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Abstract

Microbes can tailor transcriptional responses to diverse environ-

mental challenges despite having streamlined genomes and a

limited number of regulators. Here, we present data-driven models

that capture the dynamic interplay of the environment and

genome-encoded regulatory programs of two types of prokaryotes:

Escherichia coli (a bacterium) and Halobacterium salinarum (an

archaeon). The models reveal how the genome-wide distributions

of cis-acting gene regulatory elements and the conditional influ-

ences of transcription factors at each of those elements encode

programs for eliciting a wide array of environment-specific

responses. We demonstrate how these programs partition tran-

scriptional regulation of genes within regulons and operons to

re-organize gene–gene functional associations in each environ-

ment. The models capture fitness-relevant co-regulation by differ-

ent transcriptional control mechanisms acting across the entire

genome, to define a generalized, system-level organizing principle

for prokaryotic gene regulatory networks that goes well beyond

existing paradigms of gene regulation. An online resource (http://

egrin2.systemsbiology.net) has been developed to facilitate multi-

scale exploration of conditional gene regulation in the two

prokaryotes.
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Introduction

Deciphering how microbes colonize dynamically changing environ-

mental niches with few regulators and streamlined genomes will

require mechanistic and system-level characterization of their gene

regulatory networks (GRNs). Even a streamlined microbial genome

encodes an intricate network of regulatory and signaling systems

that sense and process extracellular and intracellular information to

regulate gene expression at multiple levels (transcriptional, post-

transcriptional, translational, allosteric, etc.). A significant fraction

of these environmental signals are relayed by transcription factors

(TFs) that modulate transcriptional activity when they bind DNA.

TFs typically bind conserved, ~6–20 nucleotide DNA sequences

located in intergenic regions immediately adjacent to transcription

initiation sites. These TF-binding sites are referred to as gene regula-

tory elements (GREs).

A goal of systems biology has been to map the complete set

of TFs, GREs, and their interactions, using high-throughput tech-

niques including ChIP-chip (Blat & Kleckner, 1999), yeast two-

hybrid (Fields & Song, 1989), DNase I hypersensitivity (Crawford

et al, 2004), or more modern variants using sequencing (Johnson

et al, 2007). In parallel, attempts have been made to infer GRNs

directly from gene expression data (Segal et al, 2003; Bonneau et al,

2007; Faith et al, 2007; De Smet & Marchal, 2010). Such high-

throughput approaches are attractive because they would accelerate

discovery in understudied organisms by circumventing significant

labor and cost.

Inference of system-scale GRNs that are both predictive and

mechanistically accurate, however, has proven difficult for a

number of reasons, including: (1) the statistical challenge of confi-

dently discovering GREs across the genome, de novo; (2) the conse-

quences of non-linear gene regulatory dynamics, including

combinatorial molecular interactions at gene promoters; and (3) the

often non-canonical locations of GREs throughout the genome

(including internal to operons and within coding sequences). A

remaining challenge, therefore, is to produce an unbiased map of
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TF-binding site locations throughout the genome, including informa-

tion about what binds to those sequences, in what contexts they are

bound, and, importantly, how TF-binding throughout the genome

ultimately influences cellular physiology.

We previously constructed an “Environment and Gene Regula-

tory Influence Network” (EGRIN) for Halobacterium salinarum

NRC-1 (Bonneau et al, 2007). This model was constructed in two

steps. First, modular organization of gene regulation was deci-

phered through semi-supervised biclustering of gene expression,

guided by biologically informative priors and de novo cis-regulatory

GRE detection for module assignment (cMonkey; Reiss et al,

2006). Second, using a regression-based approach, transcriptional

changes of genes within each bicluster were modeled as a linear

combination of influences of TFs and environmental factors

(Inferelator; Bonneau et al, 2006). While full description of these

algorithms is beyond the scope of this work, readers are encour-

aged to refer to the original papers and Supplementary Information

for more detail.

The EGRIN networks learned by cMonkey and Inferelator accu-

rately predicted transcriptional changes in new environments, a feat

that has subsequently been replicated by other network inference

strategies (Faith et al, 2007; Lemmens et al, 2009; Marbach et al,

2012); yet, these network models have failed to capture detailed

regulatory mechanisms that operate only in specific environments,

at non-canonical genomic locations, or in complex combinatorial

schemes.

Here, we report significant advancement to inference of GRNs

that overcomes many of these challenges. We have developed a

methodology applicable to any sequenced microbe in culture to

infer EGRIN 2.0 models for two representative organisms from the

primary branches of prokaryotic life—bacteria and archaea: (1)

Escherichia coli, a bacterium with a wealth of information about

transcriptional regulatory mechanisms and related experimental

data (Salgado et al, 2012); and (2) H. salinarum, an archaeon with

few examples of regulatory mechanisms that have been character-

ized in detail, but extensive experimental data from recently

conducted systems biology studies (Bonneau et al, 2007; Koide

et al, 2009). The wide range of prior knowledge for these organisms

proved invaluable for testing our model. In addition, we have also

conducted new experiments that validate EGRIN 2.0-predicted

complex modulation of the E. coli transcriptome structure during

varying stages of growth in rich media.

EGRIN 2.0 models the organization of GREs within every

promoter and their distributions across the entire genome—even in

non-canonical locations—and links the contexts in which they act to

conditional co-regulation of genes. These features are formalized in

EGRIN 2.0 by condition-specific, co-regulated modules or corems.

Corems are overlapping sets of co-regulated genes that, in some

cases, group together genes from different regulons and, in other

cases, subdivide genes of the same regulon, or even the same

operon. EGRIN 2.0 formalizes how the genome-wide coordination

of previously characterized and newly discovered regulatory mecha-

nisms dynamically associates genes into corems, bringing together

functionally related genes from different operons and regulons

whose deletions have similar impact on cellular fitness. Our results

show how prokaryotes, much like eukaryotes, can produce complex

gene expression patterns with a relatively small number of regula-

tory components.

Results

Construction of EGRIN 2.0 models

We developed an ensemble framework that models the condition-

specific global transcriptional state of the cell as a function of

combinations of transient TF-based control mechanisms acting

at intergenic and intragenic promoters across the entire genome.

