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1. Introduction

A matrix is nonnegative (positive) if all its entries are nonnegative (positive).
A nonnegativ square matrix A is primitive ifAk > 0 for some positive integer k.
The smallest such k for the given matrix A is ,(A), the exponent (of primitivity)
of A. Since 1950 when Wielandt [10] first proclaimed the exact general upper
bound for 5,, there has been a considerable number of papers establishing
bounds for special families of primitive matrices. The interested reader is
referred to [1], [2], [3], [4], [6], all of which use graph theory as a major tool in
the search for V.

In [2] Dulmage and Mendelsohn reveal what they refer to as gaps in the
exponent set of primitive matrices. Each gap is a set S of consecutive integers
below Wielandt’s general bound W n2 2n + 2, such that no n-square pri-
mitive matrix has an exponent in S. The gaps displayed are

n2-3n+4<,<(n-1)2 and n2-4n+6<v<n2-3n+2.
For even n a gap contains the union of the two gaps just mentioned"
n2 4n + 6 < , < (n 1)2.

It is the purpose of this paper to disclose a system ofsuch gaps containing the
two general gaps just mentioned as special eases. We show that for any integral
n and there is no primitive matrix A of order n for which

n2 tn + 1/4(t + 1)2 < v(A) < n (t- 1)n + t 2.

For 3, 4 these are the gaps shown in [2]. For even n an additional gap is
supplied indicating how further gaps may be obtained.

2. Definitions and notations

Let G(A) be the directed graph defined by the nonnegative matrix A. A graph
is primitive with exponent V, if it is a graph of a primitive matrix with exponent
V. Let L(G) denote the set of lengths of the simple circuits of G and let 2(G)
denote the number of the distinct lengths.

It is well known that G is primitive if and only if it is strongly connected and

g.c.d. {c c 6 L(G)} 1.
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Let u and v be two vertices in G. A path from u to v of length s (number of
edges) will be referred to as a (u, v [s)-path. If s is irrelevant, we shall write
(u, v)-path; if u and v are irrelevant we shall simply write s-path. Let the double
comma ", ," stand for ", ". An s-path will be denoted by Ix0, xx,, xs], or
shortly by [x0,, xs]. The length of an (x, y)-path is denoted by l[x, y], the length
of a shortest (x, y)-path by d[x, y]. d[x, x] is the length of the minimal circuit to
which x belongs. Let {cx,, Ck} c L(G). Denote by d(ca,, Ck)[X, y] the shortest
(x, y)-path which meets at least one circuit of each length cj. Define the circum-
diameter d(c,, Ck) as the minimum of d(cx,, Ck)[X, y] over all pairs x, y of
vertices. V, E will stand for the set of vertices, edges respectively, of the graph in
question.
A matrix A (aij) is said to be of symmetric pattern, (sometimes referred to

as positively symmetric) if ai 0 if and only if aj 0.
Let C denote a simple circuit of length s. Let H, denote the Hamiltonian

circuit C, of the form [1, 2,, n, 1] where {1, 2,, n} V(G). Let H’, [1, 2,, n] be
the Hamiltonian (1, n)-path.

Let {c,, Ck} be a set of distinct positive integers. Define (cx,, Ck)= g.c.d.
(cx,, Ck). Let R(c,, Ck) denote the set of all integers which are representable as a
nonnegative linear combination of elements of {cx,, Ck}. Let (c1,, Ck) 1. Then
there exists a largest integer not in R. Denote it by F(c 1,, Ck). Let F(c ,, Ck) +
1 4(Cx,, Ck). It is well known that for k 2 we have
t(c1, c2) (c1 1)(c2 1).

3. The dependence of 7 on

We shall state a preliminary result giving a bound for V in case 2 > 2.

THEOREM 3.1. Let G be a primitive graph with 2(G) >_ 3. Then

7(G) < [1/2(n2 2n + 4] [1/2W.] + 1.

This bound is attained for every n >_ 3.

This theorem is an improvement upon a result of Heap and Lynn [3] in
which they prove

< n2 2n + 2 1/2(2 2)(2n 2 3).
We first prove a lemma.

