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Abstract— In this paper we present representations and
mechanisms that facilitate continuous learning of visual con-
cepts in dialogue with a tutor and show the implemented robot
system. We present how beliefs about the world are created
by processing visual and linguistic information and show how
they are used for planning system behaviour with the aim at
satisfying its internal drive – to extend its knowledge. The
system facilitates different kinds of learning initiated by the
human tutor or by the system itself. We demonstrate these
principles in the case of learning about object colours and basic
shapes.

I. INTRODUCTION

Cognitive systems are often characterised by their ability

to learn, communicate and act autonomously. By combining

these competencies, the system can incrementally learn by

engaging in mixed initiative dialogues with a human tutor.

In this paper we focus on representations and mechanisms

that enable such interactive learning and present a system

designed to acquire visual concepts through interaction with

a human.

Such continuous and interactive learning is important

from several perspectives. A system operating in a real life

environment is continuously exposed to new observations

(scenes, objects, actions etc.) that cannot be envisioned in

advance. Therefore, it has to be able to update its knowledge

continuously based on the newly obtained visual information

and information provided by a human teacher. Assuming

that the information provided by the human is correct, such

interactive learning can significantly facilitate, and increase

the robustness of, the learning process, which is prone to

errors due to unreliable robot perception capabilities. By

assessing the system’s knowledge, the human can adapt

their way of teaching and drive the learning process more

efficiently. Similarly, the robot can take the initiative, and

ask the human for the information that would increase its

knowledge most, which should in turn lead to more efficient

learning.

In this paper we describe how our robot George, depicted

in Fig. 1, learns and refines visual conceptual models of

colours and two basic shapes, either by attending to infor-

mation deliberately provided by a human tutor (tutor-driven

learning: e.g., H: ‘This is a red box.’) or by taking initiative
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Fig. 1. Scenario setup.

itself, asking the tutor for specific information about an

object in the scene (situated tutor-assisted learning: e.g., G:

‘Is the elongated object yellow?’), or even asking questions

that are not related to the current scene (non-situated tutor-

assisted learning: e.g., G: ‘Can you show me something

red?’)1. Our approach unifies these cases into an integrated

approach including incremental visual learning, selection of

learning goals, continual planning to select actions for op-

timal learning behaviour, and a dialogue subsystem. George

is one system in a family of integrated systems that aim to

understand where their own knowledge is incomplete and

that take actions to extend their knowledge subsequently.

Our objective is to demonstrate that a cognitive system

can efficiently acquire conceptual models in an interactive

learning process that is not overly taxing with respect to tutor

supervision and is performed in an intuitive, user-friendly

way.

Interactive continuous learning using information obtained

from vision and language is a desirable property of any

cognitive system, therefore several systems have been de-

veloped that address this issue (e.g., [1], [2], [3], [4], [5],

[6], [7]). Different systems focus on different aspects of this

problem, such as the system architecture and integration [3],

[4], [6], learning [1], [2], [6], [7], or social interaction [5].

Our work focuses on the integration of visual perception

and processing of linguistic information by forming beliefs

about the state of the world; these beliefs are then used in

the learning process for updating the current representations.

The system behaviour is driven by a motivation framework

which facilitates different kinds of learning in a dialogue

with a human teacher, including self-motivated learning,

triggered by autonomous knowledge gap detection. Also,

1The robot can be seen in action in the video accessible at
http://cogx.eu/results/george.



George is based on a distributed asynchronous architecture,

which facilitates inclusion of other components that could

bring additional functionalities into the system in a coherent

and systematic way (such as navigation and manipulation).

The paper is organised as follows. In §II we present the

competencies and representations that allow integrated, con-

tinuous learning, and describe the system we have developed.

In §III we focus on different types of learning mechanisms.

The experimental results are then presented in §IV. We

conclude the paper with a discussion and some concluding

remarks in §V.

