
  

 

A System-level Scheme for Resistance Drift 
Tolerance of a Multilevel Phase Change Memory 

Pilin Junsangsri, Student IEEE, Jie Han Member IEEE, and Fabrizio Lombardi, Fellow IEEE 

Abstract—This paper presents a system-level scheme to 
alleviate the effect of resistance drift in a multilevel phase 
change memory (PCM) for data integrity. In this paper, novel 
criteria of separation of the PCM resistance for multilevel cell 
storage and selection of the threshold resistances between 
levels are proposed by using a median based method based on 
a row of PCM cells as reference. The threshold resistances 
found by the proposed scheme drift with time, thus providing 
an efficient and viable approach when the number of levels 
increases. A detailed analysis of the proposed level separation 
and threshold resistance selection is pursued. The impact of 
different parameters (such as the write region and the number 
of cell in a row) is assessed with respect to the generation of the 
percentage accuracy. The proposed approach results in a 
substantial improvement in performance compared with 
existing schemes found in the technical literature. 

 
Index Terms—Phase Change Memory (PCM), Multilevel, 

Tolerance, Resistance drift.* 
 

I. INTRODUCTION 
The phase change memory (PCM) has emerged in recent 

years as one of the most promising technologies for future 
non-volatile solid-state memories with significant 
implications on the entire storage hierarchy [1]. PCM has 
attracted considerable attention due to its low latency, good 
endurance, long retention and high scalability compared to 
other non-volatile memories. A PCM relies on the reversible 
phase transformation of the chalcogenide alloy (e.g. 
Ge2Sb2Te5, GST) between the amorphous and the 
crystalline states. The amorphous state has a high resistance 
and is commonly referred to as the reset state; the 
crystalline phase has a low resistance and is referred as the 
set state [2]. There is a large resistance margin between the 
amorphous and the crystalline phases, so a PCM can store 
multiple bits of information in a single cell; this is 
accomplished through a multilevel storage implementation 
based upon incomplete phase transitions. Advantages such 
as increased storage density and hence lower cost, are of 
primary importance for the successful development of 
multilevel memory systems using PCM [3]. However as 
shown in recent studies [4][5][6], the resistance of a phase 
change material such as GTS tends to drift over time. The 
change in resistance severely degrades the margin between 
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adjacent levels of a cell, leading to a serious reliability 
challenge and loss of data storage integrity [3]. 

This paper analyzes the multilevel storage (ML) of a 
PCM under the presence of drift in its resistance. A novel 
system-level scheme that utilizes as initial step the metric of 
median value in the selection of the percentage accuracy of 
every level, is proposed.  This is based on the condition that 
the threshold resistances of the levels are allocated to be 
very close in values, i.e. flat. This also allows the threshold 
values to change as the drift occurs, because they are 
established using a median value found in a row of PCM 
cells; a detailed analysis of the proposed level separation 
and threshold resistance selection is pursued. The impact of 
different parameters (such as the write region and the 
number of cell in a row) is assessed with respect to the 
generation of the percentage accuracy. The proposed 
approach results in a substantial improvement in 
performance compared with [7]; extensive simulation 
results are provided to show that the use of the proposed 
median based technique in a multilevel storage memory 
using PCM cells achieves these performance improvements. 

II. RESISTANCE DRIFT OF PHASE CHANGE MEMORY 
The resistance drift of a PCM is believed to be the result 

of structural relaxation (SR) phenomena that are thermally 
activated as an atomic rearrangement of the amorphous 
structure [7]. It has been observed that the drift is significant 
in the high resistance state (RESET state), in which the 
phase change material is programmed to the amorphous 
phase. The low resistance state (SET state) shows a nearly 
negligible time-dependence of resistance [7]. The rate of 
resistance increase exhibits a behavior that is strongly 
related to the time elapsed after programming; this 
relationship is given by [7]. RT  R TT    (1) 

where RT is the resistance of the PCM cell during the 
drift time Toff. Toff denotes the time that PCM cell is allowed 
to drift (i.e. not programming or reading),  υ is the so-called 
drift coefficient of the PCM resistance and is dependent on 
the initial resistance value (R0), i.e. R0 is the initial PCM 
resistance at time T0, where T0 is a time constant [5]. The 
resistance drift exponent of the PCM (υ ) varies depending 
on R0, i.e. at a larger value of R0, the mean value of the drift 
exponent (υ ) tends to have a larger value. The relationship 
between the resistance drift exponent (υ ) and the initial 
resistance of the PCM cell (R0) can be found as follows.  

