
Abstract

This paper describes a system for designing and
implementing controllers for structured data processing. A
graphical input style describes the format of the data to be
processed along with the necessary control actions.
Advantages over FSM approaches include: 1) ease of
design changes, 2) ease of debugging, and 3) a shorter
design cycle.

1. Introduction

The 10x increase in available gates that has been
occurring every six years for the past two decades has
forced designers to take a higher level approach to IC
design. Some of the resulting increase in design complexity
has been handled by libraries consisting of more powerful
components. In part, because of the availability of these
higher-level modules, the control portion of the design is
frequently the bottleneck in the design cycle. While the
control might occupy only 15% of the final chip area, it is
not uncommon for the control portion of the design to take
upwards of 75% of the design and debug effort time. The
lack of structure and hierarchy, in the way control circuitry
is designed today, makes incremental design changes
caused by specification changes or design flaws extremely
difficult and time consuming to implement.

This paper describes a system, called Dali, that shortens
the overall design cycle by reducing the time and effort
required to generate and debug the control circuitry. The
user specifies the control by using a graphical symbolic
format that closely matches the high level design
specification. The system automatically synthesizes the
controlling finite state machine. This frees designers from
having to think of the control in terms of an FSM and allows
them to concentrate on the design at a much higher level
closer to the specification.

The system described in this paper provides an
environment where simulation results are mapped back
onto the graphical input specification. This allows the
designers to find errors at the specification level quicker
than using conventional means. Since the user doesn’t
specify an FSM, the redesign cycle at the FSM level is
eliminated. The user modifies the graphical specification
and the system automatically generates the new controller.

Three key benefits to this new approach over traditional
FSM approaches are: 1) design changes at the specification
level are easier to handle, 2) debugging the design is easier
since simulation results are back-annotated onto the high
level graphical input specification, and 3) the design cycle
time is decreased.

The paper is organized as follows. The next section
discusses related work. Section 3 describes how controllers
are specified in Dali. Compilation and debugging are
described in sections 4 and 5. Results are presented in
section 6.

2. Relation to Previous Work

Dali builds on previous work by Seawright and Brewer
on logic synthesis from grammatical productions [Sea94a],
[Sea94b]. Differences and improvements include use of a
more graphical approach, smooth integration with HDL
simulation and RTL synthesis, and others described in this
paper.

There are other related approaches to high-level
specification and design of controllers; the most prominent
of these are the Esterel language [Ber92] and Statecharts
[Har87].

Esterel and Statecharts are designed to cope with the
complexities of designing reactive systems, where many
external events, as well as internally generated events, may
arrive at once, with events being more urgent than others.
These languages have powerful mechanisms for coping
with the complexity of dealing with many simultaneous
events.

In systems that process structured data or protocols, the
complexity is in the structure of the data and its evolution
over time, and not necessarily in the complexity of the
transactions that occur in an instant. The Dali approach
supports a description style that explicitly uses the structure
of the data.

This approach has many features in common with
Esterel, including modularity, hierarchy, explicit
parallelism, a synchronous model of communication, and
well-defined, deterministic semantics. Because of these
similarities, compilation and implementation techniques
developed for producing controllers from Esterel input, e.g.
[Tou93], are closely related to those used in Dali to generate

A System for Compiling and Debugging Structured Data Processing Controllers
Andrew Seawright, Ulrich Holtmann, Wolfgang Meyer, Barry Pangrle, Rob Verbrugghe, Joseph Buck

Synopsys, Inc., 700 E. Middlefield Road, Mountain View, CA 94043
{andy,ulrich,wolfgang,pangrle,verb,jbuck}@synopsys.com

EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

efficient implementations that avoid combinatorial
explosion.

Dali does not pretend to be a completely general-purpose
tool, but instead exploits the structure of a specific problem
domain to yield powerful, high-level design solutions, and
provides a means of interfacing with design structures
implemented with other paradigms (e.g. logic specified at
register-transfer level). In this philosophy (as opposed to the
alternative of designing a completely general-purpose high-
level design language), this project has been influenced by
the Ptolemy project [Buc94].

