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Abstract. We present a system for learning and utilizing context-de-
pendent user models. The user models attempt to capture the interests of
a user and link the interests to the situation of the user. The models are
used for making recommendations to applications and services on what
might interest the user in her current situation. In the design process we
have analyzed several mock-ups of new mobile, context-aware services
and applications. The mock-ups spanned rather diverse domains, which
helped us to ensure that the system is applicable to a wide range of
tasks, such as modality recommendations (e.g., switching to speech out-
put when driving a car), service category recommendations (e.g., journey
planners at a bus stop), and recommendations of group members (e.g.,
people with whom to share a car). The structure of the presented sys-
tem is highly modular. First of all, this ensures that the algorithms that
are used to build the user models can be easily replaced. Secondly, the
modularity makes it easier to evaluate how well different algorithms per-
form in different domains. The current implementation of the system
supports rule based reasoning and tree augmented näıve Bayesian classi-
fiers (TAN). The system consists of three components, each of which has
been implemented as a web service. The entire system has been deployed
and is in use in the EU IST project MobiLife. In this paper, we detail the
components that are part of the system and introduce the interactions
between the components. In addition, we briefly discuss the quality of
the recommendations that our system produces.



1 Introduction

In order to tailor mobile, context-aware applications and services to better match
the needs of users, we need to make them able to adapt to the behavior of a
user. In other words, we need to personalize the applications and services.

Background and related work. A widely used approach for personalization is user
modeling [1]. In user modeling, the aim is to construct models that capture the
beliefs, intentions, goals, and needs of a user [2]. In context-aware environments,
we also need to associate the captured interests (needs, beliefs etc.) with the
situation of the user. The main techniques for user modeling are knowledge
representation (KR) methods and predictive user models [3]. The former covers
traditional expert systems and logic-based systems, whereas the latter includes
statistical machine learning techniques such as rule induction, neural networks,
and Bayesian networks.

Previous work on context-dependent user modeling has mainly focused on
KR methods. The most common approach has been the use of static rules,
which are usually handcrafted and provided by the application designer (e.g.,
[4, 5]). Also the so-called preference approach (e.g., [6]), where users can specify
application-specific rules, falls under the scope of KR based methods. In addition
to rules, also ontology reasoning (e.g., [7]) and case-based reasoning (e.g., [8])
have been suggested. Finally, many context-aware middlewares provide system-
level support for using KR methods (e.g., [9, 10]).

The KR methods suffer from two major problems. First of all, the techniques
do not have a way to cope with uncertainty. Secondly, KR methods are not usu-
ally able to generalize their performance, i.e., to work well in previously unseen
situations. However, in context-aware environments, there are various sources of
uncertainty (e.g, the uncertainty about the goals of a user and inaccurate sensor
signals) and the number of different situations that are relevant to a user might
be very large. As a consequence, predictive user modeling seems the natural
way to go. At the moment, however, work on using predictive user models in
context-aware settings has been rather limited and all the uses are confined to
a single application (e.g., [11]) or to a well defined spatial area such as a smart
home (e.g., [12]) or a smart office (e.g., [13]).

Design process. Our work has been conducted within the EU project MobiLife1.
In MobiLife, we have followed a user-centric design process (UCD). As the first
step of the UCD process, we envisioned a set of high-level scenarios and evaluated
them with users. With the help of the user feedback, the scenarios were used
to construct mock-ups2 of new, context-aware, mobile applications and services.
The mock-ups were evaluated with users and both the feedback and the mock-
ups were thoroughly analyzed.

1 See http://www.ist-mobilife.org for more information.
2 mock-up: a model of something that is used to show other people how it will work

or what it will look like.



While analyzing the mock-ups, we discovered several uses for context-depen-
dent personalization in the application ideas. Examples of the uses include
modality recommendations (e.g., switching to speech output when driving a
car), service category recommendations (e.g., journey planners at a bus stop)
and recommendations of group members (e.g., people with whom to share a
car).