By rearranging (1), RTR  TT    (1.1) 



 

 

ln RTR  υ ln TT  
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However, an additional criterion (referred 
separation) must be considered too.  
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substantially different, part of the resistance for the region 
with the highest percentage accuracy is allocated to the 
region with the least percentage accuracy. This effectively 
balances the percentage accuracies among the levels of the 
PCM cell; this process is referred to as the flat initial level 
separation. 

The percentage accuracies of the lower and higher bands 
at each level after time Toff are found based on the initial 
percentage resistance of each level (Table 1). The initial 
resistance range is given by 7kΩ – 200kΩ. 

Level 1 2 3 
%Lower Band - 99.0079 80.5079 
%Higher Band 100 90.4539 - 

Table 2. Percentage accuracies when the PCM resistance is initially 
separated (from Table 1) 

As shown in Table 2, the percentage accuracy of the 
lower band of level 3 has the least value, while the 
percentage accuracy of the higher band of level 1 has the 
largest value. The PCM can better tolerate the drift behavior 
by adjusting the PCM resistance in each region, so the 
percentage accuracies of each level separation are closer. 

V. ADJUSTMENT AND SELECTION 
This section presents the adjustment process of a multi-

level PCM cell. The level resistances must be adjusted to 
balance the average percentage accuracies of a PCM. If the 
values of the least and largest percentage accuracies are 
close together, tolerance to the resistance drift is said to be 
balanced and the so-called flat initial level separation is 
accomplished. Else, an adjustment must be considered. 

The percentage accuracy is dependent on the level 
separation, i.e. the lower band percentage accuracy is related 
to the blank region of the previous level, while the higher 
band percentage accuracy is related to the read region of the 
considered level. As the write region (w) has a constant 
value, then the higher band percentage accuracy is related to 
the resistance difference between the ending value of the 
write region (Wx) and its threshold value (ThX). If the value 
of the higher band of the percentage accuracy of level X is 
the highest (maximum), a portion of the resistance from this 
region can be allocated to the region with lower percentage 
accuracy. Also, the reverse scenario can be taken care by 
such adjustment. The percentage accuracies of the levels of 
a PCM are made close in value by using this method,. 
Example: Based on Table 2, the percentage accuracy of the 
higher band of level 1 (corresponding to its read region) is 
the highest. However, the percentage accuracy of the lower 
band of level 3 has the least value (as the blank region of 
level 2 is low). So, the initial resistances must be adjusted.  
If the difference between the least and largest percentage 
accuracies of the levels (Table 2)is high (i.e. 5%), then the 
percentage resistance in each region is adjusted by 0.1%; if 
such difference is less than 2%, then the adjustment is given 
by 0.01%. However, if the difference is higher than 2% but 
less than 5%, the percentage resistance is adjusted by 
0.05%. So based on the average percentage accuracy of each 
level (Table 2), the initial percentage resistance of the read 
region of level 1 is reduced by 0.1%, while the percentage 

resistance of the blank region of level 2 is increased by the 
same amount. These adjustments are shown in Table 3.  

 Sw1 W1 Th1 Sw2 W2 Th2 Sw3 W3
%(Non-Adjusted) 0 1 25 50 51 75 99 100

% (Adjusted) 0 1 24.9 49.9 50.9 74.9 99 100
Table 3. Adjustments to the initial percentage resistance separation 

Based on the initial percentage level separation, the 
percentage resistance of Th1 is changed to 24.9%. For the 
resistance range of the other regions to be the same, Sw2 
must be 49.9, because the blank region of this level is still 
equal to 25% (50-25 = 49.9-24.9). The percentage for the 
write region is fixed at 1%, so W2 is 50.9%. Next, the 
percentage resistance of Th2 is considered, because Sw3 
and W3 are fixed at 99% and 100% respectively. The 
percentage accuracy of the lower band of level 3 has the 
least value; so the blank region of level 2 must be increased 
by 0.1%. From the non-adjusted level separation, the 
resistance difference between Sw3 and Th2 is 24%. By 
increasing this resistance range by 0.1%, the percentage 
resistance of Th2 is equal to 74.9% and Sw3 – Th2 = 
24.1%. Therefore, the initial level separation is completed. 
The percentage accuracy is found for each region by 
simulating again the PCM cell and the initial PCM 
resistance is adjusted until the percentage accuracies are 
close in value. 