Specifically, for each of the two organisms, H. salinarum and

E. coli, we aggregated associations across genes, GREs, and environ-

ments from many individual EGRIN models, each trained on a

subset of the gene expression data, to: (1) quantify confidence in

each model-predicted association; (2) reveal context-dependent

regulatory mechanisms that occur infrequently in the data; and (3)

discover non-canonical regulatory mechanisms. We refer to the

aggregated, post-processed ensemble of EGRIN models as EGRIN

2.0 and conditionally co-regulated modules as corems (details

provided in Materials and Methods, Fig 1; ensemble statistics avail-

able in Supplementary Table S3). For E. coli, we generated two

models: one trained on an expression compendium from Lemmens

et al (2009) and the other trained on a dataset from the DREAM5

consortium (Marbach et al, 2012). We used the model trained on

DREAM5 data to compare model performance (described below).

EGRIN 2.0 discovers experimentally characterized

regulatory mechanisms

A high-quality GRN has to be both comprehensive (high recall) and

accurate (high precision). To evaluate the quality of EGRIN 2.0, we

compared its predictions on E. coli to RegulonDB (Gama-Castro

et al, 2011), an extensive, manually curated, gold-standard of exper-

imentally validated TF–gene interactions. For our comparison, we

used a version of RegulonDB curated by the DREAM5 consortium.

We compared the genome-wide distribution of each de novo discov-

ered GRE in EGRIN 2.0 (trained on DREAM5 data expression

compendium) to experimentally characterized binding locations of

every TF in RegulonDB. This comparison showed that EGRIN 2.0

had accurately located binding sites for 60% of experimentally char-

acterized TFs in RegulonDB (53 out of 88 at FDR ≤ 0.05 for all TFs

with ≥ 3 unique sites; see Materials and Methods). At a standard

precision cutoff of 25%, EGRIN 2.0 recovered 555 “strong evidence”

TF–gene interactions, which is 2.7X as many validated interactions

as algorithms that exclusively use expression data, that is, without

genomic sequence information (Fig 2A, Supplementary Figs S8, S9

and S10, Supplementary Dataset S3, Materials and Methods; Faith

et al, 2007; Marbach et al, 2012). As expected, the ensemble

network had greater precision and recall than individual cMonkey

runs. Furthermore, integration of Inferelator-predicted TF influences

with GRE-based predictions increased overall algorithm perfor-

mance. The increased performance observed in the integrated model

may be due to its ability to detect regulatory events that do not

depend on a linear relationship between TF expression and target

gene expression (which is assumed for most “direct” methods, like

those in the DREAM5 ensemble network). These results show that

integrating complementary methods, such as regression-based infer-

ence of TF regulation, biclustering-based inference of network

modularity, and de novo GRE detection, improve the accuracy and

coverage of the inferred GRN.
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Since few GREs have been characterized in H. salinarum, we

performed a global assessment and discovered that GREs in EGRIN

2.0 occur at consistent locations across many gene promoters

throughout the genome (Supplementary Fig S3). We could even

assign putative roles for some GREs based on their location relative

to transcription start sites (TSSs). For instance, the location of TATA

box-like elements (GRE #25) between �21 and �40 nucleotides

upstream of TSSs in H. salinarum is consistent with the character-

ized location of basal elements in archaeal promoters (TFB/TBP

complex recognition sites) (Geiduschek & Ouhammouch, 2005).

Similarly, other elements occurred either consistently downstream

of the TATA box (putative repressors, e.g., GRE #1 and #2) or

upstream of these basal elements (putative activators, e.g., GRE #5).

Thus, even in organisms where genome-wide TF-binding data are

scarce, EGRIN 2.0 can be used to infer and predict putative roles for

de novo discovered GREs.

Corems model genes with similar effects on organismal fitness

We investigated whether the model goes beyond simple co-

expression to group together genes that have similar phenotypic

contributions. We did this because previous studies have reported

weak correlation between gene expression and fitness (Price et al,

2013). For all genes in each corem, we computed pairwise correla-

tions of fitness effects in a dataset generated from a survey of

relative growth rates for 3,902 single gene deletion strains of E. coli

subjected to a chemical genomics screen spanning 324 different

environmental conditions (Nichols et al, 2011). We discovered that

more than one-third of gene-pairs with the most similar fitness

effects across environments (Pearson correlation > 0.75) were

grouped together in corems. We evaluated significance of this

result by performing similar analysis using modules based on co-

expression (WGCNA; Langfelder & Horvath, 2008) and regulons

(RegPrecise and RegulonDB), where a regulon is defined as a set of

genes regulated by the same TF. While WGCNA and regulons also

grouped significant numbers of high fitness-correlated gene-pairs

(one-sided KS-test < 0.05), corems were more enriched for highly

similar fitness associations (higher KS D-statistic) and in general

provided greater precision and coverage (Fig 2B). As an example,

corems group together 5X as many gene-pairs with highly correlated

fitness effects as RegPrecise, RegulonDB, or WGCNA (134 out of

185 gene-pairs with Pearson correlation ≥ 0.9 are discovered in

corems, Supplementary Dataset S4). Most importantly, corems

retained a high degree of enrichment for gene-pairs with highly

correlated fitness effects after removing all associations attributable

to operon and regulon memberships, and even combinatorial

control (Supplementary Fig S14, Supplementary Dataset S4). This

suggested that corems model regulatory associations among genes

that cannot be explained within the existing paradigms of regulons

and operons.
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Figure 1. EGRIN 2.0 model construction.

Workflow summary for EGRIN 2.0. Tables below each panel contain detailed statistics for the Halobacterium salinarum and Escherichia coli models. See also Supplementary

Fig S1.

A, B The cMonkey and Inferelator algorithms were applied many times to subsets of gene expression data from large compendiums of transcriptome profiles to

construct many individual EGRIN models.

C Individual EGRIN models were integrated into an ensemble for filtering, querying, and ranking relationships among genes (circles), regulators (pentagons), motifs

(sequence logos), and the conditions (triangles) in which these relationships were discovered.

D The library of relationships was mined using algorithms for motif clustering, backbone extraction, and community detection to construct the final EGRIN 2.0 model.

In EGRIN 2.0, overlapping co-regulated sets of genes (corems, shaded regions of the graph) are statistically associated with specific gene regulatory elements (GREs,

sequence logos, blue edges), regulatory influences (pentagons, green or red depending on direction), and environments in which they are co-regulated (triangles).

