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Abstract— Tying suture knots is a time-consuming task per-
formed frequently during Minimally Invasive Surgery (MIS).
Automating this task could greatly reduce total surgery time
for patients. Current solutions to this problem replay manually
programmed trajectories, but a more general and robust ap-
proach is to use supervised machine learning to smooth surgeon-
given training trajectories and generalize from them. Since knot-
tying generally requires a controller with internal memory to
distinguish between identical inputs that require different actions
at different points along a trajectory, it would be impossible
to teach the system using traditional feedforward neural nets
or support vector machines. Instead we exploit more powerful,
recurrent neural networks (RNNs) with adaptive internal states.
Results obtained using LSTM RNNs trained by the recent Evolino
algorithm show that this approach can significantly increase the
efficiency of suture knot tying in MIS over preprogrammed
control.

I. INTRODUCTION

Minimally Invasive Surgery (MIS) has become common-

place for an ever-growing number of procedures. Because MIS

is performed through small incisions or ports in the patient’s

body, tissue trauma, recovery time, and pain are reduced

considerably compared to conventional, “open” surgery. While

patients have profited enormously, surgeons have had to cope

with reduced dexterity and perception: the instruments are long

and have fewer degrees of freedom, force and tactile feedback

are lost, and visual feedback is flattened to a 2D image. These

factors make delicate maneuvers such as knot-tying very time-

consuming. A laparoscopically tied suture knot can take up

to three minutes to complete, compared to one second for a

manually tied knot.
Robot-assisted MIS seeks to restore the feel of normal

surgery by providing the surgeon with a more intuitive and

ergonomic interface. The surgeon tele-operates a slave robot

that manipulates the surgical instruments from a master con-

sole that provides full six degrees of freedom manipulation,

enhanced 3D imaging, and often force feedback. Robotic

surgical systems such as DaVinci [1] and ZEUS [2] are in

wide use today, performing a variety of abdominal, pelvic,

and thoracic procedures. However, despite significant advances

in robot-assisted surgery, delicate tasks like knot-tying are

still cumbersome and time-consuming, in some cases taking

longer than with conventional MIS [3]. Given that knot-

tying occurs frequently during surgery, automating this subtask

would greatly reduce surgeon fatigue and total surgery time.
Building a good knot-tying controller is difficult because the

3D trajectories of multiple instruments must be precisely con-

trolled. There has been very little work in autonomous robotic

knot-tying: Kang et al. [4] devised a specialized stitching

device, while Mayer et al. [5] were the first to tie a suture knot

autonomously using general purpose laparoscopic instruments.

In both approaches, the controller uses a hard-wired policy,

meaning that it always repeats the same prescribed motion

without the possibility of generalizing to unfamiliar instrument

locations. One possible way to provide more robust control is

to learn the control policy from examples of correct behavior,

provided by the user.

The focus of this paper is on automating suture knot winding

by training a recurrent neural network (RNN; [6]–[8]) on

human generated examples. Unlike standard non-recurrent

machine learning techniques such as support vector machines

and feedforward neural networks, RNNs have an internal state

or short-term memory which allows them to perform tasks

such as knot-tying where the previous states (i.e. instrument

positions) need to be remembered for long periods of time in

order to select future actions appropriately.

To date, the only RNN capable of using memory over

sequences the length of those found in knot-tying trajec-

tories (over 1000 datapoints), is Long Short-Term Memory

(LSTM [9]). Therefore, our experiments use this powerful

architecture to learn to control the movement of a real surgical

manipulator to successfully tie a knot. Best results were ob-

tained using the recent hybrid supervised/evolutionary learning

framework, Evolino [10], [11].

The next section describes the EndoPAR robotic system

used in the experiments. In section III, we give a detailed

account of the steps involved in laparoscopic knot tying.

Section IV describes the Evolino framework, and in section V

the method is tested experimentally in the task of autonomous

suture knot winding.

