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Statistical similarity analysis has been instrumental in elucidation
of the voluminous microarray data. Genes with correlated expres-
sion profiles tend to be functionally associated. However, the
majority of functionally associated genes turn out to be uncorre-
lated. One conceivable reason is that the expression of a gene can
be sensitively dependent on the often-varying cellular state. The
intrinsic state change has to be plastically accommodated by
gene-regulatory mechanisms. To capture such dynamic coexpres-
sion between genes, a concept termed ‘‘liquid association’’ (LA) has
been introduced recently. LA offers a scoring system to guide a
genome-wide search for critical cellular players that may interfere
with the coexpression of a pair of genes, thereby weakening their
overall correlation. Although the LA method works in many cases,
a direct extension to more than two genes is hindered by the ‘‘curse
of dimensionality.’’ Here we introduce a strategy of finding an
informative 2D projection to generalize LA for multiple genes. A
web site is constructed that performs on-line LA computation for
any user-specified group of genes. We apply this scoring system to
study yeast protein complexes by using the Saccharomyces cerevi-
siae protein complexes database of the Munich Information Center
for Protein Sequences. Human genes are also investigated by
profiling of 60 cancer cell lines of the National Cancer Institute. In
particular, our system links the expression of the Alzheimer’s
disease hallmark gene APP (amyloid-� precursor protein) to the
�-site-cleaving enzymes BACE and BACE2, the �-site-cleaving en-
zymes presenilin 1 and 2, apolipoprotein E, and other Alzheimer’s
disease-related genes.

microarray � gene expression � protein complex � Saccharomyces
cerevisiae � Alzheimer’s disease

M icroarray technologies enable simultaneous measurement of
transcript abundance at the full-genome scale. The volumi-

nous data generated under various conditions contain numerous
messages about gene regulation and protein function. They are
invaluable for deciphering the complex cellular circuitry. But the
type of information distillable from a given expression database can
vary substantially, depending on the computational�statistical�
mathematical method applied (1–5). In this paper, we focus on a
subtle pattern of coexpression that has become relatively easy to
detect by means of the recently developed concept of ‘‘liquid
association’’ (LA) (6).

Profile similarity is a concept underlying many microarray elu-
cidation procedures. Consider a matrix with each row representing
one gene and each column representing one condition. The jth
value in the ith row shows the level of expression for gene i under
condition j. The expression profile for a gene refers to the corre-
sponding row in the matrix. Profile similarity can be measured by
the correlation between two rows. It has been thought that genes
with similar expression profiles are likely to be functionally asso-
ciated. The encoded proteins may participate in the same pathway,
form a common structural complex, or be regulated by the same
mechanism.

Although coexpressed genes are likely to be functionally associ-
ated, the profiles of most functionally associated genes turn out to
be uncorrelated. One reason is the high noise level of microarray
data. Another explanation is that not all genes are regulated at the

mRNA level. Yet a third possibility can be described in terms of LA.
This more advanced concept of statistical association originates
from the need to describe a situation as schematized in Fig. 1 Left,
wherein two opposing trends between X and Y are displayed. The
positive and negative correlations cancel each other out, rendering
the overall correlation insignificant. It would be valuable to learn
why and how the change of trend occurs. But for real data, such
hidden trends are not easy to detect directly from the scatterplot of
X and Y. To alleviate the difficulty, we look for additional variables
that may be associated with the change of the trend. LA quantifies
how well a candidate variable Z can be used for this purpose. There
are two types of change. A positive value of LA indicates the change
from a negative to positive correlation as the value of Z increases.
A negative value of LA indicates just the opposite way of changing,
from a positive to negative correlation. The adjective ‘‘liquid,’’ as
opposed to ‘‘solid’’ or ‘‘steady,’’ depicts this subtle pattern of
association between X and Y.

Why is the LA suitable for describing subtle coexpression pat-
terns? First, many genes have multiple functions and their biological
roles may be dependent on the often-varying cellular state. Second,
two proteins engaged in a common process under some conditions
may disengage and embark on activities of their own under other
conditions. This fact implies that both the strength and the pattern
of association between the expression profiles of X and Y may vary
as the intrinsic cellular state changes. Third, if the cellular state
change is correlated with the expression of a third gene Z, then the
correlation change may be detected by conditioning on Z. Fourth,
because the relevant state variable is often unknown, to find out
which genes can act as candidate for a mediator Z, a genome-wide
search is appropriate. However, this search is an insurmountable
challenge if inspection of the gene expression activity were to be
done by direct examination of the scatterplots by eye. Yeast, for
example, has �6,000 genes. The total number of triplets would be
�36 billion. The situation is even worse for studying human genes.
Consequently, an easy-to-compute index of how likely one is to find
a LA pattern is desirable. After some mathematical derivation, a
formula of LA was given by Li (6), which turns out to be simple
enough to serve the purpose.