3. Design Specification

The goal of Dali is to aid in the design of systems that
process structured data streams or handle structured control
protocols. In such systems, the data to be processed is
typically organized in “frames”, “cells”, or “packets”. Each
of these structures has a hierarchy of sub-structures such as
“headers”, “markers”, or “fields”. Examples include
telecommunications protocols (such as ATM and SDH/
Sonet) and systems that process compressed digital data
streams such as in MPEG. Dali focuses on the design of the
controllers and/or timing generators for these systems.

Dali is used to design controllers that are part of a larger
system design (Figure 1). In Dali, a controller is specified
graphically via a hierarchy offrame definitions and
associated data operations calledactions. The actions
determinewhat to do and the frames describewhen the
actions are executed. Frames and actions will be described
in greater detail below.

The graphical entry of the specification for the controller
is performed using the Frame Editor. The controller
specification is compiled by Dali and integrated with the
other components of the system. The Dali simulation

interface allows the system as a whole to be tested and
debugged.

A simplified example is described here to demonstrate
design specification in Dali. The example design is a
receiver for the ATM protocol which processes a stream of
incoming ATM cells. Based on the cell header information,
the design stores the payload data into a particular area of
RAM (Figure 2a). Figure 2b shows the ATM cell format.
The input data arrives bytewise to the design via input
data_in . The input signalcell_start indicates the
starting byte of each arriving ATM cell of interest. During
the following 53 clock cycles, the receiver processes the
cell. First, the header information is extracted and then the
payload data is written to the RAM at an address calculated
from the VPI and VCI fields of the cell header.

 Figure 3 shows the hierarchy of frames describing the
example controller. In Dali, frames are definitions which
describe cycle-level behaviors. Frames may be composed of
simpler frames, in a similar manner to regular expressions,
by means of sequencing, alternatives, repetition, and
condition matching.

Frame ATM_RX forms the root of the hierarchy and
consists of a composition of several frames. One of these
frames is the frameatm_cell . The frame definition
atm_cell , in turn, consists of the frames
header_extraction , header_processing , and
payload . This frame hierarchy is modeled closely to the
input specification thus allowing an easier understanding,
entry, and debugging of the design.

The atm_cell frame is defined as thesequence
header_extraction followed by the alternatives
header_processing andpayload . All branches of
an alternative are executed in parallel. So, after reading the
header, header processing and payload processing are
executed in parallel (frameheader_processing is not
expanded for brevity).Alternatives are also commonly used
for parallel searches of different patterns.

Dali Entry

Simulation
Interface

Testbench

Other Modules in System Controller under Design

Frame Editor

HDL Simulator

DaliDali
Synthesis

DebugCompile

System Under Development

Figure 1. Dali

Controller RAM

VPI,VCI,..., HEC

cell_start

control

datadata_in

VPI
VPI VCI

VCI
VCI PT

HEC
CLP

cell cell

cell_start:

data_in:
cell cell

Figure 2. ATM Example: a) Block
Diagram, b) ATM Cell, and c) Data Stream

Other
Modules

c)

b)a)

Payload
(48 bytes)

0
1
2
3
4
5

52

...

The frameheader_extraction reads the five bytes
forming the header of the ATM cell and stores their values
into the appropriate registers. This is performed by the
sequence of fiveterminal frames and their attached actions.
A terminal frame is executed for exactly one clock cycle
when its associated Boolean expression is checked. If the
expression is fulfilled, the terminalaccepts and all attached
actions are executed. The Boolean expression may be
arbitrarily complex using input ports and internal variables.

Terminal frames are used to recognize specific input
patterns as well as to describe a specific delay. In the case of
the header_extraction frame, all five terminal
frames have the condition “1” which is always fulfilled.
Therefore they always execute in five consecutive clock
cycles.

When the first terminal frame accepts, its attached action
assign(VPI[11:4], data_in) is executed. This
action simply assigns the second parameter to the first.
According to the ATM format, the first byte of the header
contains a part of the VPI field. During the next four clock
cycles all of the other header fields are processed.

A frame accepts if the behaviors that it describes are
satisfied. For a terminal frame, this means that the condition
is fulfilled during one clock cycle. A sequence accepts
together with its last frame. The execution of the sequence
is aborted with the first non accepting frame. An alternative
accepts together with the first accepting branch. A frame is
said to beactive if any of its sub-frames is accepting.