II. THE ENDOPAR SYSTEM

The Endoscopic Partial-Autonomous Robot (EndoPAR) sys-

tem is an experimental robotic surgical platform developed

by the Robotics and Embedded Systems research group at

the Technical University of Munich (figure 1). EndoPAR

consists of four Mitsubishi RV-6SL robotic arms that are

mounted upside-down on an aluminum gantry, providing a

20cm×25cm×40cm workspace that is large enough for sur-

gical procedures. Although there are four robots, it is easy to

access the workspace due to the ceiling mounted setup. Three

of the arms are equipped with force-feedback instruments; the

fourth holds a 3D endoscopic stereo camera.
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Fig. 1. The EndoPAR system. The four ceiling mounted robots are
shown with an artificial chest on the operating table to test tele-operated
and autonomous surgical procedures. Three of the robots hold laparoscopic
gripper instruments, while the fourth manipulates an endoscopic stereo camera
that provides the surgeon with images from inside the operating cavity. The
size of the operating area (including gantry) is approximately 2.5m x 5.5m x
1.5m, and the height of the operating table is approximately 1 meter.

The position and orientation of the manipulators are con-

trolled by two PHANToMTM Premium 1.5 devices from

Sensable Inc. The user steers each instrument by moving

a stylus pen that simulates the hand posture and feel of

conventional surgical implements. The key feature of the

PHANToM devices is their ability to provide force feedback

to the user. EndoPAR uses a version of the PHANToM device

that can display forces in all translational directions (no torque

is fed back).

Figure 2 shows the sensor configuration used to implement

realistic force feedback in the EndoPAR system. Each instru-

ment has four strain gauge sensors attached at the distal end

of the shaft, i.e. near the gripper. The sensors are arranged in

two full bridges, one for each principal axis. The signals from

the sensors are amplified and transmitted via CAN-bus to a

PC system where they are processed and sent to small servo

motors that move the stylus to convey the sensation of force

to the user. Since direct sensor readings are somewhat noisy,

a smoothing filter is applied in order to stabilize the results.

Force feedback makes performing MIS more comfortable,

efficient, safe, and precise. For knot-tying, this capability is es-

sential due to the fine control required to execute the procedure

without breaking or loosing the thread [12]. As a result, the

EndoPAR system provides an excellent platform with which

to generate good training samples for the supervised machine

learning approach explored in this paper.

III. MIS KNOT-TYING

Tying a suture knot laparoscopically involves coordinating

the movements of three grippers through six steps. When the

procedure begins, the grippers should be in the configuration

depicted in figure 3A with the needle already having pierced

the tissue (for safety, the piercing is performed manually by

the surgeon). The next step (figure 3B) is to grasp the needle

with gripper 1, and manually feed the thread to gripper 3,

Fig. 2. Force feedback. Forces are measured in the x and y directions
(perpendicular to shaft). The upper part of the figure shows how the strain
gauge sensors are arranged along the circumference of the shaft. Each
diametrically opposed pair constitutes a full bridge of four resistors dedicated
to one principal axis. Sensor signals are sent back to servo motors at the input
stylus so that the surgeon can sense forces occurring at the gripper.

the assistant gripper, making sure the thread is taut. Gripper 1

then pulls the thread through the puncture (figure 3C), while

gripper 3 approaches it at the same speed so that the thread

remains under tension. Meanwhile, gripper 2 is opened and

moved to the position where the winding should take place.

Once gripper 2 is in position, gripper 1 makes a loop around

it to produce a noose (figure 3D). For this step it is very

important that the thread be under the right amount of tension;

otherwise, the noose around gripper 2 will loosen and get lost.

To maintain the desired tension, gripper 3 is moved towards the

puncture to compensate for the material needed for winding.

Special care must be taken to ensure that neither gripper 1

nor the needle interfere with gripper 2 or the strained thread

during winding.

After completing the loop, gripper 2 can be moved to get

the other end of the thread (figure 3E). Once again, it is critical

that the thread stay under tension by having grippers 1 and 3

follow the movement of gripper 2 at an appropriate speed.

In figure 3F, gripper 2 has grasped the end of the thread.

Therefore, gripper 1 must loosen the loop so that gripper 2

can pull the thread end through the loop. Gripper 3 can now

loosen its grasp, since thread tension is no longer needed.

Finally, grippers 1 and 2 can pull outward (away from the

puncture) in order to complete the knot.

The knot-tying procedure just described has been automated

successfully by carefully programming the movement of each

gripper directly [5]. Programming gripper trajectories correctly

is difficult and time-consuming, and, more importantly, pro-

duces behavior that is tied to specific geometric coordinates.

The next section describes a method that can potentially

provide a more generic solution by learning directly from

human experts.