II. SYSTEM COMPETENCIES AND REPRESENTATIONS

A robotic system capable of interactive learning in dia-

logue with a human needs to have several competencies (the

ones that enable it to demonstrate such behaviour) and has

to be able to process the different types of representations

stemming from different modalities. Fig. 2 concisely depicts

the main competencies of our system and the relationships

between them. By processing visual information and com-

municating with the human, the system forms beliefs about

the world. They are exploited by the behaviour generation

mechanism that selects the actions to be performed in order

to extend the system’s knowledge about visual properties. In

the following we first describe the individual competencies

and representations, then show how they are integrated into

a unified robot system.
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Fig. 2. System competencies and relationships between them.

A. Vision

To autonomously learn visual object concepts the system

needs to identify the moment when new objects are presented

as a learning opportunity. Since initially there are no models

for these yet, it cannot rely on model-based recognition, but

requires a more general mechanism. To this end the system

uses a generic bottom-up 3D attention mechanism suited for

indoor environments that are typical for many robotic tasks.

To make the problem of generic segmentation of unknown

objects tractable we introduce the assumption that objects are

presented on a table, or any other supporting surface. Based

on 3D point clouds obtained from a stereo rig, the system

detects (possibly multiple) supporting planes using a variant

of particle swarm optimization [8]. Any parts sticking out

from the supporting plane form spaces of interest (SOIs),

i.e. anything that is potentially interesting, without regard

to its properties. These SOIs are subsequently validated by

tracking them over time, based on persistence, stability and

size.

As segmentation based on the stereo 3D point cloud

alone tends to be imperfect and can include background,

especially for weakly textured objects, stable SOIs are aug-

mented with a precise segmentation mask using the graph cut

algorithm [9] based on combined colour and 3D information.

Object properties to be learned, such as colour and shape,

are then extracted based on the segmentation mask.

B. Visual learning and recognition

To efficiently store and generalise the extracted visual

information, the visual concepts are represented as generative

models. These generative models take the form of probability

density functions (pdf) over the feature space, and are

constructed in an online fashion from new observations. The

continuous learning proceeds by extracting the visual data

in the form of multidimensional features (e.g., multiple 1D

features relating to shape, texture, colour and intensity of

the observed object) and the online discriminative Kernel

Density Estimator (odKDE) [10] is used to estimate the

pdf in this multi-dimensional feature space. The odKDE

estimates the probability density functions by a mixture of

Gaussians, is able to adapt using only a single data-point at

a time, does not assume specific requirements on the target

distribution, and automatically adjusts its complexity by

compressing the models. The odKDE penalizes discrimina-

tion loss during compression of the generative models that it

builds from the data stream, thus introducing a discriminative

criterion function in the construction of generative models. A

particularly important feature of the odKDE is that it allows

adaptation from the positive examples (learning) as well as

negative examples (unlearning) [11].

Therefore, during online operation, a multivariate genera-

tive model is continually maintained for each of the visual

concepts and for mutually exclusive sets of concepts (e.g.,

all colours) the optimal feature subspace is continually being

determined by feature selection. This feature subspace is then

used to construct a Bayesian classifier, which can be used for

recognition of individual object properties. However, since

the system is operating in an online manner, the system

could at any moment encounter a concept that has not been

observed before. We model the probability of this occurring

with an “unknown model”, which should account for poor

classification when none of the learnt models supports the

current observation strongly enough. Having built such a

knowledge model and Bayesian classifier, recognition is done

by inspecting a posteriori probability (AP) of individual

concepts and the unknown model.

Such a knowledge model is also appropriate for detecting

gaps and uncertainty in knowledge. By analysing the AP for

an object, the system determines the information gain for

every concept. The information gain estimates how much the

system would increase its knowledge, if it were to receive



information from the tutor about the particular concept

related to a particular object in the scene (e.g., the colour of

the object). This serves as a basis for triggering situated tutor-

assisted learning. Furthermore, the system can also inspect

its models and determine which model is the weakest or

the most ambiguous. Based on this estimate, the information

gain for every concept is again calculated; this time, it does

not relate to a particular object and serves as a basis for

initiating non-situated tutor-assisted learning.

C. Beliefs

Each unit of information describing an entity (e.g., an ob-

ject) is expressed as a probability distribution over a space of

alternative values (e.g., different colours, or different shapes).

These values are formally expressed as propositional logical

formulae. The resulting system is given formal semantics by

translating the units of information into formulae in Markov

Logic [12]. We call these units of information beliefs [13].