Contribution. In this paper, we describe a generic system for context-dependent
user modeling. The system can be used with the diverse set of applications
described above. We have followed ideas from the field of user modeling and
made the system independent of the applications and services that use it [1]. The
structure of our system is highly modular; this ensures that the user modeling
techniques that are used can be easily replaced. Furthermore, the modularity
makes it easier to evaluate how well different techniques perform in different
domains. The current implementation supports rule based reasoning and tree
augmented näıve Bayesian classifiers (TAN). We have also decoupled learning
and inference, which makes it possible to extend the system so that inferences are
run on a mobile device. The system consists of three components, each of which
has been implemented as a web service. The entire system has been deployed
and is in use in the MobiLife project.

Our system is, to our best knowledge, the first generic user modeling system
for context-aware settings. By following a UCD design process, we have been
able to ensure that our system is suited to the requirements of future mobile,
context-aware applications and services. Finally, we are, to our best knowledge,
the first to apply predictive user models in context-aware settings in a task
independent way.

Structure of the paper. The rest of the paper is organized as follows. Sect. 2
introduces the three application mock-ups that were used in the design process of
our system. Sect. 3 details the components that are part of our system, introduces
the interactions between different components, and discusses the quality of the
recommendations made by our system. Sect. 4 concludes the paper and discusses
future work.

2 Application Mock-Ups and Design Goals

In this section, we briefly introduce the application mock-ups that were the main
drivers in the design of our system. In addition, we describe the design goals that
we derived from the mock-ups.

Multimedia Infotainer is a mobile application that allows users to interact
seamlessly with different input and output devices. For example, when the user
is driving with a car, the output modality of the phone should be speech. Or,
when the user is at home, she could project all her non-confidential messages,
e.g., to a plasma screen for easier reading. In order to make the application truly
seamless, it needs to be able to infer what input or output modality is best suited
for the current situation.



MobiCar is a car sharing application for mobile users. Users ask the applica-
tion to find them a suitable car for going into a particular location at a specific
time. As additional information, the user may choose to include personal prefer-
ences related to the car. Examples of potentially relevant user preferences include
smoking or non-smoking, pets or no pets, or music and trustworthiness prefer-
ences of the user. The goal of the application is to find a suitable allocation, i.e.,
a set of people whose requests match as closely as possible and who could be
willing to share a car. In MobiCar, we need to know which preferences have the
most impact on the acceptance of suggestions made by the system. To this end,
we need user models that associate groups of people and their preferences to a
particular situation (going by car to X on a weekday night).

Personal Communicator is an application that integrates the interactions
between a user and mobile services. The Personal Communicator can be used,
among others, for reading RSS news feeds, planning trips using online travel
planners, and printing on Bluetooth-based printing services. In order to simplify
and make the services more easily accessible to the user, we need to recommend
services that might interest the user in her current situation. Thus, the Per-
sonal Communicator offers another application where situation-dependent user
modeling could significantly reduce the amount of user interactions.

The three mock-ups above are rather diverse and, in order to simplify reuse
of machine learning methods, we need a way to provider a generic and unified

approach for context-dependent user modeling. In addition, we should be able to
provide (context-aware) personalization support for different entities (individual
users or groups) in different and potentially very diverse domains. Finally, as
different tasks have traditionally called for different kinds of solutions, we need
to be able to replace and easily reconfigure the machine learning algorithms that
are used for user modeling. A summary of the main design goals is given below.

– User modeling algorithms are independent of the application and the entity
for whom the recommendations are made (user or group).

– User modeling algorithms can be easily replaced and the methods that are
used for a particular entity and application can be easily reconfigured.

– The system is applicable (without changes) to diverse domains.

3 System Structure

In this section, we discuss the structure of our context-dependent user modeling
system. A component diagram of the system is shown in Fig. 1 and in the
following subsections we detail the functionalities of the individual components.
The system has been integrated with a context management framework that is
based on a service-oriented architecture. To this end, our discussion refers to a
specific instance of each of the components and in practice there can be multiple
instances running.
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Fig. 1. A component diagram describing the context dependent user modeling system
(the box in the middle) and its dependencies to external components.

3.1 Usage Record Provider

The first component that we describe is the Usage Record Provider, which is
a repository that stores information on the behavior of a user and the con-
text in which the behavior takes place. For example, the Multimedia Infotainer
stores the selected modality and the corresponding situation of the user. The
information that is stored in the Usage Record Provider is then used by the
Recommender (see Fig. 1 and Sect. 3.2) to learn and update user models.