Each node represents a gene in the model. Genes are connected via co-regulation edges, with weights that reflect the number of occurrences in the ensemble.

Dashed edges were removed from the model by backbone extraction.
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Figure 2. EGRIN 2.0 model validation.

Two global and two specific validations of EGRIN 2.0’s ability to infer accurate GRNs.

A EGRIN 2.0 performance on experimentally validated gold-standard network. Comparison of EGRIN 2.0 model components (“GRE”: GRE-only; “Inf”: Inferelator-only) to

CLR and the DREAM5 community ensemble network, against RegulonDB (strong evidence code). (Top) Area under the precision-recall curve (AUPR) and (bottom)

number of correct predictions at 10, 25 and 50% precision.

B Enrichment of similar fitness effects within gene modules. (Left) Magnitude of enrichment for gene-pairs with similar fitness consequences, assessed by one-tailed

KS-test (KS D-statistic). (Right) Number of genes and gene-pairs predicted by each method. Comparison methods include EGRIN 2.0 corems, co-expression modules

from WGCNA, and regulons from databases (RegPrecise and RegulonDB).

C Promoter architecture of the Halobacterium salinarum kdpFABC promoter predicted by the EGRIN 2.0 model. (Top) Frequency of GRE alignment to each position in the

kdpFABC promoter. GREs are indicated by shaded lines. (Middle) Genome sequence marked with putative functions by Kixmuller et al (2011). (Bottom) Transcriptional

activity measurements from truncated promoters used by authors to validate these sites.

D Predicted architecture of the Escherichia coli carA promoter across all ensemble predictions (as in C). Horizontal bars above peaks mark experimentally characterized

TF-binding sites (RegulonDB). Significant GRE matches to characterized E. coli-binding sites in RegulonDB are indicated in parentheses.

E Condition-specific states of the carA promoter in E. coli. Variation in conditional discovery of GREs (counts and fold-change relative to ec516031, top) suggests when

they are “active” across three different subsets of experimental conditions in the carA promoter. (Bottom) Condition subsets correspond to co-regulation of carA with

genes in the nucleotide and pyrimidine corems (ec516031, ec512157) or environments where carA is not co-regulated with genes in any corem (ec516034). Motif logos

for GRE #4 (PurR) and GRE #12 (ArgR) from the EGRIN 2.0 predictions compared to logos from RegPrecise.
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In other words, corems group together genes that are regulated

by distinct TFs. For example, the ArgR-regulated acetylglutamate

kinase, argB, and ilvC, an IlvY-regulated ketol-acid reductoisomer-

ase, have fitness correlation of 0.95 (Pearson coefficient), which

suggests an important coupling between branched-chain amino acid

biosynthesis and arginine metabolism (Table 1). Although these

genes are regulated by distinct TFs (ArgR and IlvY, respectively),

the high similarity of their expression changes across multiple envi-

ronments brings them together into the same corem (ec512157).

There are 319 highly correlated (Pearson correlation ≥ 0.75) fitness

associations among genes from different regulons that are modeled

by corems—each of which suggests an important physiological

coupling that results from the coordinated activity of TFs (Supple-

mentary Dataset S5). These examples illustrate how the organizing

principle of corems captures fitness-relevant associations within

a GRN that are overlooked by current definitions for gene–gene

co-regulation, such as regulon and operon.

EGRIN 2.0 predicts detailed organization and context-specific

importance of GREs in gene promoters

We next investigated accuracy of EGRIN 2.0-predicted spatial orga-

nization of GREs and their context-specific roles in mediating tran-

scriptional regulation from specific promoters. We did this analysis

in context of one of the best studied H. salinarum promoters:

kdpFABC, with data not used for model training. The kdp operon

encodes an ATP-dependent potassium transporter that counter-

balances extremely high salinity in the extracellular environment.

EGRIN 2.0 predicts that at least three GREs are putatively responsi-

ble for mediating transcriptional regulation of this operon: GRE #1,

GRE #148, and GRE #106 (Fig 2C). The locations of these GREs align

to regions that were experimentally characterized in an independent

study as “Operator” and “BRE-TATA” elements, respectively. This

demonstrates that EGRIN 2.0 is able to accurately predict the organi-

zation of GREs in gene promoters at nucleotide resolution.

Since these sites also had characterized transcriptional roles

[determined by promoter truncation experiments (Kixmuller et al,

2011)], we asked whether EGRIN 2.0 would have been able to

predict these roles given the context in which the GREs were discov-

ered. Strikingly, we find that GRE #1 (aligned to the “Operator”)

was discovered in environments, including low salt (hypergeometric

FDR = 6.9 × 10�12), where the transcript is repressed (one-sided

t-test P = 0.048), while GRE #106, which aligns to the “BRE-TATA”

region, was discovered in environments, including low oxygen

(hypergeometric FDR = 1.8 × 10�9), where transcript levels are

elevated (one-sided t-test P = 1.2 × 10�3; Supplementary Informa-

tion). Here onwards, we will refer to a GRE as “active” when it is

predicted to be important for transcriptional regulation at a specific

promoter (see Supplementary Fig S6 for details). The environmental

contexts in which the three GREs in the kdp promoter are predicted

to be active are especially interesting because perturbations to

external potassium levels and energy-producing mechanisms have

been shown to significantly influence expression of this operon

(Wurtmann et al, 2014). Thus, EGRIN 2.0 had accurately predicted

that a trade-off in relative influence of GRE #1 (repressing) versus

GRE #106 (activating) controls expression levels of this operon in a

condition-specific manner, exactly as was characterized by indepen-

dently performed experiments. This is powerful because it shows

that using EGRIN 2.0 we can predict when (context) and how

(activate or repress) a specific GRE(s) within a promoter might

act, even though we might not know the precise regulatory mecha-

nism (e.g., TF binding/unbinding, allosteric activation, co-factor

interaction, etc.).