LEMMA 3.1. Let G be an n-graph and let P, Q, R be simple circuits oflengths p,
q, r respectively with p < q < r. Let us further assume that any two such circuits
intersect. Then d(p, q, r) <_ 2n p 2.

Proof. Let x, y V(G), and such that d(p, q, r)[x, y] d(p, q, r). We may
assume that x does not belong to circuits of all three lengths. If x 6 R let z x;
if x q R let z V(R) satisfy d[x, z] min (u R)d[x, u].
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Case 1. d[z, y] > n p. Then every (z, y)-path meets P and Q, so that

d(p, q, r) < d[x, z] + d[z, y] _< n r + n -1 <2n-p-2.

Case 2. d[z, y] _< n p 2. Thend(p,q,r)<_(n-r)+r+d[z,y] <2n-
p-2.

Case 3. d[z, y] n p 1. Then on its course from z to y the path meets
Q. Adding Q at the appropriate place we get d(p, q, r) < n r + q + n p
1 _< 2n p 2. This proves the lemma.
We now prove Theorem 3.1.

Case 1. Let {p, q, r} c L(G) withp<q<rand(p,q,r)=l.
Subcase 1.1. p < 1/2(n- 2). Then, by a result of Sedladek [8] (see also [2,

Theorem 1]) we get

7(G) < n + p(n 2) < 1/2(n2 2n + 4).
Subcase 1.2. p 1/2(n- 1), q 1/2(n + 1). Then (p, q)= 1. Clearly every Cp

meets every C,; so does every C. If every Cp meets every C, then we may use
Lemma 3.1 to obtain d(p, q) <_ d(p, q, r) < 2n p 1. If some Cdoes not meet
some C,.then every vertex belongs either to a Cp or to a C. Arguing as in the
proof of Lemma 3.2 (i) we get d(p, q) <_ 2n p 1.

7 < d(p, q)+ (p 1)(q 1)
2n 1/2(n + 1) + 1/4(n 3)(n 1) _< 21-(n2 2n + 4)

for n _> 5. The only other possibility is p 1, q 2, r n 3 and this is easily
checked.

Subcase 1.3. p=[n/2],-(n+l)<q<n-2. By [7] we have b(p, q,
r) < 1/2(q 1)(r 2). The conditions of Lemma 3.1 are satisfied, so that d(p, q,
r) < 2n p 2 and hence

7(G) _< 2n p 2 + 1/2(q 1)(r- 2)
< 3n/2 - + 1/2(n 3)(n 2) < 1/2(W, + 1).

Subcase 1.4. p=[n/Z], q=n-1. Then r=n, so that q)(p, q, r)=
[1/2(n- 2)2]. Let x, y be such that there is no (x, Y I- 1)-path in G. We
have

Subcase 1.4.1. d[x, y] > n p. Then every (x, y)-path meets circuits of all
three lengths, so that

7(G) < n + [1/2(n 2)2] [1/2W,] + 1.

Subcase 1.4.2. d[x, y] < n p. Ifx y, then d[x, y] p, so that n 2p / 1.
We have x6C, C, so that there is an (x, xlN)-path for every
N >_ [1/2(n 2)2].

If x y, then {x, y} C :/: O. It is therefore possible to add the necessary
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circuits en passant from x to y, so that

() _< p 1 + [1/2( 2)1 < [1/2W.].
Subcase 1.5. p > n/2. Then by [9, Theorem 2] we have b(p, q, r) <_ 1/2p(r 2),

so that by Lemma 3.1 we get

< 2n- p 2 + 1/2p(r- 2)= 2,- 2 + 1/2p(r 4)
_< 2n 2 + 1/2(n 2)(n 4)
=1/2w.+

Case 2. Let L(G) {ao, al,, as}. Assume that (as, aj, ak) > 1 for every three
members of L(G). Then every pair as, aj must necessarily have at least two
prime common divisors, hence [ai- aj[ _> 2 3 6. Therefore

(*) n>6(s+l), ao<n-6s.
Now, applying Theorem 4 in [9] we get

y(G) < d(ao, as) +ck(ao, as) < (n a,) + (n 1) + [1/2ao](as 2)
=0

< (s + 2)n- (s + 1)ao + 1/2ao(n 2).
Using (*) we have

< 1/2ao(n 2s 4) + (s + 2)n < 1/2(n 6s)(n 2s 4) + (s + 2)n
1/2(n 2n + 4)- ((3s 1)n 6s(s + 2) + 2)

< 1/2(n2 2n + 4)- ((3s 1)6(s + 1)- 6s(s + 2) + 2)
1/2(n2 2n + 4)- 4(3s2 1) < 1/2(nz 2n + 4).

