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Abstract. The existing approaches used to identify the relevant path-
ways in a given condition do not consider a number of important bio-
logical factors such as magnitude of each gene’s expression change, their
position and interactions in the given pathways, etc. Recently, an impact
analysis approach was proposed that considers these crucial biological
factors to analyze regulatory pathways at systems biology level. This
approach calculates perturbations induced by each gene in a pathway,
and propagates them through the entire pathway to compute an impact
factor for the given pathway. Here we propose an alternative approach
that uses a linear system to compute the impact factor. Our proposed
approach eliminates the possible stability problems when the perturba-
tions are propagated through a pathway that contains positive feedback
loops. Additionally, the proposed approach is able to consider the type
of genes when calculating the impact factors.

1 Introduction

While high-throughput life science technologies have enabled the collection of
large amount of data, they have also posed challenges related to the extraction
of knowledge from these data. For instance, the typical result of a microarray
experiment is a list of differentially expressed (DE) genes that quantitatively
reflect the changes in gene activity in response to a particular treatment, or in
a given condition. The challenge common to all experiments is to translate such
lists of DE genes into a better understanding of the underlying phenomenon.
An automated Gene Ontology (GO) based approach has been proposed in order
to help in this process [1,2]. This approach uses an over-representation analysis
(ORA) of the list of DE genes in order to identify the GO categories that are
significantly over- or under-represented in a given condition. This type of analysis
has been very successful to the point of becoming a de facto standard in the
analysis of microarray data [3]. A more recent approach considers the distribution
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of the pathway genes in the entire list of genes and performs a functional class
scoring (FCS) which also allows adjustments for gene correlations [4,5,6,7,8].

Both ORA and FCS techniques currently used are limited by the fact that each
functional category is analyzed independently without a unifying analysis at a
pathway or system level [8]. This approach is not well suited for a systems biology
approach that aims to account for system level dependencies and interactions,
as well as identify perturbations and modifications at the pathway or organism
level [9]. In particular, all existing ORA and FCS approaches ignore a number of
important biological factors including the amount of change in gene expression,
the interactions between genes and their positions on a given pathway [10].

Recently, an impact analysis method was proposed that combines these im-
portant biological factors with the classical statistical analysis in order to identify
the most perturbed signaling pathways in a given condition [10]. An impact fac-
tor (IF) is calculated for each pathway incorporating parameters such as the
normalized fold change of the differentially expressed genes, the statistical sig-
nificance of the set of pathway genes, and the topology of the pathway.

In this paper, we propose using a different approach to calculate the impact
factors. Rather than propagating the perturbation through the pathway in a
neural network-like fashion, here we propose to calculate the stable-state values
of the perturbations by using a system of simultaneous equations. The main
differences occur when pathways includes loops, which is true for most of the
known gene signaling pathways. In such cases, in the previously described im-
pact analysis the computation of the gene perturbation factors (PFs) was done
through an iterative process. Problems are created by the fact that in the graph
that describes the given pathway, multiple paths of different length are usually
available to propagate the signal from any one source node to any one destina-
tion node. In order to address this, the previous version of the impact analysis
approximates the PFs by going around each loop only once. No such approxima-
tion is necessary when the pathways are described by a system of simultaneous
equations in which the PF of each gene is a function of the PFs of all other genes
on the pathway. The previous approach of approximating the PFs by propagat-
ing the perturbations from node to node is still used when the system does not
have an exact algebraic solution.

