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Abstract— A novel system for detection and tracking of
vehicles from a single car-mounted camera is presented. The
core of the system are high-performance vision algorithms:
the WaldBoost detector [1] and the TLD tracker [2] that are
scheduled so that a real-time performance is achieved.

The vehicle monitoring system is evaluated on a new dataset
collected on Italian motorways which is provided with approxi-
mate ground truth (GT′) obtained from laser scans. For a wide
range of distances, the recall and precision of detection for cars
are excellent. Statistics for trucks are also reported. The dataset
with the ground truth is made public.

I. INTRODUCTION

We present a system for vehicle detection and tracking

using a single camera mounted on a moving or stationary

car. The system is running in real-time (10 Hz) on a single

CPU core.

A wide range of sensors, e.g. lidar, radar, ultrasound and

stereo based depth sensors, is available to driver assistance

system designers. We opted for a single camera-based system

since it is cheap, consumes minimum energy, is light and

robust. It can easily by mounted on a motorbike or even,

forward or rear facing, on a bicycle. In a car, multiple single-

camera systems with different viewing directions, angles

and distance ranges can be deployed. Visual information is

complex to process, but it provides rich information about the

environment. Vision as a sensing device has limitations (e.g.

foggy conditions, driving against the sun) but these are well

understood since they are similar to difficulties experienced

by human drivers.

As the main contribution of the paper we present a novel

system for detection and tracking of vehicles that integrates

high-performance vision algorithms: the WaldBoost (WB)

detector [1] and the TLD tracker [2]. We show how to control

the WB detector and the TLD tracker to achieve real-time

performance via process scheduling.

As a second contribution, a new dataset intended for

evaluation of on-board systems for vehicle monitoring is

presented. The dataset was collected on Italian motorways

and includes a variety of lighting and traffic conditions, see

Figures 1 and 6. For the dataset, an approximate ground truth

was calculated from laser scans collected together with the

visual data. The dataset and the approximate ground truth

will be made public.
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(a) Long range, variable light (b) Dusk conditions

Fig. 1. Examples of motorway conditions represented in the introduced
dataset with vehicle detections of the presented system overlaid.

The motorway environment is constrained in comparison

with a general road situation: no pedestrians, no incoming

vehicles, a well-marked road with a uniform surface, no high-

curvature bends and slowly changing slopes. On the other

hand, the high percentage of trucks, occasional density of

traffic and the high speed of some vehicles pose a challenge.

We evaluate the system on a selected subset of the dataset

that includes varying conditions and we report performance

in terms of detection and false positive rates as a function

of vehicle distance and apparent vehicle width in the image

(width in the image in pixels).

II. RELATED WORK

A. Vehicle detection

Object detection in static images is a well studied problem.

In computer vision research, cars are common objects of

interest due to their rigid structure, low appearance variations

and common presence in everyday scenes [3], [4], [5],

[6], [7], [8]. Early approaches were aiming mostly at high

precision and recall rather than real-time performance and

were based on statistical methods like SVM [4], [5], PCA [6],

Neural Networks [7] or Bayesian decision-making [8].

A breakthrough in application of statistical learning tech-

niques to real-time object detection was brought by the

cascaded classifier of Viola and Jones [9] who proposed a

method for training a sequential classifier working on simple-

to-evaluate Haar-like features and demonstrated its real-time

performance on the face detection problem. Hundreds of

related papers have been published focusing on improving

different aspects of the approach and applying it to various

tasks, including car detection [10]. Of the follow up work

on the Viola-Jones algorithm, of particular interest to this

paper are methods focusing on automatic cascaded classifier

training with respect to both classification precision and the

average classification time [1], [11]. They allow training

a time-precision optimized cascaded classifier without the



tedious manual intervention needed in the original Viola-

Jones method.

An alternative approach inspired by the success of part-

based detectors in Pascal VOC Challenge [3] is taken in [12].