To show that the theorem is best possible, consider G (V, E) with

E H, w {(n- 1, 1), (In/Z], 1)}.
There are three simple circuits of lengths p [n/2], q n 1, r n, so that

4(p, q, r)= [1/2(n 2)21.
The shortest non-empty (n, n)-path is the (n, n[ n)-path and hence there is no
(n, n In + ok(p, q, r)- 1)-path with

n + (p, q, r)- 1 [1/2(n2 2n + 4)] 1.

This completes the proof of the theorem. From Theorem 3.1 it follows that if G
is a primitive graph and ,(G) > [1/2W,] + 2, then necessarily 2 2. We shall
supply a test enabling us to decide for a given integer m, such that [-W,] +
2 < rn < IV, whether rn 7(G) for some G or not. If not, m belongs to a gap. If
there is G for which m 7(G), we supply such a G, and hence such a matrix,
which need not be unique.



A SYSTEM OF GAPS 91

LEMMA 3.2. Let G be a primitive n-graph with L(G)= {p, q}, p < q. We then
have:

(i) d(p, q) <_ 2n p 1.
(ii) If p + q > n, then d(p, q) <_ n l + q p.

Proof of (i). Every vertex of G lies either on a p-circuit or on a q-circuit. If
x Cp, then it needs at most n q edges to reach a Cq. Otherwise it needs at
most n p edges to reach a Cp. Then d(p, q) <_ n p + n 1 2n p 1.

Proof of (ii). Let D(p, q) be an (x, yld(p, q))-path in G. Let {p, q} {f 9}.
Let x e C. (If y x we have d[x, y] > p.)

Case 1. d[x, y] > n- 9. Then O(p, q) meets every 9-circuit and hence
d(p, q)= d[x, y] <_ n 1.

Case 2. d[x, y] < n 9.
since f+ 0 > n. Then

By completing an f-circuit we meet a 9-circuit,

d(p,q)<f+d[x,y] <f+n-9-1 <n+q-p-1.

This proves the lemma. It might be of interest to note that the strict inequality
sign in (ii) is absolutely necessary, for assuming equality, we can produce for
every n and p, 0 < p < n/2, an n-graph for which d(p, q)= 2n p 1. Let n
and p be given. Put q n p. Consider the n-graph G (V, E) where

V={1,,n}, E=H;,w{(p, 1),(q, 1), (n, p + l)}.
The (q + 1, n)-circumpath is then realised by Po [q + 1,, n, p + 1,, q, 1,, n]
of length 2n p 1. (Remark: If p 1, then (p, 1) is a loop, and if n 2p + 1,
then p + 1 q and the subpath (p + 1,, q) is void.)

THEOREM 3.2. Let A be a primitive matrix not of symmetric pattern and let
L(G(A)) {p, q}, p < q. Then there is an edge (x, y)in G(A) such that d[y, x]
q 1. In fact there is such an edge on every q-circuit which is not doubly directed.

Proof For p 1, 2 the theorem is clear so we assume p _> 3. Let E {1, 2,,
n}, let Q [1, 2, q,, i] be a q-circuit and let Po be a simple (1, Js)-path with
vertices disjoint from Q except for the endvertices 1, t. We also require
2 < < q and 1 < s < 1. We show that in case such a path exists, there is io,
2 _< o _< t, such that d[io, io- 1] q 1. We have clearly d[i, 1] _< q 1
for all i, _< q and ifd[i, 1] < q 1 for some i, then necessarily d[i, 1]
p 1. Now, the path Po + It,, q, 1] is a circuit of length less than q so that it is
of length p. It follows that s+q-t+l=p and hence t=q-p+s+l.
Suppose that for all i, 2_<i<t we have d[i,i-1]=p-1. Let P be an
(i, 1)-path. Consider the path 2= Pi + Po. This is a closed path and hence
a nonnegative linear combination of simple circuits of lengths p and q. The
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length of this closed path is