The Stanford cell-cycle database (http:��genome-www.stanford.
edu�cellcycle) was used to show how some subtle gene regulation
patterns in yeast could be found only by the LA method. One
example reveals how the enzymes associated with the urea cycle�
arginine biosynthesis are expressed to ensure proper metabolite
flow along this metabolic pathway. In particular, the expression
profiles of X � ARG2 (acetylglutamate synthase) and Y � CAR2
(ornithine aminotransferase) are uncorrelated. But after a genome-
wide search for the LA score leaders had been conducted for this
pair, an enzyme adjacent in the pathway, CPA2 (arginine-specific
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carbamoyl-phosphate synthase, large subunit), was found at the 8th
place from the negative score end. The correlation between ARG2
and CAR2 changes from positive to negative as the expression of
CPA2 increases. This change of correlation reflects well a remark-
able cellular control on the influx and efflux of ornithine in
response to the arginine demand. The high level of CPA2 indicates
a cellular state ready for arginine biosynthesis. Under this state, we
observe a negative correlation between ARG2 and CAR2. Up-
regulation of ARG2 is concomitant with down-regulation of CAR2,
thereby preventing the newly synthesized ornithine from leaving the
urea cycle.

LA was further applied in a functional genomic study of the
National Cancer Institute’s anticancer drug screen (7). In all, 60
representative human cell lines from seven cancer types (lung,
colon, melanoma, kidney, ovary, brain, and leukemia) were se-
lected, and their responsiveness over a broad range of concentration
for tens of thousands of anticancer compounds was tested. More
recently, molecular characterization of these cell lines was made
available by profiling thousands of genes with microarrays (http:��
dtp.nci.nih.gov�docs�cancer�cancer�data.html) (8–10). In correlat-
ing drug sensitivity profiles with gene expression, most drugs of
known molecular mechanism turn out to be uncorrelated with their
molecular-target genes. In ref. 7, LA is used to find candidate genes
that intervene, confound, and weaken the drug–gene correlation.

The LA measure deals with only two genes. How to bypass this
limitation in studies that involve multiple genes at one time? In this
article, we take an informative low-dimension projection approach
as schematized in Fig. 1 Right. First, the expressions of a group of
p genes under n conditions are viewed as n points in a p-dimensional
space. While we wish to visualize how the points are distributed, this
is hard to do for p � 3. To sidestep the obstacle, a promising strategy
is to project the data to a lower-dimensional space. The popular
principal component analysis (PCA) uses the directions with the
largest variance for projection. But because our goal is to reveal the
LA pattern as clearly as possible after projection, we next develop
a different formulation of informative projection.

Theory
Our theory is presented in terms of continuous random variables.
Suppose all variables are standardized to have mean 0 and variance
1 so that the correlation between variables X and Y is equal to
E(XY). With the presence of a third variable Z, we denote the
conditional expectation E(XY�Z � z) by g(z). The overall correla-
tion between X and Y, E(XY), is equal to Eg(Z). We regard g(z) as
the coexpression measure between gene X and gene Y when gene
Z is expressed at level z. The derivative g�(z) quantifies how g(z)

varies as z increases. LA of X and Y with respect to Z is defined by
LA(X, Y�Z) � Eg�(Z). A simple estimate of LA is available under
the normal assumption for Z: LA(X, Y�Z) � E(XYZ). A normal
score transformation on each gene profile is performed before
analysis.

To extend LA for a group of p genes, let X denote a vector of p
variables, X1, . . . , Xp, where each variable measures the expression
level of one gene. A one-dimensional projection of X is a linear
combination a�X � a1X1 � � � � � apXp with norm �a� � 1. For a 2D
projection, we require that the two projection directions a, b be
orthogonal to each other: a�b � a1b1 � � � � � apbp � 0. After
projection, the liquid association between a�X and b�X mediated by
Z becomes

LA�a�X, b�X�Z� � E�a�Xb�XZ�

� E�a�XX�bZ� � a�E�ZXX��b .

The most informative 2D projection for revealing the LA pattern
can be found by maximizing �a�E(ZXX�)b� over any pair of
orthogonal projection directions a, b.

This maximization can be done by eigenvalue decomposition
on E(ZXX�):

E�ZXX��vi � � iv i, �1 � · · · � �p,

where vi are eigenvectors and �i are eigenvalues. The following
theorem conveys the final result. The proof is given later.

Theorem. Assume that Z is normal with mean 0 and standard
deviation 1. Subject to �a� � �b� � 1 and the orthogonal condition
a�b � 0, the maximum for the absolute value of LA(a�X, b�X�Z) is
equal to (�1 � �p)�2. The optimal 2D projection directions are given
by a � (v1 � vp)��2 (or �a), b � (v1 � vp)��2 (or �b).