However, despite the good detection performance, the com-

plexity of the method allows the system to run at only 1-2

frames per second.

Driving assistance systems for urban environments re-

quire relatively complex algorithms and the problem is still

considered to be very challenging [13]. In less demanding

scenarios like motorway driving, various relatively simple

heuristic-based vehicle detectors have been proposed in the

literature. Some authors exploit the shadow cast on the

road by cars which is typically darker than the rest of the

road [14], some use the fact that car outer edges could be

approximated by a U-shape curve [15]. Others rely on vehicle

symmetry as the main cue [16], [17]. At the same time,

methods that reduce the range of possible vehicle positions

to be tested by constraining to feasible on-road locations

are often applied [18]. The advantage of these systems is

their real-time performance, but their assumptions about the

the real-world scenes are simplistic and do not hold in

general. Indeed, such papers often lack rigorous quantitative

evaluation on some publicly available dataset and comparison

to other methods. An exhaustive survey of this class of

methods can be found in [19].

A very different recent approach for vehicle detection is to

use motion parallax [20] or more generally real-time multi-

body visual SLAM [21]. Here the vehicles are detected as

outliers to reconstructed (rigid) scene structure. This ap-

proach allows for both scene modeling and vehicle/pedestrian

detection and tracking: however, the method still remains to

be verified on more complex scene where multiple outliers

clusters corresponding to multiple moving vehicles may not

be easily separable into independent objects

In this paper we rely on the WaldBoost-based vehicle

detector [1], [22]. WaldBoost has already demonstrated real-

time performance ability on face detection problems, is easy

to train and, given an adequate training set, it generalizes

well to previously unseen vehicles.

B. Vehicle tracking

In the literature, the Particle Filter (PF) algorithm [23] is

probably the most popular approach for vehicle tracking. It

has been applied both to single object tracking [12], [21]

as well as in an extended form which is able to track

an unknown and variable number of objects [10], [20].

The advantage of the PF approach is that it can model

complex object dynamics through non-parametric, particle-

based, multi-modal motion distribution estimation. In [13]

the Multi-Hypothesis Tracking (MHT) has been used instead

of PF. Instead of modeling the distribution of possible states

as in PF, MHT keeps only a small set of the most likely

motion explanations.

The inherent problem of the above approaches is their

sensitivity to drift from the true object position, especially

in long sequences. They offer no correcting mechanisms

Fig. 2. The structure and flow of information in the proposed vehicle
monitoring system.

and eventually fail when the object changes appearance

significantly due to occlusion, change in lighting conditions

or pose change.

Recently, discriminative methods have become popular

in tracking literature posing the tracking as a foreground-

background classification task [24], [25]. In these ap-

proaches, the problem of complex motion modeling is

avoided by exhaustively searching the neighborhood of the

predicted position. The methods also offer means for con-

tinuous appearance model updating through on-line learning

algorithms.

One possible method for minimizing drift within this

formalism is co-training. Two (or several) on-line classi-

fiers are trained at the same time using either independent

modalities [26] or comparing global (or generative) and local

models of object appearance [27], [2], [28]. Very impressive

results have been demonstrated using these approaches for

objects undergoing appearance changes [2], [28] as well as

for long-term tracking [2].

Driven by real-time requirements and the need for long-

term tracking we adopt a modified TLD method [2] with

extensions described in [29] as they represent probably the

most robust and yet real-time approach for object tracking.

III. THE SYSTEM

The structure of the vehicle detection and tracking system

is depicted in Fig. 2. The role of the WaldBoost (WB)

detector, described in Sec. III-A is the discovery of new

cars and trucks in the field of view. The new detections are

tracked by a Flock of Trackers (FoT) which is detailed in

Sec. III-B. The Learn and re-Detect module (Sec.III-C) uses

on-line unsupervised learning to build a specific detector for

all monitored vehicles; it allows long-term vehicle identity

maintenance even in case of tracking failure. The information

from the tracker, specific and generic vehicle detectors is

integrated and passed on to the 3D pose estimation and

surrounding vehicle maintenance module; these two modules

are not described here due to lack of space.