Actions can be associated with the frames at all levels of
the hierarchy and they execute when the associated frame
hierarchy accepts. Actions may be selected from a small set
of built-in actions such as:assign , clear , set , incr ,
and decr or they may beuser-definedallowing great
flexibility.

The built-in actions are automatically translated directly
into the “host” language (Verilog or VHDL) during code
generation. A subroutine call is generated for each user-
defined action. The designer specifies the body of the user
defined actions in an action library file coded in the host
language. Dali only needs to know the interface of the user-
defined actions.

 In this example, built-in actions are used in header
extraction process and user-defined actions are used to write

Figure 3. a) ATM Cell Example Frame Hierarchy b) Legend

Sequence written left to right

Sequence written top to bottom

Alternative frames

Conditional frame

Frame Repetition

Terminal Frame

Actions can be attached to any frame

a) b)

received payload bytes into the RAM (write_to_ram)
and to determine the starting address (start_adr).

Framepayload receives the 48 bytes of the payload
data and writes it into the RAM. The frame is defined as a
repetition of the inner terminal frame 48 times. As
mentioned before, the combination of the actions and
frames describes the desired behavior (Action part: write
the received input bytes into RAM and increment the
address. Frame part: for 48 clock cycles).

The continuous processing of the stream of cells is
described by therepetition specified with the “*”
superscript in the top-level frame. Recall that the beginning
of a valid ATM cell is signaled by a pulse of the signal
cell_start . After processing an ATM cell, the receiver
must wait for the starting of the next cell. The top level
frame describes a repeating operation of the alternatives:
“waiting for the start of the next cell” and “processing a
cell”. We distinguish these two cases by the two alternative
conditional frames. If the condition of a conditional frame
is fulfilled, its inner frame is executed. For example, if
cell_start is low (upper branch), then the terminal
frame is executed and consumes one clock cycle. This
causes this alternative to accept and the process starts over.
If the condition of the lower conditional frame is fulfilled
then the processing of the ATM cell starts. When
atm_cell finally accepts (after 53 clock cycles) the
process is started over again. In other words, the design will
repeatedly: a) wait one clock cycle ifcell_start is low,
or b) process an ATM cell ifcell_start is high.

4. Compilation

In a Dali design, frames and actions implicitly define a
controlling FSM without the designer having to explicitly
describe states or transitions. This is one of the major
benefits of Dali. Although the designer does not have to
handle the details of the underlying FSM, its is important to
understand how the Dali FSM operates.

4.1 Controller Execution
The execution of the Dali described controller is cycle-

based. At the start of each cycle, the external and internal
inputs to the design are sampled by the controller and the
current state of the controller is read. Next a control logic
block is evaluated to determine which actions will occur in
the cycle and also to compute the next state of the controller.
In addition, to support debugging, the control logic block
also computes a set of debugging signals that describe
which frames are actively executing and which frames are
accepting in the design. These debugging signals are used
for back-annotating the state of the controller onto the input
specification allowing debugging of the design at the high
level.

4.2 Controller Synthesis
Figure 5 shows an overview of the synthesis steps. The

input to synthesis is represented as a collection of tree
structures representing the graphical operators and frame
hierarchy. Each of the trees corresponds to one frame
definition. The root of each tree describes the frame
definition, each node of the tree describes one of the above
operators, and the node’s children are the operands of the
operator. Leaves of the tree describe terminal frames or
references to other frame definitions. The information about
ports, variables and actions is also stored.

The design is then checked for syntax errors including
missing clock and reset signals, undefined frames,
undeclared actions, and so forth. After this, the set of trees
is elaborated into a fully instantiated single hierarchical
Protocol Tree. Further checks, such as detecting recursive
frame definitions, are also applied.

An initial circuit describing the controller as a set of
Boolean next-state and output functions is created during
elaboration. Starting with the simple formulas for the
terminal frames, circuits for the parent nodes are composed
based on the type of operation required until the root of the
tree is reached as described in [Sea94a], [Sea94b].
Additional debug functions for each node of the tree are
calculated in order to back-annotate active and accepting
frames.