The proper signs of a and b are determined in the following way.
Let ai

� � max{ai, 0}, a� � (ai
�, . . . , ap

�)� and let ai
� � min{ai, 0},

a� � (a1
�, . . . , ap

�)�. If var(a��X) � var(a��X), set sign(a) � 1 and
keep a as the first projection direction; otherwise set sign(a) � �1
and use �a as the first projection direction. The sign of the second
projection vector b is determined in the same way. The resulting
liquid association is called the projection-based liquid association
(PLA) for X mediated by Z and is denoted by PLA(X�Z).

Proof: By eigenvalue decomposition, we put E(ZXX�) � �1v1v�1 �
� � � � �pvpv�p. Represent two candidate projection directions a, b as
a � c1v1 � � � � � cpvp, b � d1v1 � � � � � dpvp under the constraints

c1
2 � · · · � cp

2 � d1
2 � · · · � dp

2 � 1, [1]

c1d1 � · · · � cpdp � 0. [2]

Because LA(a�X, b�X�Z) � a� E(ZXX�)b � c1d1�1 � � � � � cpdp�p,
we need to find the maximum of �c1d1�1 � � � � � cpdp�p�. Denote
�(d) � d1

2�1 � � � � � dp
2�p. Now, using constraint 2, we see that

�c1d1�1 � · · · � cpdp�p�

� �c1d1��1 � ��d�� � · · · � cpdp��p � ��d���

� 	d1
2��1 � ��d��2 � · · · � dp

2��p � ��d��2
1�2 �by 1�

[3]

The last expression can be viewed as the standard deviation of a
discrete random variable U with P{U � �i} � di

2, i � 1, . . . , p. To
maximize the standard deviation, the probability mass has to be
placed only on the endpoints �1, �p. Thus we have d1

2 � 1�2, d2 �
� � � � dp�1 � 0, dp

2 � 1�2. Without lost of generality, we take d1 �
1��2 � dp and return to inequality 3. We need only to maximize
�c1 � cp�(�1 � �p)��2. Using Eq. 1, this can be achieved at c1 � �2,
cp � ��2, c2 � � � � � cp�1 � 0. This proves the theorem.

Fig. 1. LA and PLA. (Left) Illustration of the concept of LA. X and Y are
uncorrelated because the two opposing trends nullify each other. Low values
of Z (green) are associated with the positive trend, whereas high values of Z
(red) are associated with the negative trend. Z plays a mediator role. The LA
score is negative in this case. For the gene expression application, each dot
represents one condition under which the expression levels of genes X, Y, and
Z are measured. (Right) Illustration of projection-based LA. The expression
profiles for a group of p genes with n conditions can be viewed as n points in
p-dimensional space; p � 4 is shown here with each blue axis representing one
gene. High-dimensional data are difficult to visualize directly. Two projections
(pink and yellow arrows) are sought so that the LA pattern can be revealed.
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Method
To summarize what we have developed, for a group of p genes
X � (X1, . . . , Xp)� and a candidate mediator Z, the procedure of
PLA comprises the following steps.

(i) Apply the normal score transformation to each gene profile.
(ii) For any two genes Xi, Xj in the group, compute the original

LA score L(Xi, Xj�Z) � (Xi1Xj1Z1 � � � � � XimXjmZm)�m, where m
denotes the total number of conditions and Xik denotes the expres-
sion of gene i under condition k.

(iii) Put the LA scores in a p by p matrix and use it to estimate
E(ZXX�).

(iv) Conduct an eigenvalue decomposition on the matrix ob-
tained in step iii to find the eigenvectors v1, . . . , vp and eigenvalues
�1 � � � � � �p.

(v) Let a � [v1 � vp]��2 and b � [v1 � vp]��2 and determine
sign(a), sign(b) as in the discussion following the statement of the
Theorem.

(vi) Set PLA(X�Z) � sign(a) sign(b)(�1 � �p)�2.
We assess the statistical significance of the score PLA(X�Z) by

comparing it to a reference distribution obtained by permutation.
This reference distribution is given for each PLA output table in the
supporting information. More precisely, for each group of genes X
of interest, we generate a large number of artificial profiles Z* by
randomly permuting (Z1, . . . , Zm). Then we evaluate each
PLA(X�Z*) and pool the results to form the reference distribution.
As usual, the p value can be determined by counting how often
PLA(X�Z*) exceeds PLA(X�Z).

Results
Both yeast and human genes are studied. For yeast, we use protein
complexes from the Saccharomyces cerevisiae-Protein Complexes
database of the Munich Information Center for Protein Sequences
(MIPS; http:��mips.gsf.de�proj�yeast�catalogues�complexes�
index.html). Two gene expression datasets are considered: the
Stanford cell-cycle database (11) and a yeast segregation database
generated by Brem et al. (12). For the human gene study, we use the
cDNA gene expression database for the 60 cancer cell lines of the
National Cancer Institute (8, 9).