A. The Detector.

The rear view vehicle detector is a WaldBoost [1] trained

sequential classifier applied within a sliding window frame-

work. WaldBoost is an AdaBoost-based algorithm which



automatically builds a fine-grained detection cascade of the

Viola and Jones type [9]. Wald’s sequential probability ratio

test (SPRT) performs early rejection of negative samples

after evaluation of a single weak classifier. Fast rejection

of negative samples is critical for detection speed, as a vast

majority of tested windows do not contain a vehicle.

WaldBoost training is iterative, gradually building a more

complex sequential classifier. In the first iteration, a standard

AdaBoost learning search for the best weak classifier is

performed. Then the rejection threshold for Wald’s SPRT is

estimated on a large pool of data. Finally, the pool is pruned

and a bootstrap strategy is employed to collect additional

non-object examples. To speed up the AdaBoost learning,

the weak classifier selection relies only on a subset of the

pool sub-sampled using the QWS+ strategy [30]. The weak

classifiers are chosen from an extended set of multi-block

local binary pattern features [31] and their contributions to

the final decision are a function of the weighted error for

each binary code as in the confidence-rated classification

method [32]. The approach allows fast implementation using

a look-up table.

The vehicle detector was trained on 5000 car samples

from which about 80000 positive samples with random

displacements and scale changes were synthesized. For the

background class, about one billion negative windows were

sampled from images without a car. The training samples

were downscaled to the width of 26 pixels which corresponds

to the minimum detection size of a car.

The detector is applied within a sliding window. The

detector runs at 12 fps on sequences with 1024x768 pixel

resolution and evaluates only 1.9 weak classifiers per scan-

ning position on average. This speed was achieved for a shift

between two evaluated positions equal to 1/13 of the window

size (a two pixel shift for the smallest scanning window

which is 26 pixels wide) and when window sizes at adjacent

scales differ by a factor of 1.2. An additional speed increase

is gained by excluding a fixed-height region corresponding

to the sky from the search.

B. The Tracker

Tracking is performed by an adapted Flock of Trackers

(FoT) [29]. The advantages of the FoT are its speed, about

5 milliseconds on a standard notebook for each tracked

object, and its robustness to partial occlusion and imprecise

initialization.

The FoT estimates object motion from the displacement

of local trackers which are spread uniformly within a region

covering the object. Local trackers estimate displacements

by the Lucas-Kanade (LK) method [33].

In the application considered, we assumed that object

motion is sufficiently precisely modeled by translation and

scaling. The motion is robustly estimated from a subset of

reliable local trackers, the translation as the median of their

displacements, the scale as the median of distance ratios of

all pairs of corresponding local trackers. The reliable subset

is selected on the basis of local tracker confidence estimates

which are a function of past performance, of normalized

cross-correlation of patches at the previous and current

locations and of the consistency with adjacent displacement

estimates. For details, see [29].

The median-based estimation method combined with local

tracker confidence prediction makes the FoT robust to partial

occlusions and to the failure of a fairly large proportion of

local trackers. However, our current implementation of the

FoT does not in general handle cases were most local trackers

fail due to a global change in illumination, e.g. when passing

under a bridge, entering a tunnel or in the presence of strong

sharp car-size shadows on the motorway. This problem is

caused by the underlying assumption of brightness constancy

made by the Lucas-Kanade tracker. Such cases are handled

by the re-detection described in the next section.

C. Learning and re-Detection (LrD)

Since tracking based on local optimization may fail, e.g.

due to occlusion or rapid illumination change, the need to

maintain a temporally consistent model of the environment

requires the ability to re-detect a temporarily lost vehicle

which in turn requires unsupervised on-line learning of

detectors of specific vehicles. Such learning and re-detection

capability is provided by a modified version of the TLD

algorithm [2].