Beliefs are constrained both spatio-temporally and epis-

temically. They include a frame stating where and when the

described entity is assumed to exist, and an epistemic status

stating for which agent(s) (the robot, the human tutor) the

information contained in the belief holds. Finally, beliefs are

also given an ontological category used to sort the various

belief types.

The epistemic status of an epistemic object indicates for

which agent(s) the information in the object holds. We define

three epistemic statuses of beliefs:

• Private beliefs, coming from within the robot as direct

or indirect results of its experience of the environment.

• Attributed beliefs, i.e. beliefs about the human’s beliefs,

are the robot’s conjecture about the cognitive state of

the human tutor. These are typically an indirect result

of intention recognition (language understanding).

• Shared beliefs, denoting the robot’s view of the common

ground between the robot and the human.

Besides beliefs, which represent situated information,

other kinds of epistemic objects are needed for nonsituated

information, e.g. information gathered by the system over

several entities, but not specifically tied to any of them. One

such type of epistemic object, representing models for modal

concepts (e.g. generative models for visual properties, see II-

B), is called a model status.

Beliefs, being high-level symbolic representations, provide

a shared model of the environment which can be therefore

altered by dialogue and further exploited by higher-level

processes such as motivation and planning.

D. Situated dialogue

In task-oriented dialogues between a human and a robot,

there is more to dialogue than just understanding words. The

robot needs to understand what is being talked about, but

it also needs to understand why it was told something. In

other words, what the human intends the robot to do with

the information in the larger context of their joint activity.

Therefore, understanding language can be phrased as

an intention recognition problem: given an utterance from

the human, how do we find the intention behind it? We

extend Thomason and Stone’s abductive account of language

understanding, planning and production [14], in which agents

actively monitor and maintain common ground, and to this

end they attempt to abductively recognize the others’ inten-

tions as explanations of their observed (linguistic) behaviour.

Our extension of this approach is based on explicit reasoning

over the beliefs of agents involved in the interaction [15].

Conceptually, we can distinguish three main components

in charge of the robot’s language competence:

• Language understanding, i.e. the process of recognising

the intention behind the human’s utterance. This in-

cludes relating linguistic expressions such as references

to entities in the situated (belief) context.

• Dialogue management is a deliberative component in

the situated dialogue loop. Given a context update (e.g.

a recognised intention), dialogue management selects

actions to be performed by the language subsystem.

This action is also expressed as an intention, this time

the robot’s intention to act.

• Language production is then the process of realising the

robot’s intention given the situated context.

E. Behaviour generation

In order to create intelligent behaviour an integrated

collection of competencies, systems such as George require

mechanisms to marshall these competencies, in pursuit of

desired future states. For reasons of generality and flexibility

we have chosen to use AI planning to generate intelligent

behaviour in George. There are three elements to planning

which must be tightly integrated in an intelligent robot:

goal generation and management; planning; and execution.

Execution in our system is relatively simple (a set of medi-

ator components that trigger other components when a plan

requires it), so here we will focus on the two preceding steps

in the process.

For an intelligent robot to be truly autonomous it must be

capable of generating its own goals and selecting which ones

to pursue when [16]. George features a motivation framework

which is capable of generating goals from the results of

sensing and internal processing, and selecting which of

these to pass on to planning. Goals are generated to satisfy

drives, general dispositions to attain particular future states.

George has one primary drive: to extend its knowledge. This

drive leads George to be curious about its world. We have

previously shown the benefits of a motivation framework

featuring such a drive in a mobile robot [17] and are now

exploring its use in learning and dialogue. The knowledge

extension drive has three associated goal generators. The

first generates goals for learning when the human provides

tutoring information about an object, and a corresponding

attributed belief is created (tutor-driven learning). The second

goal generator monitors the private beliefs of the robot

for perceived objects. If any object belief indicates that

there is uncertainty in the underlying representation of the

corresponding concept (colour or shape), a goal is generated

to ask the human for information about this property (situated



tutor-assisted learning). The final goal generator inspects the

model status, an epistemic object carrying the information

about the learnt models of visual concepts. It generates goals

to ask to see new objects with particular properties if the

models for these properties are not particularly discriminative

(non-situated tutor-assisted learning).