r=(t-1)(p-1)+s=(q-p+s)(p-1)+s=pq-p-q-p(p-s-2).
Since < q, we have p _> s + 2 and hence r R(p, q), a contradiction. We
assume from now on that there is no (1, s)-path with s < 1. Suppose there
is a (1, s)-path with s > 1. The inequality s > 1 implies the existence
of a simple circuit of length greater than q, a contradiction. The only remaining
possibility is s 1 which means that the (1, s)-path is equal in its length
to the (1, t)-path along Q. Such paths are the only paths we shall assume to
exist (if at all) between nonneighbouring vertices of Q. Suppose there is no
(x, y) on Q such that d[y, x] q 1. Let S be a (2, 1 IP 1)-path. We show
Q s 1, 2}. Suppose otherwise. Let

S (2,, v1)+ (vl,, vz)+"’+ (Vk-l,, Vk)+ (Vk,, 1),
where {vl,, vk} c Q. Put 2 Vo, 1 Vk+ 1. Consider some subpath (v,,, vr+ 1)
of S. Its length is necessarily equal to the length of the corresponding subpath
along Q. We may therefore replace all the subpaths by their corresponding
counterparts along Q. We thus obtain a (2, lip 1)-path along Q, an obvious
contradiction, so that Q S {1, 2}. Consider a (1, q lP- 1)-path $1 and a
(q, q 11 p 1)-path $2.

Let $1 and $2 have vertex v 4: q in common. Let

Sl=(1,,v)+(v,,q), S2=(q,,v)+(v,,q-1)
with /(1,, v)= a, l(v,, q)= b, l(q,, v)= c, l(v,, q- 1)=d. We then have
a + b p 1, c + d p 1, b + c _> p, since (v,, q) + (q,, v) is a circuit and
hence a+d<p-2<q-2. It follows that (1,,v)+(v,,q-1) is a
(1, Is)-path with q 1, 0 < s < 1, a contradiction, so that S and $2
have only vertex q in common. Now let S 3 be a (j, j 1 P 1)-path, 2 < j < q.
Let $1 and $3 have vertex w in common. Again let/(1,, w)= a, l(w,, q)= b,
l(j,,w)=c, l(w,,j-1)=d. We have a+b=c+d=p-1, b+c=q-j,
a+d=j-2 so that 2p-2=a+b+c+d=q-2 and hence2p=q, so
that (p, q)> 1, a contradiction. It follows that all (j, j- 1 P- 1)-paths for
distinctj are disjoint except for end vertices of neighboring paths. By adding all q
such paths we obtain a simple circuit of length q(p 1). Since p > 2, this is a
contradiction and the theorem is proved.

COROLLARY 3.1. Let A be a primitive matrix not of symmetric pattern and
such that L(G(A))= {p, q}. Then 7(A) >_ p(q 1).

Proof Consider G(A). Let (x, y) be an edge such that d[y, x] q 1. Then
there is no (y, x l)-path in G(A)with/= q- 1 + pq-p-q p(q- 1)- 1
and the corollary follows.
By reasoning similar to those used in this section the following theorem may

be derived.
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THEOREM 3.3. Let A be a primitive n-square matrix ofsymmetric pattern and
let r be the length of the maximal odd circuit in G(A). Then v(A) <_ 2n- r- 1.
Since r >_ 1 we have the result of[5, Corollary 2].
COROLLARY 3.2. If A is a primitive n-square matrix of symmetric pattern,

then v(A) < 2(n- 1). (See also [6, Corollary 2].)

4. The gaps

We first state and prove some preparatory theorems.

THEOREM 4.1. Let A be a primitive n-square matrix not ofsymmetric pattern
and let L(G(A))= {p, q}, with p < q and p + q > n. Then

p(q 1) <_ 7(A) <_ n + p(q 2).
Moreover, #iven positive integers p, q, n, m such that p < q <_ n, p + q > n,
(p, q) 1 and satisfyin# the double inequality p(q 1) <_ m <_ n + p(q 2),
there exists a primitive n-square matrix A for which L(G(A))= {p, q} and
v(A) m.

