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Abstract— This paper describes two robotic systems developed for
acquiring accurate volumetric maps of underground mines. One sys-
tem is based on a cart instrumented by laser range finders, pushed
through a mine by people. Another is a remotely controlled mobile
robot equipped with laser range finders. To build consistent maps of
large mines with many cycles, we describe an algorithm for estimat-
ing global correspondences and aligning robot paths. This algorithm
enables us to recover consistent maps several hundreds of meters in
diameter, without odometric information. We report results obtained
in two mines, a research mine in Bruceton, PA, and an abandoned coal
mine in Burgettstown, PA.
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I. INTRODUCTION

The lack of accurate maps of inactive, underground mines

poses a serious threat to public safety. According to a re-

cent article [3], “tens of thousands, perhaps even hundreds

of thousands, of abandoned mines exist today in the United

States. Not even the U.S. Bureau of Mines knows the ex-

act number, because federal recording of mining claims was

not required until 1976.” The lack of accurate mine maps

frequently causes accidents, such as a recent near-fatal acci-

dent in Quecreek, PA [18]. Even when accurate maps exist,

they provide information only in 2-D, which is usually in-

sufficient to assess the structural soundness of abandoned

mines.

Hazardous operating conditions and difficult access routes

suggest that robotic exploration and mapping of abandoned

mines may be a viable option. The idea of mapping mines

with robots is not new. Past research has predominantly fo-

cused on acquiring maps for autonomous robot navigation in

active mines. For example, Corke and colleagues [8] have

built vehicles that acquire and utilize accurate 2-D maps of

mines. Similarly, Baily [1] reports 2-D mapping results of

an underground area using advanced mapping techniques.

None of these techniques generate volumetric maps of mines.

In general, the mine mapping problem is made challeng-

ing by the lack of global position information underground.

As a result, mine mapping must be approached as a simul-

taneous localization and mapping, or SLAM, problem [10],

[15], [20]. In SLAM, the robot acquires a map of its en-

vironment while simultaneously estimating its own position

relative to this map. The SLAM problem is known to be

particularly difficult when the environment possesses cyclic

structure [5], [6], [13], [21]. This is because cycles pose

hard correspondence problems that arise due to the (rela-

tively) large position error accrued by a vehicle when clos-

ing cycles. Mines often contain a large number of cycles,

hence the ability to handle cycles is essential for successful

approaches to mapping mines.

This paper describes a SLAM algorithm for acquiring

3-D models of underground mines that can accommodate

multiple cycles. Our algorithm uses a scan matching algo-

rithms for constructing 2-D mine maps described in [14].

To close cycles, however, it utilizes an iterative correspon-

dence algorithm based on the iterative closest point algo-

rithm (ICP) [4], adapted to the problem of establishing cor-

respondence in cyclic maps. 3-D maps are generated by ap-

plying scan matching to 3-D measurements after the 2-D

mapping is complete.

Our algorithm has successfully enabled two robotic sys-

tems to acquire 3-D maps of mines. The first such system

consists of an instrumented cart, which is pushed manually

through a mine. This system is a low-cost solution to the

mine mapping problem, but it can only be brought to bear in

environments accessible to people. Our second system con-

sists of a rugged robotic platform equipped with laser range

sensors. Abandoned mines, when dry, are often subject to

low oxygen levels, poisonous gases, and they may be struc-

turally unstable. Since bringing humans into such mines

exposes them to a serious danger of life, the employment of

autonomous robotic systems appears to be natural solution.

This paper provides results obtained in two different mines,

both located in Pennsylvania, USA. One of these mines is

a research mine, accessible to people. Another is a former

deep mine turned into a strip mine, inaccessible to people

but accessible to robotic vehicles.

II. THE ROBOT SYSTEMS

Figure 1 shows the two robotic systems used in our re-

search. On the left is a cart, equipped with four 2-D laser

range finders. The laser range finders provide information

about the mine cross section ahead of the vehicle, and the

ground and ceiling structure. The center panel in Figure 1

shows the Groundhog robot, a tele-operated device construc-

ted from the chassis of two ATVs [2]. The robot is equipped

with two 2-D laser range finders, one pointed forward for

2-D mapping and one pointed towards the ceiling for 3-D



Fig. 1. From left to right: Mine mapping cart with four laser range fi nders, pushed manually through a mine. Groundhog robot used for breaching diffi cult
mine environments. Strip mine in Burgettstown, PA. None of the vehicles provide any odometry information.

mapping. The right panel of this figure shows Groundhog’s

descent into an abandoned mine in Burgettstown, PA. Un-

fortunately, neither of these systems possess odometers or

inertial sensors. Thus, the location of the vehicles relative

to their points of entry can only be recovered from the range

scan data.