The entries that the system logs are called Usage Records. An example of a
Usage Record is shown in Fig. 2. All context information is contained within the
XML tag contextElement. For privacy reasons, we have removed and obfuscated
some of the context parameters in the example.

In our setting, the context information comes from components that are
called Context Providers. More details on Context Providers and the used con-
text model can be found at [14] and on the website of the MobiLife project3. See
the list of software components on the website for a number of concrete examples
of Context Providers, as well as descriptions of what kind of context information
they provide.

The Usage Record Provider also acts as an entry point for applications and
services into the system. To get useful information from the system, the appli-
cations must send usage information to the Usage Record Provider. The sent
information should contain at least unique identifiers for the user and for the
action the user performs. When the Usage Record Provider receives usage in-
formation, it checks whether it can enrich the context associated to the usage

3 http://www.ist-mobilife.org/



<usageRecord
action="update"
actor="355023003598706"
application="Buddy"
feedback="0.0"
initiationType="manual"
recommendationType="action"
timestamp="2005-12-13T07:51:34.000Z">

<contextElement>
<parameter name=”location”>

</contextElement>
</usageRecord>

<parameter name=”cluster” value=”1”>
<parameter name="mcc" value="204"/>
<parameter name="mnc" value="815"/>
<parameter name="cellid" value="45960"/>
<parameter name="latitude" value="32.232845916875"/>
<parameter name="longitude" value="9.8896758573835"/>

</parameter>
</parameter>

Fig. 2. An example of a Usage Record.

information. This is done by contacting those Context Providers that are known
to contain parameters that are not yet part of the received usage information.
This step is especially useful for mobile applications: both the Usage Record
Provider and the Context Providers typically reside on a server, reducing the
communication costs of the mobile client.

3.2 Recommender

The Recommender is responsible for performing all tasks related to user model-
ing: learning and updating user models and making inferences with the learned
models. Within the component, the functionalities have been divided into three
kinds of modules: Finders, Mappers and Reasoners.

Finders. The Finders are responsible for finding components and for the in-
teractions that take place between the Recommender and other components.
There is a Finder for each component with which the Recommender needs to
interact. The reason for separating the interactions with external components
is that it offers us more flexibility as the Recommender is not tied to a par-
ticular implementation of the external components. Thus, we can modify the
external components at any stage and the only thing we need to change in the
Recommender is the corresponding Finder.

Mappers. The Mappers are responsible for mapping structured information into
a non-structured (flat) form and vice versa. Context and behavior information



are often structured (for example, nested context parameters as illustrated in
Fig. 2, or references to a tree-like or graph-like ontology of user behavior),
whereas common machine learning algorithms can only handle flat data (for
example, numeric vectors or name-value pairs).

The requirements of the mappers are two-fold. First, the data formats must
be made compatible. Second, the translated data should contain information
that makes it as efficient as possible to learn and apply the context-dependent
user model. While the first requirement could be handled in an application-
independent manner, this is not the case for the second requirement. A good
mapping may depend on the application: for example, an application-specific
ontology of service categories can be used to map fine-grained identifiers of in-
dividual services into higher-level identifiers of service categories; this way the
system can make useful predictions with considerably less training data and the
predictions generalize to new situations. Furthermore, a good mapping may also
depend on the specific machine learning algorithm.

Examples of possible mappings include the following: (i) Flattening struc-
tured information; e.g., translating the Usage Record of Fig. 2 into (cluster =
1,mcc = 204, . . . , longitude = 9.89). (ii) Feature selection, i.e., choosing a subset
of input data; e.g., translating the Usage Record of Fig. 2 into (cluster = 1). (iii)
Extracting higher-level features in an application-specific manner; for example,
using an external ontology of context or behavior information. (iv) Technical
low-level translations as required by the specific machine learning algorithms;
for example, discretizing real-valued data to integral values, or mapping class-
valued data to Boolean vectors.

Reasoners. The Reasoners are responsible for encapsulating implementations
of individual machine learning algorithms into the Recommender. Thus, the
Reasoners are the part of the architecture where the actual learning and inference
is done. The Reasoners interact closely with the Mappers: Before usage records
are used for learning, the Mappers map the context and behavior information
into vectors that are given to the Reasoners. Similarly, when the Reasoners are
used for inference, the Mappers take the results of the inference and map them
so that the applications can understand the results.