Cytoplasmic Translation Initiation Complex eIF2. The Stanford cell-
cycle data are used here. MIPS assigns three genes to this complex:
SUI2, SUI3, and GCD11, encoding the �, �, and 	 subunits of
eukaryotic translation initiation factor eIF2. eIF2 acts by binding
and delivering the initiator Met-tRNAi

Met to the 40S ribosomal
subunit in a GTP-dependent manner (13). The correlations be-
tween these three gene profiles are low: 0.37, 0.35, and 0.15,
respectively, for (GCD11, SUI3), (GCD11, SUI2), and (SUI2,
SUI3). Take them as X and apply PLA for a genome-wide search;
the output is given in Table 1, which is published as supporting
information on the PNAS web site. Among the top 20 genes with
the best positive PLA scores, we find ribosome small subunits
(RPS26A, and RPS23A), ribosome large subunit assembly and
maintenance (RPL11B, RPL10, and DBP10), and rRNA processing
genes (IFH1, and DBP10).

Fig. 3 Upper, which is published as supporting information on the
PNAS web site, shows the optimal LA-projection as mediated by
Z � RPS26A, whereas Fig. 3 Lower gives scatterplots between
individual genes. A subtle coherent pattern of activation is revealed.
When RPS26A is up-regulated (points coded in red triangles), we
find high expression of SUI3 from Fig. 3 Lower Right and a positive
correlation between GCD11 and SUI2 from Fig. 3 Lower Left.
When RPS26A is down-regulated (points coded in blue diamonds),
the coherence dissolves.

TIF4631, TIF4632, and CAF20. Stanford cell-cycle data are used here.
These three genes participate in translation initiation complex
eIF4F. TIF4631 and TIF4632 encode two similar proteins, which

play a positive pole in translation (14). They bind to the mRNA
cap-binding protein CDC33p. In contrast, CAF20, which encodes a
small protein, p20, is a negative regulator of translation. It represses
cap-dependent translation initiation through the competitive bind-
ing to CDC33p (15). We applied PLA to this group. The result is
given in Table 2, which is published as supporting information on
the PNAS web site. The gene with best negative PLA score is TIF5,
which encodes the translation initiation factor eIF5.

Antagonistic Pattern in CAF20 and TIF4631 Expression. A closer
examination of the expression pattern between TIF5, CAF20, and
TIF4631 was undertaken. In Fig. 2 Lower Left, down-regulation of
TIF5 (points coded in blue diamonds) is concomitant with low
expression of CAF20. The TIF5-encoded protein eIF5 is required
for the joining of the 60S ribosome subunit with the preinitiation
complex to begin the translation (16). When the expression of TIF5
is low, cytoplasmic translation is likely to be less active. Cells do not
express much CAF20 because of nothing to repress. In contrast,
when the TIF5 expression is up (points coded in red color), a
negative trend is visible between TIF4631 and CAF20 (Fig. 2 Lower
Right). This result shows well the competitive roles between CAF20
and TIF4631 in translation initiation.

In addition to TIF5, the list of PLA score leaders includes RPL30
(structural constituent of the ribosome), YTM1 (microtubule-
associated protein, ribosomal large subunit biogenesis), PNO1, and
RAP1. PNO1 encodes a component of the 90S preribosome, which
is required for pre-18S rRNA processing (17). RAP1 (repressor
activator protein) is involved in diverse processes. In its role as a
transcription activator, the largest group of target genes is those that
encode ribosomal proteins (18).

Kinetochore Protein Complex. The yeast segregation data generated
by Brem et al. (12) are used in this example. MIPS puts nine genes
in this group (CBF2, SKP1, CTF13, CEP3, CBF1, CSE4, MIF2,
BIR1, and CBF5). Accurate chromosome segregation depends on
a specialized chromosomal structure, the kinetochore�centromere.
CBF2 is essential for chromosome segregation and movement of
centromeres along microtubules. The SKP1, CBF2, CTF13, and
CEP3 products form a multisubunit complex, which binds to the
CDEIII domain of the centromere. CBF1 interacts with the CDEI
domain of the centromere. CSE4, MIF2, and BIR1 are also

Fig. 2. Translation initiation complex eIF4F. (Upper) The optimal LA projec-
tion as mediated by TIF5. (Lower Left) Down-regulation of TIF5 indicates weak
CAF20 activity. (Lower Right) A negative trend between CAF20 and TIF4621 is
observed when TIF5 is up-regulated, reflecting the antagonistic roles of CAF20
and TIF4621 in translation regulation.
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involved in chromosome segregation. CBF5 encodes a major low-
affinity 55-kDa centromere�microtubule-binding protein. CTF13 is
excluded from analysis because its expression profile has �20%
missing values. The correlations between genes in this group are
mostly quite low (see Table 3, which is published as supporting
information on the PNAS web site).