III. MINE MAPPING ALGORITHM

A. 2-D Scan Matching

In a first processing stage, our approach applies the scan

registration technique described in [14] to recover locally

consistent pose estimates, which is reminiscent of prior work

in [4], [13], [17]. This algorithm aligns scans by iteratively

identifying nearby points in pairs of consecutive range scans,

and then calculating the relative displacement and orienta-

tion of these scans by minimizing the quadratic distance of

these pairs of points. The result of registering scans in this

way is a relative displacement and orientation between two

consecutive scans:

δt =
(

∆xt ∆yt ∆θt

)T

(1)

This relative information makes it possible to recover an

estimate of the global coordinates at which a scan was ac-

quired. We will denote such global coordinates by

ξt =
(

xt yt θt

)T

(2)

where xt and yt are Cartesian coordinates in 2-D, and θt

is the robot’s orientation relative to the global coordinate

system at time t. The global coordinates are recovered by

applying the following recursive estimation equation:

ξt = f(ξt−1, δt) (3)

with

f(ξt−1, δt) =





xt−1 + ∆xt cos θt + ∆yt sin θt

yt−1 − ∆xt sin θt + ∆yt cos θt

θt−1 + ∆θt



 (4)

Unfortunately, the pairwise scan registration technique is

unable to recover the global structure of an environment.

This is specifically problematic in environments that con-

tain cyclic structure. Figure 3a shows an occupancy grid

map [11] after executing the local ICP scan registration.

While this map is consistent at the local level, it is inconsis-

tent at the global level due to inconsistencies that arise form

the accumulation of small errors in the ICP scan matching

procedure. The remaining problem is one of correspon-

dence. To acquire globally consistent maps, we need to

know the points in time the robot traversed the same mine

segment. This problem is generally considered one of the

most challenging problems in robotics, and has been ad-

dressed by several researchers [5], [6], [13], [21].

B. Building Consistent Maps With Many Cycles

Our approach uses a modified version of the iterative clos-

est point algorithm (ICP) to estimate the correspondence

between robot poses at different points in time. To obtain

a globally consistent map, our approach iterates a step in

which correspondences are identified, and a step in which

a path is recovered from the hypothesized correspondences.

This iterative optimization procedure is familiar from the

literature on ICP [4], the expectation maximization [9], and

the RANSAC [12] algorithm in computer vision (see also [22]);

the inner-loop optimization is reminiscent of an approach

in [17]. The iteration of both steps leads to a sequence of

poses ξ
[0]
t

, ξ
[1]
t

, . . . of increasing global consistency.

The initial poses are obtained from the local scan matcher

described in the previous section: ξ
[0]
t

:= ξt. Figure 2a

shows the sequence of poses, subsampled in five-meters in-

tervals for computational efficiency. In a first step, possi-

ble correspondences are identified. Our algorithm identifies

pairs of poses ξ
[n]
si

and ξ
[n]
ti

, indexed by si and ti, which

fulfill multiple criteria: they have to be nearby; they have

to lie on approximately parallel path segments; and the line

connecting them has to be approximately orthogonal to their

respective paths. Figure 2b shows the pose pairs identified

by our algorithm in the first iteration.

Next, a new set of poses is calculated that matches these

correspondences. To calculate such poses in closed form,

our approach transforms the relative pose information δt

into quadratic constraints between adjacent poses. More

specifically, our approach applies the following Taylor ex-

pansion

ξt ≈ ξ̂
[n]
t

+ F
[n]
t−1 (ξt−1 − ξ

[n]
t−1) (5)
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Fig. 2. Global correspondence: (a) Path of the robot, with a node placed every fi ve meters; (b) initial set of correspondences; (c) path obtained under these
correspondences; (d) new set of correspondences obtained using the new path; (e) optimal path under these new correspondences; (f) fi nal path and
correspondences after three full iterations of the algorithm.

(a) (b) (c)

Fig. 3. (a) Map of the coal mine in Bruceton, PA, based on scan matching. This map is obtained by incremental scan matching, and the resulting poses
form the input to our loop closing algorithm. (b) Map obtained using our loop closing routines. This map measures approximately 250 by 200 meters
in size and contains three large loops. (c) 2-D map of a mine in Burgettstown, PA.