The motivation framework selects which goal to achieve

based on their potential information gain and associated cost.

These values are derived from the system’s models and the

reliability of recognition of the currently observed objects,

and are stored in the beliefs. The selected goals are forwarded

to the planning subsystem.

At the heart of the planning subsystem is Fast Down-

ward [18], a classical planner. Given an initial state, a set

of actions, and a goal formula, classical planning is about

finding sequences of actions turning the initial state into a

state satisfying the goal formula. As the classical planning

approach relies on having a complete and certain description

of the situation the agent is faced with, a condition that is not

met in the George scenario, we extend the planner to handle

uncertainty using continual planning [19]. In this optimistic

approach, the planner assigns desired effects to actions with

uncertain outcomes, and monitors their execution in order

to replan whenever the optimistic assumption was violated.

Combined with the described goal generation and selection

processes this results in a robust, domain-independent and

easily expandable system that controls the robot’s behaviour.

F. The integrated system

We integrated the competencies described above in a

robotic system. The implementation of the robot is based

on CAS, the CoSy Architecture Schema [20]. The schema is

essentially a distributed working-memory model composed

of several subarchitectures (SAs) implementing different

functionalities. George is composed of four such SAs, as

depicted in Fig. 4 (here, the components are depicted as

rounded boxes and exchanged data structures as rectangles,

with arrows indicating a conceptual information flow).

The Visual SA processes the scene as a whole using stereo

pairs of images and identifies spaces of interest, where the

potential objects are segmented and subjected to individual

processing, as described in §II-A. Fig. 3 depicts a sample

observed scene and segmented 3D points as well as detected

objects. The visual features are then extracted, and used for

recognition (and learning) of objects and qualitative visual

attributes using the methodology outlined in §II-B. Based on

the recognition results, a private belief about every object is

generated.

The beliefs can also be altered by the Dialogue SA through

dialogue processing. The system uses off the shelf software

for speech recognition and production and the developed

techniques presented in §II-D for recognition of human’s

intentions, reference resolution, and realisation of the robot’s

intentions in the situated context.

All of the beliefs are collected in the Binder SA, which

represents a central hub for gathering information from dif-

ferent modalities (subarchitectures) about entities currently

Fig. 3. Observed scene and detected objects.

perceived in the environment. They are monitored by the

Planning SA, which generates the robot behavior as described

in subsection II-E. The beliefs are first used to trigger the

motivation mechanism to produce the learning goals and then

for generating the planning state. Finally, during execution

action requests are sent to the Visual and the Dialogue SAs

to perform actions that generate the desired behaviour. The

actual mechanisms that drive these behaviours are described

in the following section.

III. LEARNING MECHANISMS

To maximize learning efficiency a cognitive system has to

be able to exploit different kinds of learning opportunities

that require different kinds and levels of learning initiative.

In our case a learning opportunity is represented by a

perceived object and by the information available about that

object, while the learning initiative (besides the learning

act itself) involves acquiring new information about the

perceived object from the tutor. In this sense we designed

three approaches for obtaining required information from

the tutor. All three approaches can be used in combination,

i.e. in mixed-initiative learning (dialogue). These learning

mechanisms are described in the following subsections; the

most important part of the process-flow for each of them is

also depicted in Fig. 4.

A. Tutor-driven learning

In the tutor-driven learning mechanism, the robot relies

on the tutor’s initiative to provide information about the

visible objects. The learning act occurs, when (i) the visual

subsystem detects an object and processes its visual features

and (ii) the information provided by the tutor is successfully

attributed to the same object. This results in two beliefs in the

binder subsystem: a private belief about the object and the

recognized object properties for the visual information; and

an attributed belief about the same object for the information

provided by the tutor. These two beliefs are the prerequisites

for the motivation subsystem to create a planning goal for

visual learning. The goal will be committed to planning

and execution only if the expected information gain for the

learning action (provided by the visual subsystem) is high

enough. Since both prerequisites for the learning are present

(visual information from the private belief and a label from
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Fig. 4. Schematic system architecture with indicated process flow for three learning mechanisms.

the attributed belief), the planner generates a trivial plan – a

sequence of learning actions, one for each property provided

by the tutor. The execution subsystem delegates the visual

learner in the visual subsystem to carry out the actions.