Table 4, which is published as supporting information on the
PNAS web site, gives the PLA score leaders after the genome-wide
search. Three leading genes, SFI1, SPC72, and FIN1 are localized
in spindle pole body. SFI1 protein has conserved centrin-binding
sites and an essential function in budding yeast spindle pole body
duplication (19). FIN1 protein forms cell cycle-specific filaments
between spindle pole bodies (20). SPC72 controls proper migration
of the nucleus. It interacts with the microtubule-binding protein
STU2 and participates in mitotic chromosome segregation (21).

We turn to the gene with the best negative PLA score, YFR044C
(CNN1). This gene encodes a kinetochore protein copurified with
NNF1p [Saccharomyces Genome Database (SGD) annotation],
but its molecular function is still unknown. In contrast, NNF1p is
better understood. It is a spindle pole protein required for accurate
chromosome segregation (22). The correlation between the expres-
sion profiles of YFR044C and NNF1 is weak (0.34). This finding
prompted us to apply the regular LA analysis to this pair. The gene
with the best positive LA score turns out to be MSH3, a gene with
the second-best positive score in the earlier PLA result given in
Table 4. MSH3 protein forms a complex with MSH2 protein, which
is active in mismatch repair and recombination (23). Interestingly,
the gene that has the highest correlation (0.77) with MSH2 is STU2,
and the binding partner of SPC72 is discussed earlier.

AP-1 Complex. The yeast segregation data are used. The AP-1
complex is a heterotetramer composed of two large subunits (APL2
and APL4), one medium subunit (APM1), and one small subunit
(APS1). Clathrin-coated vesicles budding from the trans-Golgi
network interact with AP-1 complex. The correlations among these
four genes are low (see Table 5, which is published as supporting
information on the PNAS web site). The output of applying PLA
is given in Table 6, which is published as supporting information on
the PNAS web site. Leading on the positive-score side is ENT4. The
ENT4 protein contains the epsin N-terminal homology (ENTH)
domain, which is essential in clathrin-dependent endocytosis (24).
To help the study of other genes in the output, we submitted them
to the Gene Ontology Term Finder in SGD for an automatic
analysis. From the enriched terms in branch of the biological
process, we found END3 (endocytosis, polar budding), SSO1 (Golgi
to plasma membrane transport; nonselective vesicle fusion), CHS5
(Golgi to plasma membrane transport, spore-wall assembly), BUD7
(bud site selection; clathrin-coated vesicle); SEC61 (protein–
endoplasmic reticulum targeting), SRP54 (protein–endoplasmic
reticulum targeting), APL2, and ENT4.

Other Complexes. We have constructed a web site (http:��kiefer.
stat.ucla.edu�LAP) that gives the standard correlation and PLA
results for each complex listed in the Saccharomyces cerevisiae-
Protein Complexes database of MIPS. Researchers can quickly
browse the results for the complex of interest to them. A gene
ontology (GO) term summary table is provided for the output
genes along with clickable buttons for submitting to GO term
Finder of SGD. For instance, the SPB (spindle pole body) com-
ponent complex�205 consists of 16 genes. Using Stanford cell cycle
data, we remove two genes because of abundant missing values. The
rest of them are used as a group for PLA application. The GO
analysis on the 20 genes with the best negative PLA scores shows
7 genes in ‘‘cell proliferation’’ (P � 0.00065). Among them, five
genes are in ‘‘cell cycle’’: SWI5, CDC39, SET3, SNT1, and CLB2.

As another example, GO term Finder shows that the PLA output
for the translation elongation eEF1 complex�225 (consisting of six
genes) has nine genes in the cellular component ‘‘ribosome’’ (P

value 0.00002). They are RPL9B, RPL21A, RPS9B, CDC19,
RPL23A, RPS23B, RPS11B, RPS6B, and RPL14B.