Conditionally active GREs within each promoter reorganize gene

memberships within corems

We investigated whether EGRIN 2.0 accurately links the same GRE

at different promoter locations, the environments in which it is

predicted to be active within each of those promoters, and condi-

tional co-regulation of the associated genes (see Supplementary

Information). We did this analysis with genes of nucleotide biosyn-

thesis in E. coli, including key branch-point enzymes carA (b0032)

and pyrL (b4246), since they are canonical, extremely well-studied

pathways that are critical for survival. Regulation of carA, which

catalyzes synthesis of an important metabolic intermediate in

several amino acid and nucleotide metabolism pathways (carba-

moyl phosphate), is known to be sensitive to purine and pyrimidine

pools, as well as arginine (Neidhart, 1996). EGRIN 2.0 discovered

several previously characterized and new mechanisms for regula-

tion of carA, including two GREs (GRE #4 and GRE #12) that match

to consensus sequence motifs for PurR and ArgR, respectively

Table 1. Corems group together genes from different regulons with highly correlated fitness effects

Gene 1 Gene 2 Fitness correlation Regulon gene 1 Regulon gene 2 Corems

b3774 b3959 0.959012 IlvY ArgR 512157

b2913 b3829 0.938764 PurR MetR 512157

b3829 b3959 0.934393 MetR ArgR 512157;554056

b2913 b3941 0.932025 PurR MetR 512157

b3957 b3941 0.931565 ArgR MetR 512157;554056

b3172 b3829 0.930382 ArgR MetR 512157;554056

b2913 b3774 0.927776 PurR IlvY 512157;512477

b3941 b3774 0.927251 MetR IlvY 512157

b3960 b3941 0.921375 ArgR MetR 512157;554056

b3941 b3959 0.921282 MetR ArgR 512157;554056
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(Piette et al, 1984) (Fig 2D). Remarkably, EGRIN 2.0 discovered

novel overlapping organization of GRE #4 and GRE #12 in the pyrL

promoter that was not previously reported in RegulonDB (Supple-

mentary Fig S18). This promoter organization was verified upon

mapping overlapping binding sites for ArgR and PurR precisely at

the predicted locations in ChIP-chip data that were not used in

model training (Cho et al, 2011, 2012).

We were most interested, however, to understand the conse-

quences of conditional regulation at ArgR and PurR-associated GREs

on variable expression of carA in different environments. Indeed,

EGRIN 2.0 predicts three condition-specific states of the carA

promoter with respect to when PurR- and ArgR-matched GREs are

conditionally active: (1) high PurR and high ArgR; (2) low PurR and

high ArgR; and (3) high PurR and low ArgR (Fig 2E). Interestingly,

two of these promoter states correspond to co-regulation of carA

with a different combination of genes (i.e., different corems), func-

tionally separating pyrimidine from purine biosynthesis (Fig 4B),

while the third state is not associated with co-regulation of carA

with the genes of any corem. Thus, the context in which GREs are

active accurately explains when and how genes are co-regulated in

different overlapping combinations to perform distinct functions.

Conditionally active GREs within operons generate multiple,

overlapping, and differentially regulated transcript isoforms

Some of the GREs discovered in EGRIN 2.0 occur in non-canonical

locations and lead to unexpected transcriptional behaviors, such as

the subdivision of operons into multiple transcriptional units. Previ-

ously, we reported pervasive modulation of the H. salinarum tran-

scriptome structure by transcriptional elements that are located

within operons and coding regions (Koide et al, 2009). EGRIN 2.0

recapitulated this phenomenon by sub-dividing operon genes into

different corems. In all, the model predicted that nearly one-third of

all H. salinarum operons generate multiple transcript isoforms

(Supplementary Figs S11, S12, and S13, Supplementary Information

for details). Nearly half of these predictions of conditional operon

structures were corroborated by experimentally mapped transcrip-

tional breaks (hypergeometric P = 4.2 × 10�3; Supplementary Data-

set S6; Koide et al, 2009). Often, these transcript boundaries were

adjacent to GREs that coincide with experimentally determined TFB-

binding sites (Facciotti et al, 2007; Fig 3A and B), reinforcing the

accuracy of EGRIN 2.0 predictions.

We further investigated whether EGRIN 2.0 provides insight into

downstream consequences of differentially regulating multiple tran-

script isoforms from the same operon. The dppAB1C2-oppD2-ykfD-

VNG2342H operon (hereafter the “dpp operon”) in H. salinarum

encodes an ATP-dependent dipeptide transporter. Some periplasmic

binding proteins (like dppA) have the reported ability to function in

conjunction with different ABC transport systems, giving support to

the hypothesis that dppA can be regulated independently (Higgins

et al, 1990). Despite high co-expression of the entire operon in the

training data (mean R2 = 0.6 across 1,495 conditions), EGRIN 2.0

predicted that the genes of this operon are transcribed as three

different isoforms, each co-regulated with genes of a different

corem: (1) the entire operon (hc21645—”dpp corem”); (2) the

entire operon except the leader gene, dppA (hc21279—”permease

corem”); and (3) just dppA (hc6326—”leader corem”). These

predicted isoforms were verified by experimentally mapped

transcript boundaries (Fig 3B). Each of these corems contains a

different dpp isoform and is enriched for a different biological func-

tion, including vitamin biosynthesis, porphyrin metabolism, and

purine biosynthesis, respectively (Fig 3C). Predicted differential

regulation of the core permease (dppB1C2-oppD2-ykfD-VNG2342H)

with porphyrin metabolism genes in the permease corem is consis-

tent with the reported capability of this transporter system to uptake

heme when it functions with a different solute binding protein (i.e.,

without dppA; Letoffe et al, 2006). Overall, EGRIN 2.0 provided

insight into the distinct environment-dependent functional associa-

tions of each transcript isoform.

Further, EGRIN 2.0 revealed that segmentation of the dpp operon

into multiple corems is mediated by conditionally active GREs

located both upstream and internal to the operon. For example,

EGRIN 2.0 predicted that GRE #6 was responsible for disassociating

dppA transcription from the remainder of the operon. Interestingly,

GRE #6 was also discovered in the promoters of nearly all of the

other genes in the leader corem (Fig 3, Supplementary Fig S23,

Supplementary Dataset S7). Similarly, GRE #1 was implicated in co-

regulating the permease-encoding transcript with other genes in the

permease corem, and GRE #17 for co-regulating the entire operon

with other genes in the dpp corem. EGRIN 2.0 also predicted specific

segmentation pattern of the dpp operon during “lag growth phase”.