B. Situated tutor-assisted learning

In situated tutor-assisted learning the robot shows a greater

degree of initiative. In fact, if the tutor does not provide infor-

mation about a visible object, the robot can, depending on its

current ability to recognise that specific object, ask a question

about the object’s properties. In this case, the motivation

subsystem reacts to the private belief only. The robot asks

about the object property with the highest information gain,

since it expects that the model of the corresponding object

property will profit most if it gets the information it asks for.

In the absence of an attributed belief the planner generates

a more complex plan to ask questions about missing infor-

mation. The execution subsystem generates a corresponding

robot intention, which is further managed by the Dialogue

SA, resulting in the synthesis of the corresponding generated

utterance. Depending on the confidence in the recognition

results the planner can select between polar questions (e. g.

“Is the color of this object red?”) and open questions when

the recognition confidence is very low (e. g. “What is the

color of this object?”). After the tutor provides the answer,

the workflow is similar to the tutor-driven learning.

C. Non-situated tutor-assisted learning

The robot’s initiative goes even a step further in non-

situated tutor-assisted learning. Here the robot also tries

to influence the visual information it is getting by making

requests to the tutor (e. g. “Could you show me something

red?”). The model status (an epistemic structure similar to a

belief) has a key role in deciding if and what kind of request

to make. The model status contains key information about the

visual models (knowledge) maintained by the visual learner.

The most important information is again the information

gain, which in this case estimates the reliability of a model

in general, not relating this utility to a particular object in

the scene (in contrast, the information gain stored in the

private belief denotes the utility of new information carried

by a particular object). The goal generator that triggers this

learning mechanism has the lowest priority and is usually

triggered when no objects are present in the scene. Therefore,

when the robot doesn’t have anything else to do, it asks the

tutor to show it an object with particular visual properties

that would potentially increase the robot’s models of these

properties most.

D. Sample dialogue

A sample, mixed-initiative dialogue is shown in Fig.5. The

first fragment shows the dialogue at the beginning, when



the system has not formed any model of any concept yet,

so it cannot recognize the object properties. The tutor then

presents individual objects to the robot and describes them

(tutor-driven learning, TD, in Fig.5). After the system gets the

information, it can first initiate and later sequentially update

the corresponding information. After a number of such

learning steps, the acquired models become more reliable

and George can take the initiative and try to learn without

being told to. In this curiosity-driven learning George can

pose an open or a polar question to the tutor, when it is

able to detect the object in the scene, but is not certain

about their recognition (tutor-assisted learning, TA). After the

tutor provides an answer, the robot updates or unlearns the

corresponding representations. Furthermore, the robot can

also analyse its internal models and ask the tutor to show an

object of a particular object property that would potentially

improve its representations most, not relating its questions

to the particular scene (non-situated tutor-assisted learning,

NS). In such mixed initiative dialogue, George continuously

improves the representations and learns reliable models of

basic visual concepts. After a while George can successfully

recognise the acquired concepts and provide reliable answers.

� H: Hi, Robot.
� R: Hi, there.
� H places an unknown object in front 

of the robot: 
Do you know what this is?

� R: I don’t know.

� H: This is an elongated object.
� R: Let me see.
� R verifies the assertion and 

modifies its model: OK.

� R: What colour is this object?
� H: It is blue.
� R: OK.

� H: Is this object red?
� R: No, it is blue.
� H places a green ball on the table: 

Could you tell me what shape it is?
� R: It is compact.
� H: Is the compact object green?
� R: Probably yes.

� H places another object 
on the table.

� R: Is this object red?
� H: No. It is blue.
� R: OK.

� H removes the objects from 
the table.

� R: Would you show me 
something yellow?

� H places a banana in front 
of the robot: 
This is yellow.

� R: I see. Is it also elongated?
� H: Yes, it is.
� OK.

� H places several objects 
on the table: What colour 
is the compact object?

� R: It is orange.
� H: Thanks.
� R: Good bye.

NS

TD

TA

TA

Fig. 5. Fragments from a mixed-initiative dialogue.