Genetic Markers. In the yeast segregation experiment by Brem et al.
(12), the genetic marker profiles were also available. There are in
total 3,312 markers, which cover �99% of the genome. A marker
profile keeps track of the parental strains from which each of the
40 offspring inherits the marker. Our web site allows for treating
them as Z and applying the same procedure as described in Method
to compute the PLA scores. For instance, use the translation
elongation eEF1 complex as X and specify the genetic marker files
as Z. From the PLA output given in Table 7, which is published as
supporting information on the PNAS web site, we find two markers
located at genes RPL28 and RPL24B that function as ribosome
structural constituents and another two markers located at two
genes participating in ribosome biogenesis: NSA1 (constituent of
66S preribosomal particle, involved in 60S ribosomal unit biogen-
esis) and MTR3 (35S primary transcript processing). Because
marker profiles are highly correlated with the chromosome posi-
tions of the markers, many neighboring markers appear in Table 7.
RPL28 and NSA1 fall within a block of four markers, YGL101W,
YGL103W (RPL28), YGL110C, and YGL111W (NSA1), whereas
RPL24B and MTR3 embrace a block of five markers: YGR148C
(RPL24B), YGR149W, YGR150C, YGR157W, YGR158C (MTR3).
According to both MIPS and SGD, a MTR3 mutant strain has
defects in rRNA synthesis�processing. For our data, MTR3 is the
gene having the third-strongest negative correlation with the MTR3
marker profile; see Table 8, which is published as supporting
information on the PNAS web site.

Tumor Suppressor p53. The well known human tumor suppressor
p53 is encoded by the gene TP53. A keyword query on TP53
produces four hits in our database: TP53, TP53INP1 (P53-inducible
nuclear protein), TPBP1 (p53-binding protein 1), and TPBP2
(p53-binding protein 2). The correlations between these genes are
low, falling between �0.0805 and 0.1904. We applied PLA to this
group; see the output Table 9, which is published as supporting
information on the PNAS web site. We found SMARCA4 (SWI�
SNF-related, matrix-associated, actin-dependent regulator of chro-
matin, subfamily a, member 4) at fourth place on the negative score
side. The p value is far below 0.1%. The coefficients for the two
projection directions are 0.97, 0.045, �0.015, and 0.236, and �0.090,
0.722, 0.629, and 0.2716, respectively. Because the weights on
TPBP2 (0.236 and 0.2716) are the lowest, we drop it from the group
and apply PLA again to the three remaining genes. We find
SMARCA4 at the first place. By using genetic and biochemical
approaches, SMARCA4 was shown to interact with tumor suppres-
sor p53; SWI�SNF complex is necessary for the activation of
p53-mediated transcription (25).

Alzheimer’s Disease (AD) Genes. Amyloid-� peptide is the predom-
inant component of senile plaques in the brains of patients with AD.
It is derived from the amyloid-� precursor protein (APP) by the
consecutive proteolytic cleavage by �-secretase at the N terminus
and by 	-secretase at the C terminus. APP is a widely expressed cell
surface protein. Its normal role was linked to the control of gene
expression in ref. 26, where the C-terminal intracellular fragment of
APP was found to interact with the nuclear adaptor protein Fe65
(encoded by APBB1) and the histone acetyltransferase Tip60
(encoded by HTATIP). We compared the profiles of APBB1 and
HTATIP with the profile of APP and found that the correlations
(�0.06 and �0.27, respectively) are quite low. In search of genes
that may play a role in weakening the correlation, we first applied
the ordinary LA to the pair APP and PBB1. We found a �-site
APP-cleaving enzyme BACE2 from the best 20 genes with negative
LA scores; see Table 10, which is published as supporting infor-
mation on the PNAS web site. We then applied LA again to the pair
APP and HTATIP. This time we found a major component of
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	-secretase PSEN1 (presenilin 1) to be in second place in the best
positive LA scores; see Table 11, which is published as supporting
information on the PNAS web site.

Then we took APP, PSEN1, PSEN2, APBB1, and APBB2 as a
group and applied PLA; see Table 12, which is published as
supporting information on the PNAS web site. In addition to
recovering BACE2, we found CTSB (cathepsin B) and APOD
(apolipoprotein D) from our short list of PLA-score leaders.
Cathepsin B, a lysosomal cysteine proteinase also known as
amyloid precursor protein secretase, is found elevated in the
amyloid plaques of AD brains. On the other hand, apolipopro-
tein D (ApoD), a component of high-density lipoprotein, is
elevated in association with several central nervous system
disorders, including AD. ApoD has been proposed to be an
especially robust marker for brain regions specifically affected by
particular neuropathologies (27).

This connection brought our attention to apolipoprotein E
(ApoE), which has been implicated in the pathology of AD ever
since inheritance of the 
4 allele was shown to be an important risk
factor for the development of AD. The expression profiles of APOE
and APOD were again found to be uncorrelated. So we applied the
ordinary LA to this pair and found APOC1 in our list of LA-score
leaders; see Table 13, which is published as supporting information
on the PNAS web site. APOC1 is located adjacent to APOE on
chromosome 19. Applying the ordinary LA again to the pair APOE
and APOC1, we found FE65L2 (amyloid-� precursor protein
binding family B, member 3); see Table 14, which is published as
supporting information on the PNAS web site. We also used
ordinary LA for the pair APBB1 and APOE and found BACE
(�-site APP-cleaving enzyme 1) and APOB (apolipoprotein B); see
Table 15, which is published as supporting information on the
PNAS web site.