This prediction was verified upon observing that a transcript break

appears downstream to dppB1 precisely when a batch culture transi-

tions from lag to log phase of growth (indicated by arrow in Fig 3B

heatmap). This is just one of 98 operons with experimentally vali-

dated conditional isoforms in H. salinarum. For each instance, a

similar correspondence between mechanism, context, and function

could be demonstrated (Supplementary Figs S19, S20 and S21 and

online). Interestingly, even in E. coli, where previous studies report

a single transcript for the dpp operon (Abouhamad & Manson,

1994), EGRIN 2.0 discovered that it is actually transcribed as

multiple, condition-specific transcript isoforms, each of which

participates in a different physiological process (Supplementary Figs

S11, S12 and S13).

While we were aware of extensive transcriptional heterogeneity

within operons in H. salinarum, we were surprised that EGRIN 2.0

predicted that the same phenomenon also occurred extensively in

E. coli. To see whether this were true, we mapped the E. coli

global transcriptome structure across varying phases of growth in

rich media using a densely tiled microarray (see Materials and

Methods). We used this new gene expression dataset to identify

the corems in which different combinations of operon genes (i.e.,

transcript isoforms) were co-regulated in some or all phases of

growth and to characterize transcriptional breaks using previously

developed methodologies (Koide et al, 2009). We observed tran-

scriptional breaks in nearly 20 percent of operons (including the

E. coli dpp operon) just over this 9-time point growth study, vali-

dating EGRIN 2.0 prediction that nearly one-quarter of all E. coli

operons have conditional isoforms during varying stages of growth

(hypergeometric P = 1.07 × 10�5, Supplementary Figs S11, S12

and S13, Supplementary Dataset S6). Experimental validation of

this enormous transcriptional heterogeneity among operons in

E. coli demonstrates the power of EGRIN 2.0 to distinguish

nuanced patterns in complex data and provide both mechanistic

explanation and context for when and why the novel phenomena

might occur.
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Some TFs act similarly across certain environments to

co-regulate functionally related subsets of genes across their

respective regulons

We investigated whether EGRIN 2.0 provides insights into context-

dependent differential regulation of branched metabolic pathways—

even those that have been meticulously studied for decades, such

as de novo biosynthesis of nucleotides in E. coli (Neidhart, 1996). At

least seven GREs were implicated in partitioning (purine biosynthe-

sis: ec516034—”purine corem”; pyrimidine biosynthesis: ec512157

—”pyrimidine corem”) or co-regulating (ec516031—”nucleotide

corem”) nucleotide biosynthesis into multiple overlapping corems

(Fig 4A, Supplementary Figs S22 and S23). The genome-wide loca-

tions for four of these GREs significantly overlapped with known

binding locations for PurR, ArgR, MetJ, and IclR. Partitioning and

co-regulation of purine and pyrimidine biosynthesis can be attrib-

uted to the location of these GREs in promoters of pathway genes,

including carA, and the environments in which they are predicted to

be active (Fig 2D and E). EGRIN 2.0 predicts, for example, that MetJ

(GREs #19, #87) acts in conjunction with PurR (GRE #4) to differen-

tially regulate genes specific to the pyrimidine biosynthetic branch

(pyrimidine corem), while (yet to be identified) TFs that bind GREs

#2 and #206 function with PurR (GRE #4) to regulate genes in the

purine branch (purine corem) (Fig 4A). The organization of these

GREs within and across promoters, and the environments in which

they act to mediate regulation by specific TFs, generates complex

co-expression patterns among different combinations of genes in the

three corems of this highly canalized pathway (filled violin plots,

Fig 4C). These conditional co-expression patterns predict that in

certain environments, the two branches are differentially regulated,

while in others they are co-regulated as one unit. Consistent with

this observation, fitness consequences of deleting genes in these

corems vary across conditions (Fig 4D, Supplementary Figs S28

and 29). For instance, knockouts of genes in all three corems have
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Figure 3. Conditional influences at GREs within canonical and non-canonical promoters differentially regulate multiple transcript isoforms from the same

operon (Halobacterium salinarum).

Three GREs and three corems explain the condition-specific expression of transcriptional isoforms from an operon in H. salinarum.Model predictions are supported by high-

resolution tiling array and ChIP-chip data.

A (Top) Predicted GREs located within (left) and upstream of (right) the H. salinarum dpp operon. Locations of experimentally mapped TFB-binding sites (vertical arrows;

Facciotti et al, 2007) and experimentally mapped transcription break sites (vertical red dashed lines, see B; Koide et al, 2009) are indicated. (Bottom) Locations of

predicted GREs relative to coding segments of the dpp operon.

B (Top) Expression changes during growth in the genomic region covering the dpp operon measured by high-resolution tiling microarray. (Middle) Raw RNA

hybridization signal from mid-log growth phase. (Bottom) Three predicted transcripts from the dpp operon. Internal colors correspond to the GREs (as in A) putatively

responsible for regulating each transcript (derived from corem membership in C). Boxed colors indicate corem membership for each transcript (described in C). Red

dashed lines indicate experimentally measured transcription break sites. Transcriptional break at lag phase highlighted by an arrow. Functional annotation for each

gene located at bottom.

C (Left) Three H. salinarum corems model differential regulation of dpp operon isoforms: (1) the entire operon (hc21645—”dpp corem”; top); (2) five tail genes, excluding

dppA (hc21279—”permease corem”; center); and (3) the leader gene, dppA (hc6326—”leader corem”; bottom). Colored numbers denote quantity of genes in each

corem; numbers in black shaded circles indicate the number of genes shared between corems. Pie charts represent average predicted influence of GREs on the

regulation of genes in each corem (see Supplementary Fig S6 for detail). (Top-right) Pie chart key indicates GRE identity. (Bottom-right) Tables list enriched gene

functions (Dennis et al, 2003) and environmental conditions for each of the corems (computed using the environmental ontology; see Materials and Methods and

Supplementary Information).
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similar consequences on fitness in the presence of glucose. By

contrast, in the presence of the toxic ionophore carbonyl cyanide

m-chlorophenyl hydrazone (CCCP), only knockouts of genes in the

nucleotide corem significantly alter fitness.

This example highlights two important features of EGRIN 2.0 and

corems. First, EGRIN 2.0 can distinguish co-regulation by indepen-

dent, similarly acting TFs, even though their targets are co-expressed.