The circuit created for the root of the elaborated tree
represents the complete controller. Inputs to the circuit are

 Sample
 Inputs

 Read Current
State

Control
Logic

Execute
Actions

Write Next
State

Generate
Debugging

Signals

Figure 4. Controller Execution

Protocol Tree

Circuit State Graph

HDL Code

Figure 5. Controller Synthesis

Representation Representation

optimizationoptimization

Code Generation

Circuit Generation

the input ports, internal variables, and the state information.
Outputs from the circuit are the action triggers, the next
states, and debug functions.

Once an initial controller circuit is created it can be
optimized in several ways. The initial circuit representation
can be transformed into a state graph representation, or on
the other hand, the circuit representation itself may be
optimized. Based on compilation directives, Dali can
perform a suite of optimizations on each of these two basic
representations. This allows the selective application of
optimization algorithms that are best suited for the two
basic representations: circuit and state graph. Implicit
optimization algorithms are performed on the circuit
representation to analyze the circuit and remove redundant
state registers [Ber90] [Tou93]. State graph algorithms are
provided for state minimization and state encoding.

This allows, for example, designers to start with an initial
circuit, remove redundant state variables and remove
redundant states, convert it to a state-graph, choose an
encoding that best fits their needs, convert it back into a
circuit, and still have a circuit representation that is
equivalent to the original one.

Following the above steps, we were able to optimize the
mismatch example, a pathological regular expression,
described in [Kar83]. On the circuit level, 6 state registers
were found to be redundant, the state-graph representation
was reduced to 1721 states from 8062 states in the original
representation. The authors do not know of any other
system that has been able to reduce this machine. [Sea94a]
were not able to produce a state-graph representation for
this circuit using SIS [Sen92]. It took 59 seconds on a Sun
Sparc 20 to remove the redundant state registers and 486
seconds to produce the 1721 state machine.

4.3 Verification
To prove that the above optimizations and conversions

were performed correctly on the examples, (i.e. produced
equivalent circuits), a formal verification approach was
undertaken. Given an initial controller circuitC1 and an
optimized version of the controller circuitC2, if the
optimization steps do not change the behavior thenC1 must
be equivalent toC2. To prove this, the product machine
C1xC2 is constructed and formally verified by showing that
C1 and C2 produce the same output sequence for any input
sequence. For example, the above minimized 1721 state
machine was formally verified in 147 seconds on a Sun
Sparc 20.

4.4 HDL Code Generation

HDL code generation is performed as a backend process.
Dali generates either synthesizable Verilog or VHDL code,

depending on the host language. The output code can also
be generated with or without debugging information.
Verilog code generation, for instance, produces a Verilog
module describing the controller circuit. The module
implements the behavior of the circuit including the logic of
the controller and the triggers for actions. Note in Figure 6
that the actions are used to manipulate outputs and
variables.

5. Debugging

A testbench can instantiate the generated controller and
other entities for simulation of the complete system. The
Dali simulation interface provides a simulator independent
mechanism for allowing Dali to interface to a variety of
commercial HDL simulators for debugging. Dali debugging
information for the controller is back-annotated in the Dali
Frame Editor. The other signals in the design can be
watched via an ordinary waveform viewer. In the Frame
Editor, the designer sees which frames in the design are
“accepting” and “active” in each cycle. The designer can
also set breakpoints to stop the simulation when a frame is
activated or when a frame accepts.

In a typical design flow, the design is first synthesized
with the debugging information. The back-annotation to the
specification during simulation makes debugging much
easier so that design problems are uncovered earlier. Once
the results are satisfactory, an optimized controller is
compiled and the generated HDL code is synthesized using
down stream synthesis tools.

6. Results

The Dali system has been used to build controllers for
real life applications such as ATM and MPEG protocols.
These are:

• A receiver for the ATM protocol. This design is simi-

“activate”

“accept”

Debug Signals

Outputs

Controller Module

State Vector

Figure 6. Block Diagram of Generated Code

Control
Logic
Block

Inputs

Internal
Variables

Action

Action

...

Action

lar to the example design shown before but performs
more tasks during the header processing.

• A receiver for the MPEG system layer. Special actions
are used to cope with cells of varying length.

• A receiver for the HDLC protocol. It accumulates
incoming data bits into 32 bit words and performs
CRC checking.