In TLD, the detector also uses the sliding window ap-

proach. The object is represented by on-line learnt Ran-

domized Forest (RF) [34]. In comparison with the Wald-

Boost generic vehicle detector, the Randomized Forest is

simple and typically more powerful since it solves a simpler

problem: specific detection - to recognize a single particular

vehicle in current conditions (illumination, background, etc)

only.

The RF is a set of a restricted class of decision trees called

ferns [35] with Haar-like features [9] associated with internal

nodes. Observations at internal nodes define a single leaf

node in every fern, where an estimate of object vs. back-

ground likelihood is stored. Initially, the estimates are based

on a single example provided by the generic WaldBoost

detector and its affine warps.

For each vehicle a new RF is learnt. The RFs consist of

10 ferns each with depth 7, which is a compromise between

the speed of evaluation and the discriminative power of

the model. Initially, we populate an RF with the positive

examples generated by warping the validated object image

patch and then a negative examples learnt incrementally, as

in the TLD, by considering the positive responses of the

sliding window detector which are far from object position

as the negative examples. A detection is far from the object

if the overlap1 with the object position is less than 0.7. The

current object position (provided by the FoT tracker) is learnt

as a positive example. The learning takes place only if at

the current position the similarity to the collection of object

patches is higher than 0.75, where similarity is measured

by the maximum (over patches) of the normalized cross-

correlation.

1The overlap score O is defined in terms of areas of bounding boxes and
of their intersection ∩: O = ∩(bb1, bb2)/(bb1 + bb2 − ∩(bb1,bb2)).



We omit other learning events from the TLD algorithm [2],

because they are designed for situations where the object

appearance changes (e.g. as a consequence of a rotation

around it axis), which is not the case in the motorway

scenarios.

The Learn and re-Detect (LrD) sub-system serves two

purposes. First, the LrD is used for FoT position corrections

which stabilize estimates of the vehicle trajectory and it

prevents the FoT from drifting by accumulating error from

imprecise object transformation estimation. Second, LrD

contributes to the decision about object position in situations

when illumination changes dramatically and the FoT fails.

Since the features used in the RF are invariant to any

locally monotonic illumination changes it is highly robust

to illumination changes.

D. Tracker-Detector Interaction. Scheduling.

The vehicle monitoring system schedules two processes:

(i) vehicle hypothesis initialization and validation and (ii)

tracking, including positional correction and failure handling.

In the first process, the WaldBoost detects objects, and

the detected objects with confidence above a threshold are

passed on to be tracked by the FoT. After this initialization,

WaldBoost detections that overlap already tracked objects

are used to validate them; moving objects with multiple

positive detection in consecutive frames are unlikely to be

false positives. We set a threshold to object validation to three

positive detections out of five consecutive detector runs.

The second process consists of tracking and positional

correction of the objects with the LrD to minimize the

localization error and avoid drifting. In the case of FoT

failure, which is indicated by the FoT tracker from internal

statistics adapted for the tracking car situations (i.e. number

of consistent local trackers and scale change between two

consecutive frames), the WaldBoost and LrD detector are run

in the enlarged area predicted by a Kalman filter associated

with the failing FoT to decide if there is a vehicle and where,

and eventually reset the FoT.

Scheduling. To achieve real-time performance, we iden-

tified the most time-consuming components of the system

(see tab. I showing the timing of individual components)

and introduced the following scheduling for:

• The WaldBoost detector. It is i) run every 3rd frame on

the relevant part of the image to detect new vehicles

and ii) run in a small range of locations and scales to

re-detect vehicle where tracking failed.

• Establishing a new object. The process is run one frame

after detection and requires object patch warping and

RF learning.

• The LrD. It is run for each established object in frames

where neither the WaldBoost detector is run nor a

new object is found. The LrD plays two roles. First,

time permitting, the position of all existing trackers is

checked. Second, negative examples for learning are

collected for one object tracker at a time.