Further, corems group together genes that are functionally related
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Figure 4. Varying combinations of GREs act conditionally to subdivide and coordinate branches of the nucleotide biosynthesis pathway in an environment-

dependent manner (Escherichia coli).

Three corems model differential co-regulation of purine and pyrimidine biosynthetic genes in E. coli. Predictions are supported by expression data as well as fitness data.

A Genes of nucleotide biosynthesis are distributed in overlapping combinations across three E. coli corems: purine (ec516034—”purine corem”), pyrimidine (ec512157

—”pyrimidine corem”), or both pathways (ec516031—”nucleotide corem”). (Left) Gene membership and overlap for the three corems as in Fig 3C. Pie charts indicate

average GRE composition across all gene promoters in each corem (see Supplementary Fig S6 for detail). (Top-right inset) GRE key for pie charts. Matches to TFs in

RegulonDB noted above the GRE name. (Bottom-right) Tables list enriched gene functions (Dennis et al, 2003) and environmental conditions for each of the corems

(see Supplementary Information).

B A portion of the nucleotide biosynthetic pathways, near the branch point dividing purine (top) and pyrimidine (bottom) biosynthesis. Pie charts represent GRE

composition in each gene promoter (key in A). Operons denoted by dashed lines, with only the leader gene’s promoter architecture shown.

C Condition-specific co-expression of genes across the three corems. (Right) The active segments of nucleotide biosynthesis (as in B) are color-matched to corems.

(Center) Box plots show distributions of expression correlations between genes within each corem in relevant environmental conditions, when they are predicted to

be co-regulated. Color fill and asterisks indicate corems with significantly low relative standard deviation (RSD; |r/l|; FDR ≤ 0.05). (Left) Colored circles indicate when

genes within which corem(s) are predicted to be co-regulated (color) under how many conditions (number).

D Distributions of relative fitness values for gene deletions in the three corems, as well as 20 of the 42 PurR regulon genes not modeled by ec516031 (black) across 5

representative conditions (condition identifiers listed to right, additional conditions in Supplementary Fig S29). Asterisks denote conditions in which the distribution

of fitness values is statistically significant (relative to the distribution of fitness values for all genes in that condition).
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even though their co-regulation is mediated by different mechanisms,

demonstrating how conditional TF influences in a GRN coordinate

transcription of genes from different regulons whose deletions have

highly correlated fitness consequences (Table 1). Genes of the pyrim-

idine corem, for example, are co-regulated by as many as five TFs.

Even though promoters of each of the genes in this corem contain

distinct compositions of GREs (Supplementary Fig S27, Supplemen-

tary Datasets S8 and S9), their expression is highly coordinated

across a broad range of conditions. Interestingly and counter to our

expectation, transcript level changes of the similarly acting TFs are

not highly correlated. Instead, we discovered correlated changes in

the concentrations of effector molecules, which allosterically regulate

the activities of these TFs, suggesting that coordinate regulation of

genes in the pyrimidine corem is a direct consequence of metabolic

dynamics (Supplementary Fig S30; Ishii et al, 2007).

Second, EGRIN 2.0 predicts that not all locations that match to

the same GRE are functionally equivalent in all environments.

Accordingly, using corems, we can discern and explain why genes

regulated by the same TF exhibit different expression patterns in

certain environments. For example, out of the 42 PurR-regulated

genes (assigned by RegPrecise), expression changes of the 14 that

are grouped into the purine corem are better correlated with each

other and genes of this corem than they are to the portion of the

PurR regulon that was left out (t-test, P < 2.2 × 10�16, Fig 5A).

Consistent with this observation, PurR is predicted to play a variable

role in the regulation of genes across the three corems (from being

highly important for the nucleotide corem, to being marginally

important for the pyrimidine corem, Fig 4A). We hypothesized that

the degree to which PurR is implicated in regulating genes within

each corem is a good predictor of target-specific expression conse-

quences of knocking out this TF. To test this hypothesis, we

analyzed global transcriptional changes in both wild-type (WT) and

∆purR deletion strains of E. coli grown in the presence of adenine

(Cho et al, 2011). These data were obtained from experiments that

were not included in the construction of the EGRIN 2.0 model.

Specifically, we calculated the relative standard deviation (a measure

of co-regulation) for every PurR-associated corem in each of the two

strains. As expected, genes in all three corems described above were

co-regulated in the WT strain (FDR < 0.05, Fig 5B). Strikingly

consistent with EGRIN 2.0 predictions, the degree of dysregulation

of genes within each of the three corems in the ∆purR strain was

proportional to the predicted magnitude of PurR influence. Maximal

dysregulation of genes in the nucleotide corem and the purine corem,

for example, was consistent with the predicted role of PurR as the

primary regulator of genes in these corems (Fig 5C). Notably, the

degree of disruption observed in these two corems surpasses that of

the entire PurR regulon, suggesting that in the presence of adenine,

PurR regulates only a subset of its target genes. These results illus-

trate how the concept of a corem captures the context in which TF

binding to a GRE is functional, not just that the potential for TF–GRE

interaction exists, which is how a regulon is defined.

Discussion

EGRIN 2.0 explains how microbes tailor transcriptional responses to

varied environments by linking the genome-wide distribution of

GREs to their organization and conditional activities within each

promoter. The integrative model reveals the mechanisms by which

microbes reuse genes in varying combinations to operationally link

disparate processes and regulate flux through metabolic pathways.

We have provided extensive validations for predictions made by

EGRIN 2.0 for a bacterium and an archaeon (Table 2). In addition,

we also performed new experiments to validate a model prediction

that widespread transcriptional activity at non-canonical locations

within genes and operons was partly responsible for complex modu-

lation of the E. coli transcriptome during growth in rich media.

Corems represent a fundamental organizing principle of GRNs

that captures fitness-relevant associations among genes, forging a

link between the environment-dependent dynamics of transcrip-

tional control and phenotype. The conditional associations among

genes across corems reflect the underlying structure of coupled

changes in environmental factors, such as correlated changes in

effector molecules. Comparative analyses of EGRIN 2.0 models,

therefore, could reveal the corems associated with unique and

shared environmental structures that distinguish ecotypes of the

same species.