To have a clear separation between learning and inference, we have specified
separate interfaces for the components that offer learning functionalities and for
the components that offer inference functionalities. The separation of interfaces is
crucial as in a mobile device we seldom have enough resources to run the learning
phase. However, once we have learned a model, it may be possible to run the
inference stage even on the phone. Another advantage of the clearly separated
interfaces is that this further improves the reusability of the implementations of
individual algorithms.

Once a Reasoner has learned a new model, we store the models into a Profile
Manager (see Sect. 3.3). The motivation for this is improved scalability and
better distribution of functionalities. Furthermore, by storing the models into a
Profile Manager, the user models become part of the user profile and thus all
relevant preference-related data is stored in a single place.



In the current implementation of the Recommender, we have support for
tree augmented näıve Bayesian classifiers (TAN; see, e.g, [15]) and for rule-
based reasoning. The algorithm that is used for learning the TAN classifiers is
described in [15] and as the inference method we use so-called quasi-Bayesian
inference [16]. Rule learning, on the other hand, has been implemented using the
Ripper algorithm [17] and the inference utilizes RuleML-based [18] rule-engines.

3.3 Profile Manager

The third component of the system is the Profile Manager. A detailed description
of the Profile Manager can be found at [19]; we focus on the functionalities that
are relevant for the user modeling system.

The Profile Manager is responsible for managing profiles of different entities
such as users and groups. Each entity has a separate profile that is further
divided into views that contain data specific to a particular application or a set
of applications. In terms of the user modeling system, the role of the Profile
Manager is to act as a persistent storage for user models. Whenever new models
are learned, the models are sent to the Profile Manager, which stores them in
the appropriate user profile. When an application requests for recommendations,
the Recommender fetches suitable models from the Profile Manager.

The entity for whom the recommendations are requested uniquely specifies
the profile to use; the application specifies the appropriate view within the profile.
Since the user modeling system has been designed to be usable in a wide variety of
scenarios and potentially with a large number of users, we need to properly index
the models that are stored in the Profile Manager. To this end, we use qualifiers,
which are collections of (name, value) pairs. Thus, the qualifiers specify a set of
index terms for each model, which facilitates finding the appropriate models. As
an example, when we store a newly created model, we use the names of context
parameters to specify a set of qualifier constraints. When we then want to infer
on the models, we can first check what context information is available and to
fetch only those models than can be used with the available context information.

3.4 Evaluation of Recommendations

In order to evaluate the quality of the recommendations that our system pro-
duces and to ensure that the system works properly, we selected two datasets
from the UCI machine learning repository [20]. We exported the data into our
system by mapping the data records into usage records. After this, we used
leave-one-out cross-validation to test the classification accuracy of the system.
In the experiments, we used the TAN, and as the system is able to make proba-
bilistic predictions, we also measured the logarithmic loss (− log pi, where pi is
the probability assigned to the correct class).

The data sets and the experiment results are summarized in Table 1. The
first data set, Vote, consisted of 435 records. The data set contains many records
with missing values. In this experiment, we considered only the part of the data
set with complete information, leaving us with 232 records. The classification



task is a binary task and our system was able to achieve a 94.4 percent accuracy
on the data set. The second data, Zoo, consisted of 101 records, each of which
had 17 attributes. However, since one of the attributes was a unique identifier,
we removed it. On this data set, our system achieved an accuracy of 98 percent.

Table 1. Summary of the used datasets and results of the experiments.

Data set Records Attributes Classes Accuracy Avg. log-loss

Vote 232 (435) 16 2 94.4% 0.165
Zoo 101 16 (17) 7 98.0% 0.121

4 Conclusions and Future Work

In this paper, we have presented a generic component for context-dependent
user modeling. The component has been designed with flexibility in mind and
it eases the reuse and the evaluation of different machine learning methods. In
the future, our goal is to implement additional machine learning methods, more
specifically rule learning and neural networks, to the Recommender. We will also
perform user acceptance studies in different settings and test the relevancy of
different machine learning methods for these settings.
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