Proof The upper bound follows from Lemma 3.2"

7(A) <_ d(p, q)+ dp(p, q)

_<n+q-p-l+(p-1)(q-1)

=n+p(q-2).
The lower bound is Corollary 3.1.
Now let p, q, n, m be positive integers satisfying the given conditions. Let

m=p(q-1)+a,O_<a <_n-p.

Casel. p= 1. Thenq=nandm=q-l+a, 0_<a_<n-l. LetG(A) be
H, and the set of loops {(i, i)[a + 1 < < n}. There is no (1, a[n + a 2)-path
so that y(A)= ),(G)= n 1 + a.

Case 2. p 2. Then q is odd.
Subcase 2.1. q n. Consider G consisting of H, and the set of edges

{(/, i- 1)la + 2 _<i_< q n}.
Then there is a (1, a [2(q 1) + a)-path but no (1, a 12(q 1) + a 1)-path.

Subcase 2.2. q n 1. Let V {1,, q, 1’}. For a < n 2 let the subgraph
induced by V\I’ be exactly like the graph in subcase 2.1. Further let 1’ be a copy
of 1 with respect to adjacency and the result follows as in subcase 2.1. For
a n- 2 let

E {(i, 4- 1)li- 1, 2, ,n 1} w {(1, 1’), (1’, 1)}.
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2

10

G(A) 8

There exists a (2, q l2(q 1) + n 2)-path but not a (2, q l2(q 1) + n-
3)-path. This completes Case 2.

Case 3. p >_ 3.
Subcase 3.1. q p < a <_ n p. Let

E {[1, 2,, q, 1]) w {[q, q + 1, ,a + p, a + 1]) w ([q, j, 2] + p + 1 _< j _< n).
(Note that a + 1 belongs to the q-circuit.) Since a < n p and q > n p, we
have a<q. There is a (1, a l/)-path in G with l=a-l+q+(p-1)x
(q 1) p(q 1) + a, but no (1, a[l 1)-path.

Subcase 3.2.0 < a < q p. Consider the circuit (1, 2,, q, 1) with additional
edges (p, 1), (p + 1, 2), (q a, q a p + 1). For the vertices {Jlq <
j < n} add further edges (1, j), (j, 3), (p + 1, j). There is no (q a + 1, q la
1 + p(q 1))-path in G and hence 7(G) >_ p(q 1) + a. On the other hand we
have d(p, q)= a 1 + q, so that

7(G)_<a- l+q+(p-1)(q-1)=p(q-1)+a.

It follows that 7(G)= p(q 1) + a. This proves the theorem.
Choose q n, p n 1. By Theorem 4.1 we have (n 1)2 < 7 < W, which

may be regarded as yet another proof for Wielandt’s bound.
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By using the same argument the second part of Theorem 4.1 may be ex-
tended in the following manner.

THEOREM 4.1’. Let p, q, n, rn be positive integers such that p < q < n,
(p, q)= 1, and satisfying the double inequality

p(q 1) < rn < p(q 2)+ h

where h min (p + q 1, n). Then there exists a primitive n-square matrix A
for which L(G(A))= {p, q} and /(A)= m.

THEOREM 4.2. Let G be a primitive n-eraph and let L(G)= {p, q} with
p + q <_ n. Then /(G) <_ [1/4(n + 1)2].

Proof By Lemma 3.2, we haved(p,q)_<2n-p-1. Let p+q=n-6.
Then

y(G)<2n-p- 1 +(p-1)(q-1)=n+f+p(q- 1)
_< n + 6 +-X4(n 6 1)2

It may be verified that (6) is maximum for 6 0 and hence 7(G) < 4(n + 1)2.
The extremal graphs for which the bound is attained are the extremal graphs of
Lemma 3.2.

THEOREM 4.3. Let G be a primitive 9raph and let L(G)= {p, q}. Then"

(i) If T(G) > 1/4(n + 1)2, then 2(1 + w/7 n) < p + q < n + [7/(n 1)].
(ii) If ,(G) > (n 1)(n + 1 2w/n 2). then p + q n + [7/(n 1)].