2 Impact Analysis

The aim of this approach is to establish a model that accounts for both the
statistical significance of the set of genes and the perturbations of the individual
genes on each pathway. A variety of models can be proposed here, but Occam’s
razor suggests to start with the simplest possible model and increase its com-
plexity only if this model fails to capture the complexity of the phenomenon
studied. One of the simplest possible models is a linear additive model in which
the impact factor (IF) of a pathway Pi can be calculated as the sum between a
probabilistic term and a perturbation term:
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IF (Pi) = log

(
1
pi

)
+

∣∣∣∑g∈Pi
PF (g)

∣∣∣
|ΔE| · Nde(Pi)

(1)

The first term captures the significance of the given pathway Pi as provided by
the classical statistical approaches, where pi corresponds to the probability of
obtaining a value of the statistic used at least as extreme as the one observed
when the null hypothesis is true. We would like the IF to be large for severely
impacted pathways (small p-values) so the first term uses 1/pi rather than pi.
The log function is necessary to map the exponential scale of the p-values to
a linear scale compatible with our intended linear model. The pi value can be
calculated using either an ORA (e.g., z-test [11], contingency tables [12,13], etc.),
a FCS approach (e.g., GSEA [6,7]) or other more recent approaches [8,14,15].

The second term in (1) is a functional term that depends on the specific
genes that are differentially expressed as well as on the interactions described
by the pathway (i.e., its topology). In essence, this term sums up the values
of the perturbation factors (PF) for all genes g on the given pathway Pi. The
perturbation factor of a gene gi is calculated as follows:

PF (gi) = α(gi) · ΔE(gi) +
n∑

j=1

βji · PF (gj)
Nds(gj)

(2)

In (2), the first term captures the quantitative information from the gene expres-
sion experiment. The factor ΔE(gi) represents the signed normalized measured
expression change of the gene gi. The factor α(gi) is a weight that captures the
potential for systemic changes associated with the type of gene gi. For most
genes, α will be 1. However, if the gene is a transcription factor or similar, α
can take a larger value set by the user. Thus, the user can divide the genes into
various categories and associate different weights to various categories depending
on the target organism.

The second term is a sum of the perturbation factors of all the genes gj on
the pathway Pi, normalized by the number of downstream genes of each such
gene Nds(gj), and weighted by a factor βji, whose absolute value quantifies the
strength of the interaction between gj and gi. The sign of β reflects the type
of interaction: +1 for induction, -1 for repression. Note that β will have non-
zero value only for the genes that directly interact with the gene gi. The second
term here is similar to the PageRank index used by Google [16,17,18] only that
we weight the downstream instead of the upstream connections (a web page is
important if other pages point to it whereas a gene is important if it influences
other genes).

Under the null hypothesis which assumes that the list of differentially ex-
pressed genes only contains random genes, the likelihood that a pathway has
a large impact factor is proportional to the number of such “differentially ex-
pressed” genes that fall on the pathway, which in turn is proportional to the
size of the pathway. Thus, we need to normalize with respect to the size of the
pathway by dividing the total perturbation by the number of differentially ex-
pressed genes on the given pathway, Nde(Pi). Furthermore, various technologies
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can yield systematically different estimates of the fold changes. For instance,
the fold changes reported by microarrays tend to be compressed with respect to
those reported by RT-PCR [19,20]. In order to make the impact factors as inde-
pendent as possible from the technology, and also comparable between problems,
we also divide the second term in (1) by the mean absolute fold change |ΔE|,
calculated across all differentially expressed genes. Assuming that there are at
least some differentially expressed genes anywhere in the data set1, both |ΔE|
and Nde(Pi) are different from zero so the second term is properly defined.

Note that (2) essentially describes the perturbation factor PF for a gene gi

as a linear function of the perturbation factors of all genes in a given pathway.
In the stable state of the system, all relationships must hold, so the set of all
equations defining the impact factors for all genes form a system of simultaneous
equations. Equation 2 can be re-written as:

PF (gi) = α(gi) ·ΔE(gi)+β1i ·
PF (g1)
Nds(g1)

+β2i ·
PF (g2)
Nds(g2)

+ · · ·+βni ·
PF (gn)
Nds(gn)

(3)

Rearranging (3) gives

PF (gi)−β1i ·
PF (g1)
Nds(g1)

−β2i ·
PF (g2)
Nds(g2)

−· · ·−βni ·
PF (gn)
Nds(gn)

= α(gi) ·ΔE(gi) (4)

Using (4), a pathway Pi composed of n genes can be described as follows:
⎛
⎜⎜⎜⎝

1 − β11
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− β21
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· · · − βn1
Nds(gn)