Table 1 shows the results. The example design is also
included to allow a better interpretation of the values. The
number of frames and actions allows one to judge the
complexity of the protocol. Dali generated the FSM (see
number of states and state bits) and the HDL output (all
results are for VHDL). The shown times (running on a
Sparc20) include FSM synthesis as well as HDL generation
with all optimizations turned off. Short compilation times
are important to allow a fast debugging cycle.

FSM synthesis time, however, can be much longer when
optimizations are turned on which is relevant after finishing
the debugging cycle. The table shows the results for
removing redundant states.

The HDL output was then run through a commercial
logic synthesizer, while distinguishing between the pure
controller part and the gates required for actions. In the
MPEG design, actions play an active role during frame
recognition. Therefore, these actions are not separated from
the controller part.

7. Summary and Conclusions

This paper has described Dali and its novel graphical
input format that has been developed to closely match
typical high level design specification diagrams for
structured data processing controllers. This frees the
designer to work at the level of the specification, instead of
thinking of control in terms of an FSM. Three key benefits
to this approach over the traditional FSM approach are: 1)
design changes at the specification level are easier to
handle, 2) debugging the design is easier since simulation
results are back-annotated onto the high level graphical
specification, and 3) it decreases the design cycle time.

Several examples have been shown in the paper to give
the reader an idea of the scope and depth of the Dali system.
The authors believe that Dali is the first system that has
produced a state machine for the mismatch [Kar83]
example that uses fewer than 8000 states (Dali used 1721
states). The other examples were chosen based on problems
that are currently of commercial interest. Designer feedback
indicates that the overall design cycle can be reduced by a
factor of three and incorporating specification changes into
a Dali design can take well less than half the time to
implement compared to traditional design approaches.

References
[Ber92] G. Berry and G. Gonthier, “The ESTEREL synchronous
programming language: design, semantics, implementation”, in
Science of Computer Programming, Nov. 1992, vol. 19 (no. 2):
pp. 87-152.
[Ber90] C. Berthet, O. Coudert, J. C. Madre, “New Ideas on Sym-
bolic Manipulations of Finite State Machines’’, in Proc. of
ICCD’90, Cambridge MA, USA, September 1990.
[Buc94] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt,
“Ptolemy: A Framework for Simulating and Prototyping Hetero-
geneous Systems,” inInternational Journal in Computer Simula-
tion, vol. 4, no. 2, 1994, pp. 155-182.
[Har87] D. Harel, “Statecharts: A Visual Approach to Complex
Systems,” inScience of Computer Programming, Aug. 1987, vol.
8 (no. 3), pp. 231-275.
[Kar83] A.R. Karlin, H.W. Trickey, and J.D. Ullman, “Experience
with a regular expression compiler”, in Proc. of ICCD’83, pp.
656-665, 1983
[Sea94a] A. Seawright and F. Brewer, “Clairvoyant: A Synthesis
System For Production-Based Specification,” inIEEE Trans. on
VLSI Systems, June 1994, pp. 172-85.
[Sea94b] A. Seawright, “Grammar-Based Specification and Syn-
thesis for Synchronous Digital Hardware Design,” Ph. D. Thesis,
University of California at Santa Barbara, June 1994 (UMI order
#9500298).
[Sen92] E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R.
Murgai, A. Saldanha, H. Savoj, P.R. Stephan, R.K. Brayton, and
A. Sangiovanni-Vincentelli, “SIS: A system for sequential circuit
synthesis”, Electron. Res. Lab. Memo, No. UCB/ERL M92/41,
May 1992
[Tou93] H. Touati and G. Berry, “Optimized Controller Synthesis
Using Esterel”, inProc. International Workshop on Logic Synthe-
sis IWLS’93, Lake Tahoe, 1993.

Table 1: Design Results

Design

Input Specification Generated FSM + HDL Circuit Size

Frames Actions Time [s] Bits Time[s]
Redundant

bits
states lines VHDL

 Ctrl
[gates]

Actions
[gates]

Example 26 14 0.6 10 1.0 1 10 191 197 403

ATM 12 17 0.9 20 1.6 3 19 602 183 609

MPEG 183 28 1.8 68 300 0 344 657 1416

HDLC 17 10 0.9 21 1.6 6 38 216 403 1097