Proof of (i). Let p < q. Theorem 4.2 implies p + q > n and hence by
Theorem 4.1 we get p(q 1) < 7 < n + p(q 2). We have

p(q -1) > p(q -1) (n q)(n p -1)= (n l )(p + q n).
On the other hand n + p(q 2) < n + 1/4(p + q 2)2, so that

(n 1)(p + q n) < 7 _< n + 1/4(p + q 2)2

The last double inequality is equivalent to (i).

Proof of (ii). Let
7>(n-1)(n+l-2x//n 2). (1)

It may be verified that for n _> 2 we have (n 1)(n + 1 2x//n 2) > -(n + 1)2
so that (i) implies

2(l+v/y-n)<p+q<[n+y/(n-1)].
Put n + ,/(n 1)= a, 2(1 + w/7 n)= b. It is easy to verify that b < a for
every n and ,. The inequality

a<b+ 1 (2)
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is equivalent to (1). But (i) implies that

b < p + q _< [a]. (3)
The combination of (2) and (3) yields

b<p+q<[a]<a<b+ l. (4)
The strict inequality p + q < [a] now leads to a contraction in (4), thus proving
(ii).
The following example will illustrate the application of Theorem 4.3. Let

n 10. Then l/V, 82. Is there a 10-square primitive matrix with exponent 50?
Since 50 > 1/2I/V, + 1, we have 2(G(A))= 2. Let L(G)= {p, q}, p < q. Theorem
4.3 implies

2(1 + x/) _< p + q < 10 + [50/9],

so that p + q 15. The only possibility such that (p, q)= 1 is p 7, q 8.
Then

p(q 1)= 49 < 50 < 52 n + p(q 2).
By Theorem 4.1 the matrix in question exists. It is exhibited here together with
its graph"

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 13

Practically the same argument as that for , 50 reveals the gap 46, 47, 48. We
now come to our main theorem.

THEOREM 4.4. Let n and be arbitrary integers. There does not exist a

primitive n-square matrix with exponent 7 such that

n2 -tn + 1/4(t + 1)2 < 7 < n2 -(t- 1)n + t- 2. (5)

Proof Suppose there exists a primitive n-square matrix A such that for
some positive integer t, inequality (5) is satisfied. Then, as may be verified,

3<t< l+2x//n-3,
so that n >_ 3. By the left inequality of (5)we have

> n2- tn + 1/4(t + 1)2= n + (n-1/2(t + 1))2

> n + (n 1 v/n 3)2 > 1/2W, + 1 > 1/4(n + 1)2
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so that by Theorem 3.1 we have 2(G(A))= 2 and the conditions of Theorem
4.3, are satisfied. The left and right inequalities of (5) imply

and

2n-t+2<3+2x/"{ n (6)

n + 7/(n 1) < 2n + 2 (7)

respectively. Therefore there exists an integer rn such that b < a < m < b + 1
and hence by Theorem 4.3 (i) we have b < [a] < m < b + 1, an obvious contra-
diction. (The terms a and b are used as in the proof of Theorem 4.3.) Theorem
4.4 is thus proved.
We shall use Theorem 4.3 in order to obtain the gap of Dulmage and Men-

delon in [2] for even n which is/72 4n + 6 < 7 < (n 1)2.
This gap is the union of two systematic gaps corresponding to 3, 4

(Theorem 4.4) together with the extra interval I In2 3n + 2,/72 3n + 4].
Now suppose 7(A) e I, so 7 (n 1)(n 2) + a, 0 < a _< 2. For n > 2 we have

7 > (n- 1)(n- 2)> (n 1)(n + 1 2x//n 2)> 1/2W, + 1.

Hence Theorems 3.1, 4.3 (ii)may be used. Thus 2(G(A))= 2. Let L(G(A))=
{p, q}, then since , I, we get p + q n + [?/(n 1)] 2n 2, which implies
p n- 2, q n. But n is even so (p, q)= 2 and there is no such primitive
graph.

Similar arguments lead to other special cases, yet it seems that the system in
Theorem 4.4 is the maximal system of gaps one could obtain without addi-
tional information on n.

It is our belief that there are no gaps below -W, + 1 however there seems no
easy way to prove our conjecture. On the other hand if our conjecture turns out
to be correct, then Theorem 4.3 reveals all possible gaps when n is given
explicitly.
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