Future Generation Communication and Networking, vol. 1, pp. 38-42,
Dec. 2007.

[9] F. Pescador, M. J. Garrido, C. Sanz, E. Juarez, M. C. Rodriguez, and D.
Samper, ”A real-time H.264 MP decoder based on a DM642 DSP”,
IEEE International Conference on Electronics, Circuits and Systems, pp.
1248-1251, Dec. 2007.

[10] V. Ramadurai, S. Jinturkar, M. Moudgill, and J. Glossner,
“Implementation of H.264 decoder on Sandblaster DSP”, IEEE
International Conference on Multimedia and Expo, pp. 694-698, Jul.
2005.

[11] H. C. Lin, Y. J. Wang, K. T. Cheng, S. Y. Yeh, W. N. Chen, C. Y. Tsai, T.
S. Chang, and H. M. Hang, “Algorithms and DSP implementation of
H.264/AVC”, Asia and South Pacific Conference on Design Automation,
pp. 742-749, Jan. 2006.

[12] Available via http://iphome.hhi.de/suehring/tml/

2240