In summary, only one of the three time-consuming processes

is performed in a single frame.

AVERAGE COMPUTATION TIME [ms]

Image resolution
Process 640x480 1024x768

WaldBoost∗ 16.61 42.99
Warping + RF Learning 8.82 21.24
LrD position correction 5.06 3.99
LrD negative samples 2.65 2.74
FoT 3.12 6.29
WaldBoost verification 1.27 0.87
LrD verification 3.47 1.60

TABLE I

AVERAGE COMPUTATION TIME FOR PROCESSES WITH NON-NEGLIGIBLE

DURATION, IN MILLISECONDS. ∗EXCEPT FOR WALDBOOST, THE TIME

INDICATED IS PER OBJECT.

Currently, all these sub-systems run in one thread, there-

fore by introducing multiple threads the system can be easily

parallelized, because of high processing independence of

individual components.

IV. THE TME MOTORWAY DATASET

The dataset used to benchmark the system has been

selected from the acquisition made in Northern Italy in

December 2011 in cooperation with VisLab (University

of Parma, Italy), using the BRAiVE test vehicle [36].

The “TME Motorway Dataset”, available for download at

http://cmp.felk.cvut.cz/data/motorway, comprises:

• Image acquisition: stereo, 20 Hz frequency2, 1024x768

grayscale losslessly compressed images, with bayer

coded color information3; 32◦ horizontal field of view.

• Ego-motion estimate (confidential computing method).

• Laser-scanner generated vehicle annotation and classi-

fication (see Sect. IV-A).

The data provided is timestamped, and includes extrinsic

calibration.

28 clips for a total of approximately 27 minutes of

acquisition have been selected, to promote comparison on

a dataset that could be downloaded in a reasonable amount

of time. This selection includes variable traffic situations,

number of lanes, road curvature, and lighting, covering most

of the conditions present in the complete acquisition (see

Fig. 1 and 6). The dataset has been divided in two sub-sets

depending on lighting condition, named “daylight” (although

with objects casting shadows on the road) and “sunset” (fac-

ing the sun or at dusk). For each clip, 5 seconds of preceding

acquisition are provided, to allow the algorithm stabilizing

before starting the actual performance measurement.

A. Approximate Ground Truth (GT′)

To the best of our knowledge, the only publicly available

vehicle-annotated dataset for motorway video sequences is

the one introduced in [10]4. This dataset includes 2 motorway

sequences for a total duration of one minute, and annotation

of vehicles in the image. An extension of publicly available

2In experiments, even frames (10 Hz) from right camera were used.
3OpenCV CV BayerGB2GRAY and CV BayerGB2BGR conversion

codes are utilized to compute our results.
4Only very recently, public databases of recorded data from a moving

vehicle have emerged [37].



data would be beneficial, but a tedious manual annotation

job would be necessary, especially when it comes to heavier

(and more interesting) traffic conditions. Furthermore, man-

ual annotation cannot provide information about 3D world

location of targets.

To overcome this problem, we propose to generate a

comparison dataset using a different sensor, namely a 4-layer

Ibeo laserscanner. We have developed an algorithm, currently

of limited scientific interest, to detect vehicles from 3D point

clouds. The results are then mapped into bounding boxes

in the image using the static calibration information and

a flat-ground assumption. The detections are tracked over

consecutive frames, so that a consistent ID is provided.

This also allows interpolating results at specific intermediate

timestamps between 2 detections, dealing with the different

acquisition frequencies of laserscans and images (12.5 Hz

and 20 Hz respectively).

Thanks to the availability of 3D locations and ego-motion,

it is possible to estimate if an object is moving, allowing

discarding targets like signs misclassified because of their

compatibility with vehicle size. However, also static objects

are recorded, so that stopped vehicles can be easily tagged

manually. Manual corrections allow also to quickly remove

the few (and ID-consistent) false positives present. The final

classification about “moving” or “not moving” object and

vehicle width estimation are computed off-line, by consid-

ering the collected data until the moment the target is lost.