− β12
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· · · − βn2
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· · · · · · · · · · · ·
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⎞
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⎛
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α(g1) · ΔE(g1)
α(g2) · ΔE(g2)

· · ·
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⎟⎟⎠

Since the perturbations of the genes are obtained as the solution of a linear
system, this approach aims to characterize the steady state of the system rather
than rapidly transient states before an equilibrium has been established. Once
the perturbation factors of all genes in a given pathway are calculated, (1) is
used to calculate the impact factor of each pathway. The impact factor of each
pathway is then used as a score to assess the impact of a given gene expression
data set on all pathways (the higher the impact factor the more significant the
pathway).

For some pathways, the matrix describing the interactions between the genes
may be singular. In such cases, the perturbation factors as approximating by
propagating the perturbations as previously described [10].
1 If there are no differentially expressed genes anywhere, the problem of finding the

impact on various pathways is meaningless.
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Fig. 1. Cervix data quality assessment. Unsupervised bi-clustering (left panel) of the
cervix data using the 263 genes with the largest variability irrespective of the group
identifies the two groups, term labor (TL) and term not labor (TNL), in the dataset.
Visualization of the 16 samples using PCA (right panel) also shows that the samples
are linearly separable using the first 3 principal components.

3 Results and Discussion

We used the proposed pathway impact analysis approach to analyze the dif-
ferences between cervix tissue in women after term labor (n = 9) and those
who reached the term without the on-set of labor (n = 7). The results obtained
from the impact analysis were compared with the results obtained using ORA
(hypergeometric p-value) and GSEA. The cervical transcriptome was profiled
with Affymetrix HG-U133 Plus 2.0 microarrays. The details of this study and
its biological significance are described elsewhere [21,22].

The microarray data was pre-processed using Robust Multi-array Average
(RMA) [23]. In order to assess the quality of the microarray data, we used
two unsupervised methods. First, we used a bi-clustering procedure [24] that
hierarchically partitions the genes and the samples simultaneously. We used 263
genes for clustering that exhibit the largest variability among all 16 samples
irrespective of the group they belong to. This approach is unsupervised since it
does not use group information. The result of the bi-clustering is shown in Fig.1.
As shown in the Fig. 1, the clustering retrieves the two groups of the samples.
Next, we applied the principal component analysis (PCA) [24] using all probesets
on the HG-U133 plus 2.0 microarray. The results of PCA are shown in Fig. 1. As
shown in Fig. 1, the two groups of samples can be separated in the space of the
first 3 principal components with a hyperplane. Both types of results indicate
that the data is meaningful in terms of differences between classes.
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Fig. 2. A comparison between the results of the classical approaches (A - hypergeomet-
ric, B - GSEA) and the results of the pathway impact analysis (C) for a set of differen-
tially expressed genes in term labor. The pathways marked in red are well supported
by the existing literature. After correcting for multiple comparisons, GSEA does not
identify any pathway as significantly impacted in this condition at any of the usual sig-
nificance levels (1%, 5% or 10%). The hypergeometric model identifies cytokine-cytokine
receptor interaction, complement and coagulation cascades and leukocyte transendothe-
lial migration as significantly impacted pathways at 5%, and ECM-receptor interaction
and Jak-STAT signaling at 10% after correction for multiple comparisons. In contrast,
in addition to the 3 pathways identified by the hypergeometric at 5% significance, the
impact analysis also identifies VEGF signaling, toll-like receptor signaling and ECM-
receptor interaction. Furthermore, at 10%, the impact analysis identifies Jak-STAT
signaling, antigen processing and presentation, cell adhesion molecules and focal adhe-
sion as significantly impacted pathways.



38 P. Khatri et al.

Next, we applied a moderated t-test [25] to select a list of DE genes. The
p-values obtained from the moderated t-test were corrected using the False Dis-
covery Rate method [23]. We selected 960 genes with corrected p-value less than
0.05 and fold change greater than 2 as DE genes that are both meaningful and
verifiable. These 960 genes were used as the input to the ORA analysis using
hypergeometric distribution and the impact analysis. GSEA was applied on the
normalized expression matrix of all 19,886 unique genes on the array.