Discussion
Coexpression of functionally associated genes can be dependent on
the often-varying cellular state. To survive, living organisms have
developed a plastic gene-regulatory mechanism to accommodate�
facilitate the inherent state change. This mechanism results in
subtle gene expression patterns hard to recognize by standard
similarity analysis based on correlation. LA and its higher-
dimension generalization emerge as analytic tools for investigating
the dynamic nature of coexpression at the genome-wide scale. The
method bypasses the need to specify the cellular state in the first
place.

Historically, Fisher and Yates (see ref. 28) had advocated the use
of normal score transformation before applying Pearson correla-
tion to gain robustness in data with a nonnormal distribution.
Motivated from a different consideration and fueled by Stein’s
lemma (48), LA also uses the normal score transformation. Alge-
braically, LA appears to be a natural three-variable extension of the
Fisher–Yates modification of Pearson correlation. However, a
further extension of LA by considering the average product of four
(or more) gene profiles is not pursued here because a lot more
samples will be needed to ensure the stability of higher-moment
statistics. Such difficulty of extending a statistical procedure from
the low- to the high-dimensional situation is generally referred to as
‘‘the curse of dimensionality’’ in the statistical literature (29).

We took the approach of informative projection to bypass the
hurdle. Given a group X of p gene expression profiles and a
candidate mediator gene Z, we looked for an optimal 2D projection
for revealing the LA pattern as clearly as possible. Through a
theorem we provide, the optimal projection is easy to find. It
involves an eigenvalue decomposition of a p by p matrix E(ZXX�)
consisting of the original pair-wise LA scores. As in the original LA,
the simplicity of PLA allows for a speedy full-genome evaluation to
find a short list of PLA-score-leading genes Z.

We demonstrated how the PLA can be applied to study protein
complexes in yeast provided by MIPS. Our examples include

complexes for translation initiation, elongation, protein transpor-
tation, and chromosome segregation. We are able to find function-
ally associated genes that mediate changes in the coexpression
pattern of the complex. We discuss the biological relevance of some
PLA-score leaders, including gene YFR046C (CNN1) for the ki-
netochore complex, gene ENT4 for the AP-1 complex, and gene
TIF5 for revealing an antagonistic pattern in TIF4631 and CAF20
expression. The functional relevance of TIF5 is confirmed by a
recent report (30) showing that eIF5 (the TIF5-encoded protein)
interacts with a distinct HEAT domain of yeast eIF4G (product of
TIF4631 and TIF4632).

We have constructed a web site that offers on-line analysis of
gene-expression data. The system integrates standard correlation,
LA, and PLA analyses under a common forum. We gave an
example to show how our system can shed light on the expression
networks of important genetic diseases. In our study of the AD gene
APP, our system reveals the involvement of the �- and the 	-secre-
tases as well as other AD-related genes at the gene-expression level.
As reviewed in ref. 31, the four genes APP, PSEN1, PSEN2, and
APOE, which are definitively linked to inherited forms of AD, have
been shown to increase the production and�or deposition of
amyloid-� in the brain. They are important biochemical targets for
drug screening and therapeutic development.

Our method contributes to the understanding about the biolog-
ical roles of human genes, of which the vast majority are still poorly
understood. Genes appearing together as the LA or PLA score
leaders are likely to be functional associated. For example, consider
the gene RAB1A (a member of the RAS oncogene family) that
appears in our Table 12 given earlier for PLA results in the AD
study. RAB proteins are thought to regulate the targeting and
fusion of membranous vesicles during organelle assembly and
transport. From the same table, we find TC10 (also known as
ARHQ), a member of the RAS superfamily of small GTP-binding
proteins involved in insulin-stimulated glucose uptake; MGC46235,
tubulin tyrosine ligase (TTL) involved in the posttranslational
modification of tubulin; and MYO10, myosin X. Using a recently
developed functional screening system, Komano et al. (32) found
that RAB1A protein can act as a regulator of amyloid-� generation.

Most recently, Phiel et al. (33) showed that GSK3A (glycogen
synthase kinase 3 �) regulates production of AD amyloid-� pep-
tides. They noted that GSK3A also phosphorylates the tau protein
(MAPT), the principal component of neurofibrillary tangles in AD,
and suggested that inhibition of GSK3A may offer a new thera-
peutic approach to AD. We conducted LA analysis for the pair APP
and GSK3A. From the output Table 16, which is published as
supporting information on the PNAS web site, we find several genes
that have already appeared in Table 12: BACE2, LARGE, TCF3,
APC4, SPS, CXCL14, DCLRE1A, NIP30, and MGC40414.