The estimated width of the vehicle serves to classify vehicles

into “car” or “truck”, using a threshold set at 2.1 meters: this

classification is successful in the vast majority of the cases.

Limitations:

1) Due to the limited number of laser reflections available,

in GT′ no motorbike is present.

2) The reliability of the generated data decays beyond

60-70 meters, when less than 3 laser reflections per

vehicle become available.

3) The quantization error caused by the limited angular

resolution of the laserscanner generates lateral jumps

of the computed image box, so that a quantitative

evaluation of the image tracker preciseness cannot be

performed. Farther and darker objects show additional

instability in their box side boundaries.

4) No vehicle length is currently provided, and vehicle

height can only be set arbitrarily, partially depending

on the estimated width.

5) Ego-vehicle pitching can cause a target to be temporar-

ily lost and re-detected with a new ID. In particular,

ego-vehicle oscillations and non-flat road pose chal-

lenges that will be addressed in the next section.

B. Matching between system results and GT′

As it can be reasonably expected, removing the human

supervision of a manual annotation requires some complexity

to be shifted on the successive parts of the process, in

particular while designing the criteria used to match laser-

scanner detections with image detections. The source code

A

C

B

Fig. 3. Due to the presence of car B, car C is not visible from the point of
view of the laserscanner, which is located at the center of the front bumper
of car A (black dot). However, car C is visible from the camera located on
the top right corner of the windshield of car A (white dot).

of the program designed for this operation is made available

with the dataset. We compute:

O = Ow
2 ·Ox ·

√

Oy (Overlap score)

Ow =
min(w′

G,wS)
max(w′

G,wS) Ox =
‖∩([x0G

,x1G
],[x0S

,x1S
])‖

min(wG,wS)

Oy =
‖∩([y0G

,y1G
],[y0S

,y1S
])‖

min(hG,hS)

where subscripts G and S denote an image box from GT′ and

from our system output respectively, [x0, x1] and [y0, y1] are

the intervals occupied by the box in the x and y coordinate

respectively, and w and h are the width and the height of the

box, with w′
G as the width of the GT′ box computed using

the estimated physical width and the instantaneous distance.

After experimental observations, a decision threshold has

been set at 0.35.

Conceptually, we separate the scale/area matching from

the position matching. The term Ow
2 represents the area

matching between GT′ and our system output: as the height

of the target cannot be measured directly from the laser

reflections, we consider the squared width as area-related

value. Ow is the most reliable overlap measure, as w′
G is

computed using the physical width estimated over the whole

tracking period of the object. Ox and Oy represent measures

of the overlap on the x and y coordinate of the boxes. Given

limitations 3, 4 and 5, we select a conservative denominator.

Ego-vehicle oscillations (pitching) cause misplacements

of GT′ bounding boxes along the y coordinate, because

reprojected in image coordinates through a static calibration.

To compensate this error we reproject the GT′ detections in

the image utilizing at each frame the calibration pitch angle

that allows the best total matching score for all the detections

(Best Pitch Match), implementing what can be considered

a detector-based image stabilization. Nevertheless, the pres-

ence of non-flat roads makes Oy the less reliable measure.

Therefore, we assign a reduced exponential weight (0.5) in

the merging formula used to obtain O.

Given the displacement between the 2 sensors (see Fig. 3),

there exist targets visible by only one of them, which should

be removed from the statistics computation. This problem

has been addressed considering vehicles as standing vertical

surfaces, parallel to the image plane; although this covers

most part of the cases in the dataset, also object length and

orientation should be estimated and taken into consideration

for a full understanding of the occlusions generated.