Despite the vast amount remaining to be discovered about tran-

scriptional regulation in even the most well-studied organisms,

EGRIN 2.0 represents an important advance that may be useful for

synthetic biology. Its usefulness for synthetic biology is twofold: (1)

It opens the door for accurate and comprehensive inference of

genome-scale models in any culturable organisms, and (2) it explic-

itly models the environmental dependence of regulatory mecha-

nisms operating across the entire genome, including non-canonical

locations. By teasing apart regulatory mechanisms that have indis-

tinguishable outputs in some (but not all) environments, EGRIN 2.0

offers multiple strategies for introducing new genes into the GRN.

For instance, there are at least five distinct mechanisms responsi-

ble for co-regulating nearly 100 genes in the pyrimidine corem in

E. coli. This corem coordinates genes from various segments of

amino acid biosynthesis pathways, including arginine biosynthesis,

as well as the pentose phosphate pathway to synchronize inputs

into nucleotide biosynthesis. The conditional grouping of genes into

the pyrimidine corem explains the previous observation that genes

of arginine biosynthesis are repressed upon adenine addition (Cho

et al, 2011). EGRIN 2.0 predicts that this coordination of nucleotide

and arginine biosynthesis is accomplished by an equivalency of

PurR and ArgR activities under these conditions (possibly due to

correlated changes in effector molecules), rather than by direct regu-

lation of arginine biosynthesis genes by PurR. Not surprisingly,

subsets of genes within this corem belong to alternate regulatory

programs (corems) under different environmental contexts. While

the specific mechanisms that give rise to these nuanced, switch-like

behaviors will need to be detailed by careful experimentation, one

can imagine constructing a library of endogenously encoded co-

regulatory strategies based on cis-acting mechanisms that already

exist within the GRN of an organism. Future work to translate the

EGRIN 2.0 model into the language of synthetic biology will help

enable system-level reengineering of an organism.

Materials and Methods

Additional detail for each section provided in the Supplementary

Information.
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Training data

Halobacterium salinarum NRC-1

Of 1,495 transcriptome profiles, H. salinarum NRC-1 genome

sequence (RSAT), STRING (Version 9).

Escherichia coli

Eight hundred and sixty-eight transcriptome profiles from (primary

dataset; Lemmens et al, 2009) and 805 transcriptome profiles from

DREAM5 (For comparison to RegulonDB only; Marbach et al,

2012), E. coli genome sequence (RSAT), STRING (Version 9).
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Figure 5. EGRIN 2.0 predicts how conditional influences of a TF vary across all of its binding sites in the genome.

Corems model a subset of genes from the PurR regulon that are tightly co-expressed and most affected by PurR knockout.

A Distributions of pairwise expression correlations among all genes in the PurR regulon (RegPrecise) compared to a subset of the regulon within corem ec516034, across

all environmental conditions. Also shown are the total number of genes in each group, and the number of shared genes. The two distributions are significantly

different (Welch two-sample t-test, P < 2.2�16).

B RSD of transcript level changes (resampled -log10(pval)) for the three corems in Fig 4 in WT and ∆purR strains of Escherichia coli (both grown with adenine). The

dashed line delineates significant co-expression (P = 0.05).

C Relative RSD (∆purR/WT) for all seven GRE #4-associated corems plotted as a function of the frequency with which GRE #4 (PurR) is discovered within these corems.

Composition of GREs discovered within each corem is shown as pie charts (as in Fig 4), with key in inset, top-right. Relative RSD of the RegPrecise PurR regulon is

shown for reference (dotted horizontal line).
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Full description of each dataset including normalization and a

breakdown of the composition of each dataset is provided in the

Supplementary Information.

Validation data

Eight independent datasets were used to validate model predictions.

4 out of 8 were generated in our laboratory. Validation data were

not used for model training.

Halobacterium salinarum NRC-1

High-resolution (12 nt) tiling array transcriptome measurements were

collected over 12 points along the H. salinarum growth curve in rich

media. These were published in a separate study (Koide et al, 2009).

ChIP-chip binding profiles for eight general TFs and three specific

TFs were collected from Facciotti et al (2007).

NRC-1 kdp truncation data were obtained from Kixmuller et al (2011).

Escherichia coli

Transcriptome profiles for E. coli using high-resolution (23 nt) tiling

array were measured at nine different time points during growth in

rich media (GSE55879).

Fitness measurements across 324 conditions were generated by

Nichols et al (2011). PurR/DPurR expression data and ChIP-chip

transcription factor binding measurements were collected from

Cho et al (2011). Effector molecule measurements were supplied

by Ishii et al (2007). All comparisons with RegulonDB were

performed against version 7.2 of the database (Gama-Castro et al,

2011).

See Table 2 for complete list of validated predictions and refer-

ences. Complete description of each validation dataset is provided

in the Supplementary Information.

EGRIN 2.0 construction

EGRIN 2.0 was constructed as an ensemble of many individual

EGRIN models (~500 for H. salinarum and ~100 for E. coli). Each

EGRIN model was constructed using two algorithms: cMonkey

(Reiss et al, 2006), to learn condition-dependent modularity of the

regulatory network, and Inferelator (Bonneau et al, 2006), to infer

regulatory factors (transcription and/or environmental factors)

influencing the expression of the modules. A full description of the

cMonkey and Inferelator algorithms is provided in the Supplemen-

tary Information.

Table 2. Summary of model predictions and experimental validationsa

Prediction class Specific Prediction Validation Location

Accuracy of de novo

discovery of GREs

337 GREs discovered and genome-

wide locations predicted in E. coli

Predictions validated by genome-wide binding

location data for 53 out of 88 characterized TFs

Fig 2A, Supplementary

Dataset S2

Organization and composition of GREs

within H. salinarum kdp promoter

In vivo transcription assays of truncated

promoter constructs

Fig 2C

Organization and composition of

GREs within E. coli carA promoter

TF-binding locations within the carA promoter

(RegulonDB)