Our system also offers a few variants in computation that might
be used for other exploratory purpose. One option is to replace the
constraints �a� � �b� � 1 and a�b � 0 by var(a�X) � var(b�X) � 1 and
cov(a�X, b�X) � 0. Another option is useful for dealing with two
distinct groups X, Y of genes. The objective is to find one projection
a for X and one projection b for Y that maximizes the absolute value
of the projected LA score. This can be done by using the singular
value decomposition of E(ZXY�) to maximize a�E(ZXY�) b, subject
to �a� � �b� � 1. The first pair of singular vectors will serve for this
purpose. We also offer an option that uses the constraint var(a�X) �
var(b�X) � 1.

In our web site, all datasets are maintained by the relational
database software MYSQL (34). The intercommunication between
the server and the database is powered by PHP (35). Users can
specify a set of X, Y, and Z profiles by keywords, chromosome
locations, and gene or drug names. High-score genes are returned
to the user’s browser for immediate connection to Locus Link or
SGD. Our system is located at http:��stat.ucla.edu�kiefer�LAP.
The current server is a Mac G4 (1-GHz dual processor), which takes
about 2 sec to return results for a query with two gene profiles as
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X, two gene profiles as Y, and 9,706 gene profiles (cell-line data) as
Z. For the eigenvalue decomposition, we use C functions from
Numerical Recipe (36) and integrate them into MYSQL and PHP. For
a query on a yeast complex with 25 genes, it takes less than 1 min
to evaluate all PLA scores and find the PLA-score-leading genes.

One issue that merits further investigation is the biological
relevance of other genes with equally high PLA scores, which we
did not discuss. Recall that the assumption behind our method
is the existence of a hidden cellular state that governs the
coexpression of a group of genes under study. In each example,
we reported a selective set of genes whose activities best repre-
sent the hidden cellular state, given the current limited knowl-
edge on gene functions. In Tables 17–22, which are published as
supporting information on the PNAS web site, we show that the
majority of other unreported genes are likely to be coregulated
in response to the same cellular state change characterized by the
reported genes. In the case of cytoplasmic translation initiation
complex eIF2, we have reported six genes (RPS26A, RPS23A,
RPL11B, RPL10, DBP10, and IFH1) involved in the making of
cytoplasmic ribosome. Two unreported genes, TGS1 and ARC1,
also have apparent roles associated with the translation mech-
anism. ARC1 participates in tRNA aminoacylation for protein
translation and in exporting tRNA from nucleus to cytoplasm.
TSG1 (small nuclear RNA�small nucleolar RNA cap hyperm-
ethylase) plays a role in the maturation of pre-mRNAs and
pre-rRNA (37). Thus collectively, up-or-down regulation of
these eight genes may point to a cellular state change about the
rate of translation activity. The rest of the genes in Table 1 are
either unknown or functionally diverse. However, we find a
broadly consistent pattern of correlation between them and the
eight representative genes; see Table 17. This correlation sug-
gests that many of these genes are likely to be coregulated in
response to the cellular state change. For example, COG2
(endoplasmic reticulum-to-Golgi transport, intra-Golgi trans-

port, retrograde transport; protein binding), and ARL1 (pro-
tein-vacuolar targeting) may be indicative of the supportive
mechanism required immediately after translation. Indeed, ge-
netic interaction studies have shown that continued functioning
of the secretory pathway is essential for ribosome synthesis (38,
39). Tables 18–20 provide similar results for the other three yeast
complexes.

For the p53 group, in addition to SMARCA4, we find four
other genes, CAV1, NRG1, PDCD2, and CITED2, from Table 9.
The correlation between these genes and others shows a con-
sistent pattern of coregulation (Table 21). CAV1 (caveolin-1)
mediates cell cycle arrest through a p53�p21-dependent pathway
(40). NRG1 (neuregulin 1) activates a p53-dependent pathway in
cancer cells (41). The human programmed cell death-2 (PDCD2)
gene is a target of BCL6 repression (42), whereas the disruption
of the p53 pathway affects the development of BCL6-expressing
B cell lymphomas (43). CITED2 encodes a CBP-p300-interacting
transactivator, and CBP-p300 is involved in mediating p53
degradation (44).

For the AD gene group, Table 22 shows a consistent pattern
of coregulation for BACE2, CTSB, APOD, RAB1A, and GAB2
with other genes. GAB2, encoding a GRB2-associated binding
protein, is included because Russo et al. (45) showed that in
human brain, tyrosine-phosphorylated C-terminal fragments of
APP form stable complexes with the adaptor proteins ShcA and
GRB2. Three genes, SNX9, ADAM9, and ADAM15, from Tables
13, 14, and 16, respectively, are also noteworthy. Sorting nexin-9
(SNX9) interacts with the cytoplasmic domains of metal-
loprotease disintegrins ADAM9 and ADAM15 (46). Recently,
Asai et al. (47) determined that ADAM9 displays the APP
�-secretase activity.
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