V. EXPERIMENTS

In the charts of Fig. 4 and 5 we report the statistics

collected on the two datasets, “sunset” (ex. Fig. 1b, 6a

and 6e) and “daylight”, while Fig. 6 and the complementary



(a) Precision in function of width (b) Recall rate in function of width (c) Recall rate in function of distance

(d) All detections, grouped by width (e) Car detections, grouped by width (f ) Truck detections, grouped by width

(g) All detections, grouped by distance (h) Car detections, grouped by distance (i) Truck detections, grouped by distance

Fig. 4. Statistics collected on the “Daylight” subset. A grey box is placed over the chart region where the GT′ is not considered reliable (see limitation 2).

(a) Precision in function of width (b) Recall rate in function of width (c) Recall rate in function of distance

(d) All detections, grouped by width (e) Car detections, grouped by width (f ) Truck detections, grouped by width

(g) All detections, grouped by distance (h) Car detections, grouped by distance (i) Truck detections, grouped by distance

Fig. 5. Statistics collected on the “Sunset” subset.



(a) Unfavorable light (b) Shadows (c) Trucks, with one misdetection (d) TP (in blue) misclassified as FP

(e) Sunset (f ) Curve (g) 4-lanes motorway

Fig. 6. Representative results on the TME Motorway Dataset. Odd rows show results from our system, even rows the laser scanner generated ground
truth. In odd rows, a white bounding box marks a target that has not been validated yet. In even rows, a diagonal cross (saltire) marks cars, a vertical
(Greek) cross marks trucks. A unique color is associated to each ID, as can be appreciated in the complementary video.

video show the result of our system and the GT′ for some

significative cases. We compute recall rate as TP
TP+FN

and

precision as TP
TP+FP

, where TP, FN and FP are respectively

the number of true positives (match between system output

and GT′), of false negatives and of false positives.

The availability of information like width, distance and

vehicle category allows us breaking down the statistics in the

intent of highlighting strong points and limits of our system.

For example it is possible to notice:

• The low number of false positives/high precision for

target whose width is beyond 60 pixels.

• The apparently surprising low recall rate (0.8) for closer

targets. This can be explained by the fact that overtaking

vehicles remain in the proximity of the ego-vehicle for a

shorter time than that required by the system to validate

the object. This suggests that some work should be done

to shorten the validation period for close targets.

• The relatively low performance of the system on trucks

(see also fig. 6c). This problem will be addressed by

redefining the training set of our algorithm (which

currently includes only a limited portion of trucks) or

by running in parallel a specific detector for trucks.

The low quality of the GT′ starting from 60-70 meters

does not allow measuring quantitatively the performance of

the system beyond that distance. In the submitted videos

it is possible to qualitatively appreciate that our system

outperforms GT′ for distant targets, with stable tracking/no

ID loss even across illumination changes.

Qualitatively speaking, the majority of false positives is

generated on sides of vehicles, which are not part of the



negative training set for the detector. This choice increases

significantly the recall rate of the detector, but it should

be balanced by geometry considerations to filter unrealistic

object hypotheses.

VI. CONCLUSIONS

A system able to consistently detect and track vehicle rears

in images from a single camera was presented. The system

showed good performance in terms of recall, precision and

false positive rates even in bad lighting conditions. The

evaluation was carried out on a new dataset that will be

released to the scientific community.

The system is real-time without being resource-greedy,

requiring a single core of a single CPU, which leaves space

to integration with other algorithms or extension to parallel

multi-class or multi-view object detection, including, e.g.,

motorcycles. We believe the system has a high potential for

adoption since the required hardware is cheap and compact.

Finally, a new semi-automatic method for performance

measurement was presented. We showed its limits, but noted

the importance of extended public datasets and of extra

information like the 3D position of targets, which allows

e.g. benchmarking trajectory reconstruction algorithms.
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[29] T. Vojı́ř and J. Matas, “Robustifying the Flock of Trackers,” in

Computer Vision Winter Workshop, 2011.
[30] Z. Kalal, J. Matas, and K. Mikolajczyk, “Weighted Sampling for

Large-scale Boosting,” Proc. Brit. Machine Vision Conf, 2008.
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