Level 1 2 3 
Sw 0 9.15 99 
W 1 10.16 100 
Th 3.16 22.16 - 

%Lower Band - 99.9346 99.9952 
%Higher Band 99.9016 99.8909 - 

Table 4.Flat initial percentage resistance separation and percentage 
accuracy of each level for a PCM cell with 3 levels 

Table 4 shows the flat initial level separation when the 
write region is fixed at 1%; the percentage resistance of 
each level is adjusted until the difference in percentage 
accuracy (between the least and the largest values) is close. 
The threshold resistance of each level must be selected after 
finding the level separation for flattening the percentage 
accuracy. The threshold resistance of each level is selected 
from a row of cells by using the median method. Compared 
with the mean (average) method for selecting the threshold 
resistances, the median method selects only one PCM cell in 
a row as holding the reference resistance; hence, the power 
dissipation is significantly less, while it is not significantly 
affected when considering the drift behavior of the threshold 
resistances. 

VI. SIMULATION RESULTS 
In this section, the simulation and discussion of the 

proposed schemes for flat level separation and threshold 
resistance selection are pursued at cell-level. The data of [8] 
is used to simulate the resistance drift of a PCM cell; 
MATLAB is used as simulation tool. Table 5 shows the 
parameters used to simulate the level separation, the 
threshold resistance selection and the percentage accuracy 
of each level. The resistance drift of the PCM (RT) is 
calculated using (1); based upon experimental 



  

 

measurements [9], [10], the two parameters (R0 and υ ) 
approximately follow a Gaussian distribution and the drift 
exponent υ ) increases as R0 increases [8]. 

Parameter Value 
Reset Resistance (Ra) 200 kΩ 
Set Resistance (Rc) 7 kΩ 
α Constant of υ (2) 0.0153 
β Constant of υ (2) 0.1138 
SDMR of υ  20% 
Time constant (T0) 1 ns 
Percent write region of each level (w) 1% 
Number of PCM cell in each row (Nth) 16 
Number of PCM cell in the memory array (M) 10,000 

Table 5. Parameters for simulating PCM cell υ  is calculated from (2) using a constant R0 and varies 
according to a Gaussian distribution µ , σ , υ  is used 
as the mean value of the Gaussian distribution (i.e. µ ).The 
resistance drift is calculated using the flowchart of Figure 6 
by assuming that all levels have the same standard deviation 
to mean ratio (SDMR) [8]. 

 
Figure 6.Flowchart of resistance drift calculation 

Initially, the percentage resistance (denoted as 
%resistance) is selected and the crystalline fraction of a 
PCM cell (CX) is calculated. The initial PCM resistance (R0) 
is then generated. The drift coefficient (υ ) is calculated 
using (2); as υ  varies according to a Gaussian distribution, 
the mean of this distribution is set to υ . Its deviation is 
given by 0.2*υ  as required for a 20% SDMR (Table 5) [8]. 
(1) is used to calculate the resistance drift of a PCM cell 
(RT) at time Toff (where Toff is the time that the PCM cell is 
allowed to drift). t0 is the time constant at which R0 is read, 
i.e. t0 is nearly equal to zero, because the initial resistance is 
read following a write operation (in this paper,t0 has a value 
given by 1ns).The resistance drift behavior of the PCM cell 
is found by simulating and making its variation to follow a 
Gaussian distribution. 

A. Flat Initial Level Separation 
In this section, the PCM resistance is divided into 4 

levels. The percentage of the write region at every level (w) 
is constant (1% is assumed).The number of PCM cells in 
each row for finding the threshold resistances (N) is given 
by 100 while the number of PCM cells in the memory array 
(M) is given by 10,000. A flat initial separation of PCM is 
found by using the proposed method. Table 6 shows the flat 
initial level separation of a cell with 4 levels at a 1% write 
region. Based on the simulation results of Table 6, the 
percentage accuracies of both the lower and higher bands 

are close together at nearly 98%. The tolerance of every 
level due to drift is nearly the same. 

 
Level 1 2 3 4 

sw 0 5.2036 21.85697 99 
w 1 6.2036 22.85697 100 

Th 2.5 10.66245 41.00371 - 
%Lower Band - 98.424 98.9862 99.136 
%Higher Band 98.8204 98.2047 97.9745 - 

Table 6.Flat initial PCM level separation, 4 levels/cell and write 
resistance is 1% 

B. Write Region 
This section considers the effects of the write region (w) 

(as found in the flat initial level separation) and the average 
percentage accuracy level when the PCM resistance is 
initially separated using the proposed technique. 