Figure 2 shows the comparison between the two classical approaches (hyper-
geometric and GSEA) and the pathway impact analysis. Note that the figure
only shows the top 15 pathways as identified by each approach. For the rest of
this section we will discuss the significance of a pathway as indicated by the
FDR corrected p-values unless noted otherwise.

When considering the nominal p-value, GSEA finds the cytokine-cytokine re-
ceptor interaction pathway significant at 5%. However, when the correction for
multiple comparisons is applied, GSEA does not find any significantly impacted
pathways at any of the usual (1%, 5% or 10%) significance levels.

The hypergeometric model yields 3 pathways significant at the 5% signifi-
cance level: cytokine-cytokine receptor interaction, complement and coagulation
cascades and leukocyte transendotheial migration. These pathways are compat-
ible with our current understanding of the phenomena involved in labor. The
cytokine-cytokine receptor interaction and leukocyte transendothelial migration
pathways are both associated with the innate immune system. The involvement
of the innate immune system in cervical dilation and remodeling is well estab-
lished in the literature [26,27]. Also, the complement and coagulation cascades
include a part of the PLAU signaling and plasmin signaling pathways. There are
several studies suggesting the involvement of plasminogen in cervical dilation
and remodeling after term labor [28,29]. In particular, the plasminogen activa-
tion cascade plays an integral role in the remodeling of extracellular matrices
during pregnancy and parturition [28]. In essence, the top 3 pathways identified
by the classical ORA approach appear to be relevant.

At the same significance level, the impact analysis agrees on these pathways,
but also identifies 7 additional pathways. Among these, VEGF signaling, toll-like
receptor signaling and ECM-receptor interaction also appear to be very relevant.
In fact, 2 of these 3 pathways point in the same direction: toll-like receptor signal-
ing is another pathway associated with the innate immune system while ECM-
receptor interaction describes the interactions between trans-membrane proteins
and the extra-cellular matrix, already known to be heavily remodeled during
pregnancy [30,31]. The remaining pathway, VEGF contains a number of genes
previously shown to be differentially expressed between labor and non-labor
(see Fig. 3) [21]. Finally, if the significance level were to be relaxed to 10%,
the impact analysis also identifies antigen processing and presentation pathway,
which is again part of the immune system.

It is important to point out that neither the hypergeometric model nor GSEA
manage to identify any adhesion-related pathway at the usual 1% or 5% levels.
Similarly, in spite of the differential expression of a number of genes related to
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Fig. 3. The VEGF signaling pathway is one of the pathways identified by impact
analysis. The genes found to be differentially expressed between labor and non-labor
are highlighted in red. A more complete discussion about this pathway and its role in
parturition is available elsewhere [21].

the VEGF-signaling, neither GSEA nor the classical ORA approach indicate
that this pathway may be meaningful.

4 Conclusion

The classical statistical approaches used to identify significantly impacted path-
ways in a given condition only consider the number of differentially expressed
genes and completely ignore other important biological factors. The impact anal-
ysis method uses a systems biology approach to extend the classical approach
by incorporating important biological factors such as the magnitude of the ex-
pression changes, the topology and the type of signaling interactions between
the genes on the pathway, and position of the differentially expressed genes on
the pathway. The previously described impact analysis approach first computes
the perturbations introduced by the differentially expressed genes in a pathway,
and then propagates these perturbations throughout the pathway in order to
calculate its impact factor. The perturbation propagation approach yields only
an approximation of the gene perturbations when the pathways include loops.
Here, we describe a modified impact analysis approach that addresses these sta-
bility issues. The results obtained on a human uterine cervix data set suggest
that: i) the modified impact analysis approach has a higher statistical power and
ii) it can identify several additional pathways that are likely to be involved in
cervical dilation and re-modeling.
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