Fig 2D

ArgR and PurR binding sites in E. coli

pyrL promoter

TF-binding locations mapped using ChIP-chip Supplementary Fig S18

Accuracy of TF–target

interactions in the global

GRN

Regulatory interactions between 132

TFs and 1,131 genes in E. coli

555 interactions correct at 25% precision,

RegulonDB

Fig 2A

Regulatory mechanisms

at non-canonical promoter

locations

98 H. salinarum operons with condition-

specific transcript isoforms

40 confirmed by tiling array Supplementary Figs S19, S20

and S21, Supplementary

Dataset S6

189 E. coli operons with condition-

specific isoforms

58 confirmed by tiling array Supplementary Figs S11, S12

and S13, Supplementary

Dataset S6

Conditional isoforms of H. salinarum

dpp operon

Tiling array and binding locations for TFBs Fig 3, Supplementary

Figs S22, S23, S24 and S25

Conditional regulation of

branch points within

metabolic pathways

Segmentation of nucleotide

biosynthesis pathway by multiple TFs

Condition-specific co-expression; TF effector

molecule correlation; Condition-specific

fitness consequences of gene deletions

Fig 4, Supplementary

Figs S26–S30

Physiological consequences

of deleting genes within

corems

Corems establish a better relationship

between co-regulation and fitness

Deleting genes within corems result in similar

fitness consequences in chemical genomics

screen

Fig 2B and Supplementary

Fig S14

Similar action by different TFs results in

co-regulation of genes across regulons

Highly correlated fitness effects of deleting

genes within the same corem, albeit from

different regulons

Table 1, Supplementary

Fig S30, Supplementary

Datasets S4 and S5

Regulation by a TF varies

conditionally across

different targets in the

genome

Degree of PurR influence on regulation

of its target genes across different

corems

Increased RSD in ∆purR/WT strains proportional

to PurR influence

Fig 5C

aAll validations were performed with data from experiments that were not used in model construction.
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Following a basic model averaging approach (Breiman, 1996), we

integrated the EGRIN models and mined the ensemble to discover

frequently reoccurring features and associations (Fig 1D). Brief

description of each step is provided below. Full description, includ-

ing benchmarking, is provided in the Supplementary Information.

We refer to the modules detected by our procedure as co-regulated

modules, or corems, the frequently re-occurring de novo cis-regula-

tory motifs as GREs, and the overall framework and model as EGRIN

2.0 (see Materials and Methods, Supplementary Information, and

Supplementary Fig S1 for a detailed workflow).

Ensemble statistics are provided in Supplementary Table S3. Full

description of the algorithms and each post-processing step is docu-

mented in Supplementary Information. Below we summarize key

steps.

GRE discovery

Conserved cis-acting GREs discovered in biclusters (MEME; repre-

sented as position-specific scoring matrices, or PSSMs) were aligned

and compared using Tomtom to compute pairwise similarities

(Euclidean distance, Gupta et al, 2007). The resulting network of

highly similar PSSM pairs was clustered using mcl (FDR ≤ 0.01 and

overlap of 6 nt, Van Dongen, 2008). Cluster containing at least 10

PSSMs were considered gene regulatory elements or GREs (Supple-

mentary Datasets S1 and S2). Combined PSSMs for each GRE (e.g.,

Fig 2E, Supplementary Fig S2) were computed as the unweighted

mean of aligned PSSMs within each cluster.

GRE locations throughout the genome were computed using

MAST (Bailey & Gribskov, 1998), subject to a q-value threshold of

0.01 for alignment of each PSSM within a GRE at each genomic loca-

tion. Motif counts (e.g., Figs 2C–E and 3A) were computed by

summing significant matches at each genomic locus.

GRE-TF matching

GREs were matched to TFs by comparing their genomic locations to

binding sites for all experimentally characterized TFs in RegulonDB

(E. coli; BindingSiteSet table, filtered for experimental evidence and

TFs with three unique binding sites; a total of 88). A GRE was

considered a significant match to a TF if a significant fraction of

PSSMs in the GRE had genomic locations that significantly overlap

with the experimentally mapped binding sites for the TF

(FDR ≤ 0.05 and P-value ≤ 0.01, respectively). In the case that a

GRE matched multiple TFs, only the most significant TF match was

retained. We note that in some cases, multiple GREs can also match

a single TF (additional details provided in the Supplementary

Information).

Corem detection

We transformed the EGRIN 2.0 ensemble into a gene–gene associa-

tion network by ranking the frequency with which each pair of

genes co-occurred among all biclusters. We removed associations

that were indistinguishable from noise using network backbone

extraction (Serrano et al, 2009). Finally, we computed conditionally

co-regulated modules, or corems, using link-based community detec-

tion algorithm (Ahn et al, 2010). Since corems were defined as

links between genes, a given gene can be a member of multiple

communities. Corem statistics are provided in Supplementary Table

S3. Corem–gene memberships are provided on the Web site.

Deciphering environmental context and GREs responsible for

co-regulation of corems

We considered a corem to be co-regulated in experimental condi-

tions where the relative standard deviation (RSD = |r/l|) among

genes in the corem was significantly low (permutation P ≤ 0.05).

We implicated GREs for conditional co-regulation of a corem if they

were: (1) located within a 1,000 nt window (�875 nt to +125 nt)

around the start codon of any gene in the corem; and (2) frequently

discovered in biclusters containing genes from the corem (i.e.,

top 10% of biclusters, ranked by number of corem genes in the

bicluster).

Annotation of environmental context

Extensive metadata collected about each experiment for H. salinarum

was collated into an ‘environmental ontology’ that formalizes the

hierarchical relationships between experimental conditions. The envi-

ronmental ontology was used to annotate conditions in H. salinarum

throughout the manuscript. The ontology is available on the support-

ing Web site.

Comparison with DREAM5

To compare EGRIN 2.0 performance with DREAM5, we computed

an EGRIN 2.0 ensemble on the dataset described in Marbach et al

(2012). We subdivided the E. coli EGRIN 2.0 model into two

predicted GRNs: (1) a “direct” GRN (based upon Inferelator predic-

tions) and (2) a “GRE-based” GRN that was computed by matching

E. coli TFs to GREs (described above). We used the published

DREAM5 ensemble predictions (Marbach et al, 2012). All GRNs

were compared using the RegulonDB gold-standard curated by

Marbach et al. The gold-standard includes 2,066 interactions classi-

fied with a “strong evidence” code in RegulonDB. Precision-recall

curves and AUPR statistics were calculated as described in Marbach

et al (2012).

False detection rates

We used the Benjamini–Hochberg procedure for significance assess-

ments of findings that required correction for multiple comparisons.

Individual and collective corrected P-values are reported as q-values

and false discovery rates (FDR), respectively.

Supplementary information for this article is available online:

http://msb.embopress.org
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