IV. EXPERIMENTAL RESULTS

A. System evaluation

Learning is a long-term phenomena; the system needs to

observe a number of training samples to build a reliable and

robust representation of the concept that is being modeled.

And in order to obtain reliable results, the experiment has

to be repeated several times. To test learning performance it

is therefore very impractical to conduct an experiment with

a real human tutor showing and describing the objects to

the system live. Instead, we captured the pairs of images

and manually labelled them. Then, we replaced the image

stream coming from the live cameras by reading these images

from file. We also implemented a simple finite automata

that emulated the tutor behaviour in the case of the tutor-

driven learning; since the ground truth information about the

visual properties of the objects was known, the emulated

tutor could describe every image that was shown to the

system. Apart from the camera input and speech recognition,

the entire system worked in the same way as in the case

of live operation, therefore we were able to evaluate the

performance of the whole system.

We collected a database of 1120 images of 129 objects;

some of them are shown in Fig. 6. We used 500 pairs of

images as training samples and the rest of them for testing the

recognition performance. The training images were shown to

the system one by one and the emulated tutor provided the

corresponding description of the objects’ properties, which

triggered the learning action, as in the case of tutor-driven

learning described in §III-A. Eight colours (red, green, blue,

yellow, black, white, orange, pink) and two basic shapes

(compact, elongated) were being taught. After each update

we evaluated the models by trying to recognize the colours

of the objects in all test images. The model performance

was evaluated in terms of recognition rate. We repeated

the experiment three times by randomly splitting the set of

images into training and test sets and averaged the results

across all runs.

Fig. 6. Sample objects.

The experimental results are shown in Fig. 7. It shows the

evolution of the learning performance over time. It is evident

that the recognition rate improves with increasing numbers of

observed images. The growth of the recognition rate is very

rapid at the beginning when new models of newly introduced

concepts are being added, and still remains positive even after

all models are formed due to refinement of the corresponding

representations. The growth is not strictly monotonic; some

updates may also cause a drop in the recognition performance

due to restructuring of the models, or, more problematically,

due to a bad segmentation of the object, which may lead to

poor feature extraction. Eventually, by observing additional

training samples the models get improved and recognition

performance grows again.

At the beginning of the experiment the system knew

nothing about the object properties, while at the end it was

able to successfully recognize almost all of them. The final

recognition rate is 92.40% on average. Most of the misclassi-

fications are due to soft (or even ambiguous) borders between

certain colours (such as orange – yellow, pink – red, dark



blue – black). In fact, we asked 10 people to label the same

database, and their results differ in a very similar way. Their

average recognition rate with respect to the labels that were

used to train the robot system is 93.27%. These experimental

results show that the entire system performs as expected; it

is able to successfully detect the objects, understand the tutor

describing these objects and build reliable models of visual

properties.
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Fig. 7. System evaluation - recognition rate.

B. Evaluation of learning mechanisms

To test the other learning mechanisms we would have to

implement significantly more advanced tutor emulation (in

fact, we would have to implement another Dialogue SA that

would understand the robot’s utterances), therefore we per-

formed the evaluation of the proposed learning mechanisms

in a simulated environment in Matlab.

We used the same set of 1120 pairs of images as in the

previous experiment. We ran the visual subsystem of George,

which was used for detecting and segmenting the objects.

The extracted features were then used for evaluation of the

learning mechanisms.

We tested the performance of all three learning mecha-

nisms presented in §III: tutor-driven (TD), situated tutor-

assisted (TA) and non-situated tutor-assisted (NS) learning.

In the tutor-driven case we also wanted to test the influence of

order of training samples, so we evaluated two variants of the

tutor-driven strategy. In the first case (TDrnd), the training

images were randomly chosen, while in the second case

(TDseq) the models were first initialized with five images

from every class and then the objects were presented in a

sequence by presenting all objects of the first class, then

the second and so on. In both cases the simulated tutor

provided the label for every training image. In the case of

TA learning, the tutor was randomly presenting the objects,

but did not label them. The robot inspected the colour of an

object and if it could partially recognize the colour, it would

ask the tutor if the recognised colour label was correct. The

tutor would answer either ”yes” or ”no”; in the latter case it

would also provide the correct colour label. In the case of

NS learning, the robot dictated the sequence in which the

training samples were presented by inspecting its internal

knowledge and asking the tutor to present an object of a

particular colour.