Here ξ̂
[n]
t

denotes the pose “prediction” f(ξ
[n]
t−1, δt), and F

[n]
t−1

is the tangent to the function f at ξ
[n]
t−1:

F
[n]
t−1 =

∂f(ξ
[n]
t−1, δt)

∂ξt−1
(6)

=





1 0 −∆xt sin θ
[n]
t

+ ∆yt cos θ
[n]
t

0 1 −∆xt cos θ
[n]
t

− ∆yt sin θ
[n]
t

0 0 1





Both ξ̂
[n]
t

and F
[n]
t−1 are constants in the optimization to fol-

low. The goal of the optimization is to identify poses ξt that

minimize the quadratic distance to the approximation in (5).

This is achieved by minimizing the following quadratic er-

ror:

∑

t
(ξt − ξ̂

[n]
t

− F
[n]
t−1 (ξt−1 − ξ

[n]
t−1))

T Ht

(ξt − ξ̂
[n]
t

− F
[n]
t−1 (ξt−1 − ξ

[n]
t−1)) (7)



Turning the exact calculation in (4) into an optimization

problem enables us to “bend” the path of the robot. The

matrix Ht measures the penalty associated with bending the

path. Mathematically, Ht characterizes the negative log-

likelihood of a Gaussian noise model of the ICP scan matcher.

Ideally, Ht should be extracted by analyzing the curvature

of the ICP target function under translation and rotation. In

our software, we simply use a fixed diagonal matrix for the

penalty Ht.

The correspondences are incorporated into the optimiza-

tion through an additional quadratic penalty function. Each

pair (ti, si) in the set of pairwise correspondences is mapped

into a quadratic cost function of the type:

(ξti
− ξsi

)T Z (ξti
− ξsi

) (8)

Here Z is a diagonal penalty matrix. Technically, our ap-

proach does not enforce ξti
= ξsi

; instead, it minimizes the

quadratic distance between these poses, with the penalty z.

The total cost function of incorporating all correspondences

is given by

∑

i

(ξti
− ξsi

)T Z (ξti
− ξsi

) (9)

To solve the coupled quadratic optimization problem, we
now conveniently reorder the terms in (7) and (9). All terms

linear in ξt in (7) are collected in a large matrix A[n], and all

remaining constants into the vector c[n]. Similarly, all linear

terms in (9) are subsumed in a matrix B[n]. The sum of (7)
and (9) is then of the following quadratic form:

J [n] = (A[n]ξ − c[n])T H (A[n]ξ − c[n]) + (B[n]ξ)T Z B[n]ξ

Here ξ = ξ1, ξ2, . . . is the vector of all poses, and H and

Z are high-dimensional versions of H and Z, respectively.

Minimizing this quadratic expression is now straightforward.

In particular, we calculate its first derivative

∂J

∂ξt

= A[n]T
H (A[n]ξ − c[n]) + B[n]T

Z B[n]ξ

=
[

A[n]T
H A[n] + B[n]T

Z B[n]
]

ξ

−A[n]T
H c[n] (10)

Setting this expression to zero gives us the new set of poses

ξ[n+1]:

ξ[n+1] =
[

A[n]T
H A[n] + B[n]T

Z B[n]
]−1

A[n]T
H c[n]

This calculation involves multiplying and inverting matrices

whose dimensions is are linear in the number of robot poses.

These matrices are sparse; however, they can still be humon-

gous. Our software therefore subsamples the set of all poses:

As indicated in Figure 2, only a single pose is included for

every five meters of robot motion. In the specific data set

shown in Figure 2, this reduces the number of pose vari-

ables form 13,116 to 381, a dimension that is easily handled

by efficient linear algebra libraries. Adjusted poses for those

poses not included in the optimization are easily recovered

through linear interpolation. Finally, we note that the lin-

earization is only an approximation, and multiple iterations

of the minimization may be required. In our experiments,

we always obtained good results in the first two iterations of

the optimization.

Figure 2c shows the resulting alignment for the previ-

ously calculated correspondences. While the path is now

globally consistent in the area where correspondences were

identified, it is still inconsistent in other areas. Iterating the

basic algorithm leads to the remaining panels in Figure 2.

As is easily seen, our approach succeeds in recovering a

globally consistent map. The algorithm converges when the

correspondences are identical to the ones estimated in the

previous iteration.

C. Globally Consistent 2-D Occupancy Maps

Based on the pose estimates obtained in the previous step,

our approach extracts an occupancy grid map from the re-

sults of the path alignment. It does so by applying once

again the scan matching algorithm used to establish the ini-

tial relative pose estimates [14], but this time using the poses

ξ
[n]
t

obtained in the global alignment step as an additional

constraint. As above, this constraint is represented by a

quadratic penalty function, which is easily incorporated into

the classical scan matching algorithm (which also optimizes

a quadratic function).

Figure 3b shows the map obtained from data acquired in

the Bruceton research mine. The map measures 250 by 200

meters in size, and has been constructed without any odom-

etry information.