IV. EVOLINO

Recurrent Neural Networks (RNNs) are a powerful class

of models that can, in principle, approximate any dynamical

system [13]. This means that RNNs can be used to implement

arbitrary sequence-to-sequence mappings that require memory.
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Fig. 3. Minimally invasive knot-tying. (A) The knot-typing procedure starts with the needle and three grippers in this configuration. (B) Gripper 1 takes
the needle, and the thread is fed manually to gripper 3. (C) The thread is pulled through the puncture, and (D) wound around gripper 2. (E) Gripper 2 grabs
the thread between the puncture and gripper 3. (F) The knot is finished by pulling the end of the thread through the loop.

However, training RNNs with standard gradient descent tech-

niques is only practical when a short time window (less than

10 time steps) suffices to predict the correct system output.

For longer time dependencies, the gradient vanishes as the

error signal is propagated back through time so that network

weights are never adjusted correctly to account for events far

in the past [14].

Long Short-Term Memory (LSTM; [9], [15], [16]) over-

comes this problem by using specialized, linear memory cells

that can maintain their activation indefinitely. The cells have

input and output gates that learn to open and close at ap-

propriate times, either to let in new information from outside

and change the state of the cell, or to let activation out to

affect other cells or the network’s output. This cell structure

enables LSTM to learn long-term dependencies across almost

arbitrarily long time spans. However, in cases where gradient

is of little use due to numerous local minima, LSTM becomes

less competitive (as in the case of learning gripper trajectories).

An alternative approach to training LSTM networks is the

recently proposed Evolution of systems with Linear Outputs

(Evolino; [10], [11]). Evolino is a framework for supervised

sequence learning that combines neuroevolution [17] (the

evolution of artificial neural networks) for learning the recur-

rent weights, with linear regression for computing the output

weights (see figure 4).

During evolution, Evolino networks are evaluated in two

phases. In the first phase, the network is fed the training

sequences (e.g. examples of human-performed knot-tying),

and the activations of the memory cells are saved at each time

step. At this point, the network does not have connections

to its outputs. Once the entire training set has been seen,

the second phase begins by computing the output weights

analytically using the pseudoinverse. The training set is then

fed to the network again, but now the network propagates the

input all the way through the new connections to produce an

output signal. The error between the output and the correct

(target) values is used as a fitness measure to be minimized

by evolutionary search.

The particular instantiation of Evolino in this paper uses

the Enforced SubPopulations algorithm (ESP; [18], [19]) to

evolve LSTM networks. Enforced SubPopulations differs from

standard neuroevolution methods in that instead of evolving

complete networks, it coevolves separate subpopulations of

network components or neurons (figure 4).

ESP searches the space of networks indirectly by sam-

pling the possible networks that can be constructed from

the subpopulations of neurons. Network evaluations provide

a fitness statistic that is used to produce better neurons that

can eventually be combined to form a successful network.

This cooperative coevolutionary approach is an extension to

Symbiotic, Adaptive Neuroevolution (SANE; [20]) which also

evolves neurons, but in a single population. By using separate
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Fig. 4. Evolino. The figure shows the three components of the
Evolino implementation used in this paper: the Enforced SubPopu-
lations (ESP) neuroevolution method, the Long Short-Term Memory
(LSTM) network architecture (shown with four memory cells), and
the pseudoinverse method to compute the output weights. When a
network is evaluated, it is first presented the training set to produce
a sequence on network activation vectors that are used to compute
the output weights. Then the training set is presented again, but now
the activation also passes through the new connections to produce
outputs. The error between the outputs and the targets is used by
ESP as a fitness measure to be minimized.

subpopulations, ESP accelerates the specialization of neurons

into different sub-functions needed to form good networks

because members of different evolving sub-function types are

prevented from mating. Subpopulations also make the neuron

fitness evaluations less noisy because each evolving neuron

type is guaranteed to be represented in every network that

is formed. Consequently, ESP is able to evolve recurrent

networks more efficiently than SANE.