We evaluated the performance of the learned models in

terms of the recognition rate obtained on the training set.

However, in such interactive learning settings, the success of

recognition is not the only measure that matters. It is also

very important how the learned models were obtained, i.e.,

how much effort the tutor had to invest in order to teach the

robot. Measuring the tutoring cost in such a mixed-initiative

learning framework is quite a challenging problem; in this

experiment we resorted to the following simple criterion:

if the tutor had to provide the description of an object, it

provided 3 bits of information (3 bits encode 8 classes of

colours), while a polar answer was evaluated as a 1 bit

cost. We therefore evaluated the different learning methods

by comparing their recognition rate with respect to the

cumulative tutoring costs. The evolution of the results over

time is shown in Fig. 8.

In all experiments, we used 624 images for learning and

the rest for testing. Each class was initialized by five labelled

images. In the NS approach the first 60 samples were learnt

in a tutor-driven mode to build initial models that were

reliable enough to dictate the sequence of training images.

The recognition performance was tested after every update

on all test images.

All learning strategies reached the final recognition rate of

96%. This result is higher then the recognition rate presented

in the system evaluation experiment, mainly because we used

different parameter settings in the feature selection algorithm.

For reference, we also trained the standard state-of-the-art

SVM classifier using the RBF kernel. It produced inferior

results, since it only reached 92% recognition rate. Therefore,

in terms of the final recognition performance, all learning

strategies were very successful.

The learning strategy TA was the most successful in

terms of reaching top performance with minimal information

provided. The strategies TDrnd, TDseq and NS were equal

in amount of information provided by the tutor, but there is

a striking difference in the learning rate. We can see that

the order in which the images were presented, played a very

important role. When the images were presented in sequen-

tial order (TDseq), the learning progress was very slow

(since most of the training samples for some of the colours

were presented towards the end of the learning sequence),

while learning with the random sequence (TDrnd) lead to

significantly better performance. The tutor, would therefore

have to pay a lot of attention to which of the objects to

present. The NS approach achieved very similar results to

the best TD approach; in this case, however, the sequence

of learning was dictated by the system, which would relieve

the tutor. We can expect that by combining these learning

strategies we could achieve even better results.
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Fig. 8. Evaluation of different learning strategies.

V. CONCLUSION

In this paper we presented representations and mechanisms

that facilitate continuous learning of visual concepts in

dialogue with a tutor and showed the implemented robot

system. Due to lack of space we presented the capabilities

of the developed system very briefly. We presented how the

beliefs about the world are created by processing visual and

linguistic information and how they are used for planning the

system behaviour with the aim of satisfying its internal drive

– to extend its knowledge. We focused on three different

types of learning mechanisms that are supported by the

system. We demonstrated these principles in the case of

learning about object colours and basic shapes.

During our research, we have made several contributions at

the level of individual components, as well as at the system

level. In this paper we wanted to show how an integrated

approach comprising incremental visual learning, selection

of learning goals, continual planning to select actions for

learning behaviour, and a dialogue subsystem, can lead to

a coherent and efficient system capable of mixed-initiative

learning. Such an integrated robotic implementation enables

system-wide research and development and testing on the

system and sub-system level.

The robotic implementation is based on a distributed asyn-

chronous architecture, which facilitates inclusion of other

components that will bring additional functionalities into the

system in a coherent and systematic way. Currently, we are

making use of the robot’s mobile platform and the pan-tilt

unit to enable the robot to move and look around. This will

increase the possibilities of interaction with the environment

and enable the robot to acquire novel information in a

more active and autonomous way. Here, the detection of

knowledge gaps and planning for actions that would help

to fill these gaps will play an even more important role and

will enable more autonomous and efficient robot behaviour.

The presented system, therefore, forms a firm basis for

further development. Building on this system, our final

goal is to produce an autonomous robot that will be able

to efficiently learn and adapt to an ever-changing world

by capturing and processing cross-modal information in an

interaction with the environment and other cognitive agents.
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