D. Volumetric 3-D Mapping

In a final step, our approach recovers a 3-D map of the

mine. This map is obtained by utilizing the upward pointed

2-D laser and (in the case of the instrumented cart) the down-

ward pointed 2-D laser. Good initial maps are obtained by

using the 2-D pose information to construct a 3-D map, via

the obvious geometric projections, as described in [16]. Un-

fortunately, such a reconstruction is only valid for planar

environments; in non-planar environments, both volumetric

lasers may be tilted, and estimating the tilt is essential for

the accuracy of the resulting maps.

Our approach utilizes a forward-pointing vertical laser,

presently only available on the robotic cart, which provides

a vertical cross-section of the mine as the robot moves. This

cross-section enables the robot to register its ceiling and

ground scans while simultaneously recovering its pitch (the

roll cannot presently recovered). This estimation is per-

formed using a 3-D variant of the scan matching technique

describe in [14], using the results of the 2-D pose estimation

as a starting point.



Fig. 6. Sequence of 3-D visualizations of a volumetric mine map. Shown in red are the sensor measurements used for generating the mine map.

(a)

(b)

Fig. 4. (a) 2D Mine map acquired by the robotic cart; (b) a hand-drawn
map of the corresponding mine segment for comparison.

IV. RESULTS

We obtained all our data in segments of two abandoned

coal mines in Pennsylvania. The Bruceton Mine is geo-

graphically close to the Quecreek Mine in Somerset County.

It is operated as a research mine by the U.S. Bureau of

Mines, enabling us to enter robotic equipment without the

need for explosion-proof certification. The Burgettstown

Mine is an abandoned mine in a dangerously unstable state.

Human access is prohibited and the floor of the mine is cov-

ered in a thick toxic sludge known as “yellow boy.” The

entrance to this mine was discovered only days before the

(a)

(b)

Fig. 5. (a) A section of the 3-D map produced using the mine-cart and our
2-D mapping algorithms; (b) similar section, using 3-D scan matching
for post-processing the mine maps.

robotic mapping expedition, at which point it was fully sub-

mersed. In preparation for the robot mapping experiment,

water was pumped out of the mine. Mines of this type pose

threats to people due to the low oxygen levels and the danger

of collapse.

We already discussed example 2-D maps acquired in both

mines, and shown in Figure 3. A second map is shown in

Figure 4, along with a hand-drawn map of the correspond-

ing mine section. This map was acquired by the robotic cart.

Figure 6 shows example views of a 3-D volumetric maps

obtained using this system. The lower hemispheres of the

maps are missing because our robot has no downward point-

ing laser. Views of a full 3-D map acquired by the robotic

cart is shown in Figure 5. Here we illustrate the effect of

the final scan registration step in the full 3-D model—a step



Fig. 7. A section of the 3-D map produced by the Groundhog robot in the
Burgettstown mine. This robot possesses no downward pointed laser;
hence the map only shows the ceiling and upper side walls of the mine.

that requires a total of four laser range finders. From this

map, the total volume of the mine is easily calculated; in-

formation that is typically not available from existing mine

maps.

Maps of the Burgettstown mine are shown in Figures 3c

and 7. These maps are much smaller than those of the Bruce-

ton mine. However, their significance lies in the fact that

they have been acquired in an environment inaccessible to

people. The entrance of the mine is shown in Figure 1c. Fig-

ure 7 shows a view of a 3-D map acquired by our Groundhog

robot. As before, only the upper half of the mine has been

mapped, since the robot possesses no downward pointed

sensor.

V. CONCLUSION

We have presented systems and algorithms for robotic

mapping of underground mines. Both of our systems are

equipped with laser range finders to recover ego-motion and

to build accurate maps. Our approach relies on 2-D scan

matching to recover a locally consistent map, and on a 2-D

global alignment algorithm for generating globally consis-

tent maps. The resulting maps and robot paths form the

basis for integrating the 3-D information, acquired by ad-

ditional scanners pointed at the ceiling and the floor of a

mine. A final optimization step further improves the spatial

consistency of the resulting 3-D mine map.

While we find that in the mines explored so far, our ap-

proach consistently produces accurate maps, the greedy na-

ture of this algorithm makes it possible to get stuck in local

minima. Algorithms such as RANSAC [12] are applicable

to reduce the danger of getting stuck in a local minimum, at

the expense of increased computational complexity.

We believe that existing techniques for mobile robot ex-

ploration [7], [19], [23] can be adapted for the purpose of

autonomously exploring mines. Such an extension would

overcome a crucial limitation of the present approach, namely

its reliance on human tele-operation.
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