Evolino does not evolve complete networks but rather

evolves networks that produce a set of activation vectors that

form a non-orthogonal basis from which an output mapping

can easily be computed. The intuition is that it is often easier

to find a sufficiently good basis than to find a network that

models the target system directly. Evolino has been shown to

outperform gradient-based methods on continuous trajectory

generation tasks [10]. Unlike gradient-based methods, it has

the ability to escape local minima due to its evolutionary com-

ponent. Moreover, it is capable of generating precise outputs

by using the pseudoinverse, which computes an optimal linear

mapping. Previous work with Evolino has concentrated on

comparisons with other methods in rather abstract benchmark

problems, such as the Mackey-Glass time-series. This paper
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Fig. 5. Training the knot winding networks. LSTM networks are trained on
a set of recordings that sample the position of gripper 1 at 0.1mm increments
during a human-controlled suture knot. The figure shows three such training
sequences; the one with the thicker path shows the sample points that the
network uses as input and targets. For each training sequence, the network
receives the (x, y, z)-position of the gripper 1, and outputs a prediction of
the distance to the next position of the gripper (i.e. the next sample in the
sequence). The prediction is added to the input and compared to the correct
(target) next position to produce an error signal that is used either for gradient
descent learning, or as a fitness measure for Evolino, after all the training
sequences have been processed.

presents the first application of Evolino to a real-world task.

V. EXPERIMENTS IN ROBOTIC KNOT WINDING

Our initial experiments focus on the most critical part of

suture knot-tying: winding the suture loop (steps C through

F in figure 3). While the loop is being wound by gripper

1, gripper 2 stays fixed. Therefore, networks were trained to

control the movement of gripper 1.

A. Experimental Setup

LSTM networks were trained using a database of 25 loop

trajectories generated by recording the movement of gripper 1

while a knot was being tied successfully using the PHANToM

units. Each trajectory consisted of approximately 1300 gripper

(x, y, z)-positions measured at every 0.1mm displacement,

{(xj
1, y

j
1, z

j
1), . . . , (x

j
lj

, y
j
lj

, z
j
lj

)}, j = 1..25, where lj is the

length of sequence j. At each step in a training sequence, the

network receives the coordinates of gripper 1 through three

input units (plus a bias unit), and computes the desired dis-

placement (∆x,∆y, ∆z) from the previous position through

three output units.

Both gradient descent and Evolino were used in 20 exper-

iments each to train LSTM networks with 10 memory cells.

The Evolino-based networks were evolved for 60 generations

with a population size of 40, yielding a total of 3580 evalua-

tions (i.e. passes through the training set) for each experiment.

Figure 5 illustrates the procedure for training the networks.

For the gradient descent approach, the LSTM networks were

trained using Backpropagation Through Time [6] where the

network is unfolded once for each element in the training
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sequence to form an lj-layer network (for sequence j) with all

layers sharing the same weights. Once the network has seen

that last element in the sequence, the errors from each time-

step are propagated back through each layer as in standard

backpropagation, and then the weights are adjusted.

For Evolino-trained LSTM, each network is evaluated in

two phases (see section IV). In the first phase the activations

of the network units are recorded, but no outputs are produced

as, at this point, the network does not have output connections.

After the entire training set has been seen, the output connec-

tions are computed using the pseudoinverse. In the second

phase, the network produces control actions that are used to

calculate the fitness of the network.

The error (fitness) measure used for both methods was the

sum-squared difference between the network output plus the

previous gripper position and the correct (target) position for

each time-step, across the 25 trajectories:

25∑

j=1

lj−1∑

t=1

(xj
t+∆xt−x

j
t+1)

2
+(yj

t +∆yt−y
j
t+1)

2
+(zj

t +∆zt−x
j
t+1)

2

where ∆xt,∆yt, and ∆zt are the network outputs for each

principal axis at time t which are added to the current position

(xt, yt, zt) to obtain the next position. Note that because the

networks are recurrent, the output can in general depend on

all of the previous inputs.

For the first 50 time-steps of each training sequence, the

network receives the corresponding sequence entry. After that,

the network feeds back its current output plus its previous

input as its new input for the next time-step. That is, after a

washout time of 50 time-steps, the network makes predictions

based on previous predictions, having no access to the training

set to steer it back on course. This procedure allows the error

to accumulate all along the trajectory so that minimizing it

forces the network to produce loop trajectories autonomously

(i.e. in the absence of a “teacher” input).