 
Figure 7. Average percentage accuracy of PCM (4 levels per cell and 

Toff at 1 ms, 1 second, 1 minute, 1 hour, 1 month and 1 year) 

As shown in Figure 7, the average percentage accuracy 
at higher percentage write region is lower due to the 
adjustment in resistance among regions. Moreover, the 
average percentage accuracy at a lower value of Toff is 
higher.  

C. Threshold Resistance 
In this section, the number of PCM cells in a row (Figure 

3) for finding the threshold resistance of each level is 
considered. As shown in Figure 8, the relationship between 
the average percentage accuracy (A) and the number of 
PCM cells in a row (N) is found. 

 
Figure 8.Average percentage accuracy of a PCM cell with 4 levels, 1% 

write region (Toff time of1ms, 1second, 1 minute, 1 hour, 1 day, 1 week, 1 
month and 1 year) 

Figure 8 plots N versus A when finding the threshold 
resistances by using the proposed median method (at a 
constant write region percentage of 1%); when N is reduced, 
A is also substantially reduced, thus showing that the 



  

 

proposed method is viable for large memory arrays. 
However, at a higher number of PCM cells per row, the 
found median value is likely to be appropriate to account for 
the resistance drift. Moreover, N does not significantly 
affect A, because it reaches a saturated value (albeit at 
different Toff values). 

D. Lifetime 
In this section, a comparison of the so-called lifetime is 

pursued using the proposed flat PCM level separation and 
the resistance margin scheme [7]. The resistance margin 
between any adjacent states is increased in [7] to prevent the 
post-drift resistance levels to overlap. The margins between 
any two adjacent states are non-uniform and increase 
significantly; for example a 5 fold resistance difference 
between any pair of adjacent states (i.e. Rstate00/Rstate01 = 
Rstate01/Rstate10 = Rstate10/Rstate11 = 5) allows data to be valid for 
2 years at room temperature [7]. 

 
Figure 9. PCM resistance separation by using resistance margin [7] 

The resistance margin scheme of [7] incurs in few 
disadvantages. One of the most evident disadvantages is 
with respect to the lifetime, i.e. the time for the PCM to be 
viable as storage (and its stored data is correct); the lifetime 
of a PCM cell is dependent on the resistance margin. If the 
resistance margin is set at a high value, the lifetime of the 
PCM cell is also high. The tolerance to drift of the proposed 
method is excellent and different from [7]. It does not show 
a significant dependency on Toff. For a Toff of 15 years, a 
PCM cell (with 4 levels and a 1% write region) has an 
average percentage accuracy of 98.047% using the proposed 
method. This is significantly better than [7] in which the 
same PCM cell can tolerate the drift behavior of only 2 
years. One of the reasons for this improvement is that the 
threshold resistance in the proposed scheme increases with 
time, while the threshold resistance of [7] remains 
unchanged. 

E. Comparison 
Next, the proposed threshold resistance selection method 

is compared with the time aware fault-tolerant scheme of 
[3]. [3] monitors the PCM memory and its lifetime using 
time tags; the lifetime information is utilized to adjust the 
quantization of the memory cell resistance and for ECC 
decoding. The quantization and analysis of the PCM 
resistance at each level require to consider the lifetime (td) 
and to perform complex calculations. Additional circuits are 
needed to calculate td, establish the relationship between the 
lifetime and the resistance drift and finally calculate the new 
values of the resistance for each PCM cell. Moreover, the 
lifetime of a PCM [3] is limited by the number of bits that 
are used to represent the time tag, i.e. if the number of bits is 
low, the lifetime estimate of [3] is not very accurate. The 
proposed method uses the PCM resistance as lifetime of the 

whole PCM array, only the median circuit is required to find 
the threshold resistances. 

VII. CONCLUSION 
This paper has proposed a system-level scheme for 

alleviating the resistance drift in a multilevel phase change 
memory (PCM). The proposed scheme relies on separating 
the levels of a PCM cell and checking the correctness of the 
stored data in the presence of drift. The effects of time are 
assessed and a solution based on calculating the median 
value is proposed. The resistance of a PCM cell is initially 
divided into three regions (write, read, and blank) to account 
for the correct write/read operations as well as the drift. The 
percentage accuracy of a level of the PCM has been 
considered and balanced between levels to generate the so-
called flat initial level separation. Compared to the other 
approaches found in the technical literature [3][7], it has 
been shown that the proposed method is significantly 
simpler than [3], because only the median calculation circuit 
is required to find the PCM resistance at each level. 
Moreover it is significantly better than the approach of [7] 
in which the margin of PCM resistance at each level is 
predefined, thus having a limited tolerance to the resistance 
drift. 
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