Once a network has learned the training set, it is tested

in a 3D simulation environment to verify that the trajectories

do not behave erratically or cause collisions. If the network

passes this validation, it is transferred to the real robot where

the procedure is executed inside the artificial rib-cage and

heart mockup shown in figure 1. To tie the entire knot, a

preprogrammed controller is used to start the knot, and then

the network takes over for the loop, steps C through E. During

the loop, the robot fetches a new displacement vector from

the network every 7ms, and adds it to the current position of

gripper 1. Gripper 2 remains stationary throughout this phase,

and gripper 3 is moved away from the knot at a predefined

rate to maintain tension on the thread. When the loop is

complete, the control switches back to the program to close the

knot. As in training, the winding network receives an initial

“approaching sequence” of 50 points that control the robot to

start the wind, and then completes the loop itself while feeding

back its own outputs.

B. Experimental Results

Figure 6 shows the learning curve for the Evolino-trained

LSTM networks. Each datapoint is the average error on the

training set of the best network, measured in millimeters.
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Fig. 6. Evolino learning curve. The plot shows the average error on the
training set measured in millimeters for the best network in each generation,
averaged over 50 runs. The vertical bars indicate one standard deviation from
the average.

By generation 40, the error has reached a level that the

networks can effectively produce usable loop trajectories. The

gradient-trained LSTM networks were not able to learn the

trajectories, so the error for this method is not reported. This

poor performance could be due to the presence of many local

minima in the error surface which can trap gradient-based

methods.

Unlike gradient-based approaches, Evolino is an evolution-

ary method, and therefore is less susceptible to local minima.

All of the 20 Evolino runs produced networks that could

generate smooth loop trajectories. When tested on the real

robot, the networks reliably completed the loop procedure,

and did so in an average of 3.4 seconds, a speed-up of almost

four times over the preprogrammed loop. This speed-up in

knot winding results in a total time of 25.8 sec for the entire

knot, compared to 33.7 sec for the preprogrammed controller.

Figure 7 shows the behavior of several Evolino-trained

LSTM networks from the same run at different stages of

evolution. As evolution progresses, the controllers track the

training trajectories more closely while smoothing them. The

network in the right-hand side of the figure was produced after

approximately 4.5 hours of computation time.

These first results show that RNNs can be used to learn

from training sequences of over one thousand time steps, and

possibly provide useful assistance to expedite MIS procedures.

VI. DISCUSSION AND FUTURE WORK

An important advantage of learning directly from expert

behavior is that it requires less knowledge about the system

being controlled. Supervised machine learning can be used

to capture and generalize expertise without requiring the often

tedious and costly process of traditional controller design. The

Evolino-trained LSTM networks in our experiments were able

to learn from surgeons and outperform them on the real robot.

Our current approach only deals with the winding portion of

the knot-tying task. Therefore, its contribution is limited by the

efficiency of the other subtasks required to complete the full

knot. In the future, we plan to apply the same basic approach

used in this paper to other knot-tying subtasks (e.g. the

thread tensioning performed by the assistant gripper, and knot
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Fig. 7. Evolution of loop generating behavior. Each of the three 3D plots shows the behavior of the best network at a different generation
during the same evolutionary run. All axes are in millimeters. The dark curve is the trajectory generated by the network; the lighter curve
is the target trajectory. Note that the network is being tested to reproduce same target trajectory in each plot. The best network in the first
generation tracks the target trajectory closely for the first 15mm or so, but diverges quickly when the target turns abruptly. By the tenth
generation, networks can form smooth loops, and by generation 60, the network tracks the target throughout the winding, forming a tight,
clean loop.

tightening) that are currently implemented by programmed

controllers. The separate sub-controllers can then be used in

sequence to complete the whole procedure.

The performance of automated MIS need not be constrained

by the proficiency of available experts. While human surgeons

provide the best existing control, more optimal strategies

may be possible by employing reinforcement learning tech-

niques where target trajectories are not provided, but instead

some higher-level measure of performance is maximized.

Approaches such as neuroevolution could be used alone, or in

conjunction with supervised learning to bootstrap the learning.

Such an approach would first require building a simulation

environment that accurately models thread physics.

VII. CONCLUSION

This paper has explored the application of supervised learn-

ing techniques to the important task of automated knot-tying in

Minimally Invasive Surgery. Long Short-Term Memory neural

networks were trained to produce knot winding trajectories

for a robotic surgical manipulator, based on human-generated

examples of correct behavior. Initial results using the Evolino

framework to train the networks are promising: the networks

were able to perform the task on the real robot without access

to the teaching examples. These results constitute the first

successful application of supervised learning to MIS knot-

tying.
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