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System NEL is the mixed commutative/noncommutative linear logic BV augmented with 

linear logic’s exponentials, or, equivalently, it is MELL augmented with the noncommutative 

selfdual connective seq. NEL is presented in deep inference, because no Gentzen formalism 

can express it in such a way that the cut rule is admissible. Other recent work shows that 

system NEL is Turingcomplete, and is able to express process algebra sequential 

composition directly and model causal quantum evolution faithfully. In this paper, we show 

cut elimination for NEL, based on a technique that we call splitting. The splitting theorem 

shows how and to what extent we can recover a sequentlike structure in NEL proofs. When 

combined with a ‘decomposition’ theorem, proved in the previous paper of this series, 

splitting yields a cutelimination procedure for NEL. 

1. Introduction 

This is the fifth in a series of papers dedicated to the proof theory of a selfdual, non

commutative, linear connective called seq, in the context of linear logic. The addition of 

seq to multiplicative linear logic yields a logic that we call BV. This logic is the main 

subject of study of this series of papers. BV is conjectured to be the same as pomset logic, 

which was studied by Retor´ e (1997) and other papers. e in Retor´

BV was defined in Guglielmi (2007) (the first paper of this series), where a sound, 

complete and cutfree system for BV was given, together with a cutelimination procedure. 

The proof system of BV departs radically from the traditional sequent calculus method

ology, and instead adopts deep inference as the design principle. Briefly, this means that 

proofs can be freely composed by the same connectives used for formulae, or, equivalently, 

inference rules can be applied arbitrarily deeply inside formulae. Guglielmi (2007) provides 

an introduction to deep inference, which was, in fact, originally conceived precisely for 

the purposes of capturing BV. 

† Alessio Guglielmi is supported by an ANR Senior Chaire d’Excellence entitled ‘Identity and Geometric Essence 

of Proofs’ and by the INRIA ARC ‘REDO: Redesigning Logical Syntax’. 
‡ Lutz Straßburger is supported by the ANR project ‘INFER: Theory and Application of Deep Inference’ and 

by the INRIA ARC ‘REDO: Redesigning Logical Syntax’. 
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564 A. Guglielmi and L. Straßburger 

The formalism used so far in this series of papers is called the calculus of structures, or  

CoS, and we will use it again in this paper. This is, conceptually, the simplest formalism in 

deep inference, being just a special form of term rewriting. More sophisticated formalisms 

in deep inference are emerging, in particular, open deduction (Guglielmi et al. 2010a). This 

formalism improves on CoS because it has an increased algebraic flavour and allows for 

a speedup in the size of proofs. However, these differences do not affect cutelimination 

procedures, in the sense that from a cutelimination procedure in CoS, one can trivially 

obtain a cutelimination procedure in open deduction. For this reason, the results in this 

paper are broadly valid within the deepinference paradigm. 

The use of deep inference is necessary: Alwen Tiu showed in the second paper of 

this series (Tiu 2006) that it is impossible for the sequent calculus to provide a sound, 

complete and cutfree proof system for BV. This is proved by exhibiting an infinite set 

of BV tautologies with a cleverly designed structure such that any boundeddepth, cut

free inference system (in particular, any sequent calculus system) is either unsound or 

incomplete on the set of tautologies. The design of these tautologies exploits the ability 

of the seq connective, together with the usual ‘par’ disjunction of linear logic, to bury 

at arbitrary depths inside formulae certain key structures that have to be ‘unlocked’, by 

inference, before any other parts of the formula are touched. We stress the fact that 

this behaviour is independent of the logical formalism employed to describe it. So, deep 

inference appears to be the most natural choice of proofsystem design methodology 

because of its ability to apply inference at arbitrary depths inside formulae. 

BV might be considered exotic as a logic, but it has a very natural algebraic character, 

that already found applications in diverse fields. We mention here: 

(1) its ability to capture very precisely the sequential connective of Milner’s CCS (and 

hence of other process algebras) (Bruscoli 2002); 

(2) a better axiomatisation of causal quantum computation than linear logic provides 

(Blute et al. 2008; Blute et al. 2010); and 

(3) a new class of categorical models (Blute et al. 2009). 

We know that the proof system BV is NPcomplete (Kahramanoğulları 2008a), and its 

feasibility for proof search has also been studied (Kahramanoğulları 2004). 

This fifth paper, together with the fourth paper (Straßburger and Guglielmi 2009) in the 

series, is devoted to the proof theory of system BV when it is enriched with linear logic’s 

exponentials. We call the resulting system NEL (noncommutative exponential linear logic). 

We can also think of NEL as MELL (multiplicative exponential linear logic (Girard 1987)) 

augmented with seq. NEL, which was first presented in Guglielmi and Straßburger (2002), 

is conservative over both BV and over MELL augmented by the mix and nullary mix rules 

(Fleury and Retor´ e 1993; Abramsky and Jagadeesan 1994). Like BV, NELe 1994; Retor´

cannot be expressed with a cutfree proof system outside of deep inference because of the 

counterexample in Tiu (2006) (mentioned above), and because NEL is conservative over 

BV. 

An important feature of NEL is that it is Turingcomplete – see Straßburger (2003c) 

for a proof. This makes for an interesting comparison with MELL, whose complexity is 

currently unknown. MELL is expected to be decidable, but several years of research have 
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565 A system of interaction and structure V: the exponentials and splitting 

not settled the question. If MELL turns out to be decidable, then seq would be the decisive 

factor that allows us to cross the border between decidability and Turingcompleteness. 

This would have an intuitive explanation in the fact that seq can be employed to simulate 

the structure of a Turing machine tape, which is precisely what MELL, which is fully 

commutative, apparently cannot do. 

Further interest in NEL comes from the possibility of enhancing, in a natural way, the 

range of applications of BV. Similarly to what happens when exponentials are added to 

multiplicative linear logic, the augmented expressivity of NEL over BV can be employed to 

better capture process algebras, for example, and this is indeed an active area of research. 

We might equally expect that NEL will further improve our ability to describe quantum 

evolution phenomena, and we expect to find enriched categorical models over those for 

BV. 

Each of the two NEL papers in the series is devoted to a theorem: splitting in this paper 

and decomposition in the previous paper (Straßburger and Guglielmi 2009). Together, 

the two theorems immediately yield a cutelimination procedure, and the cutelimination 

result is claimed in this paper. 

Splitting (which was introduced in Guglielmi (2007)) is, in a sense, a way of rebuilding 

into deep inference the structure of Gentzen sequentcalculus proofs to the extent possible 

in the presence of par and seq. The technique consists of first blocking the access of 

inference rules to a part of the formula to be proved, however deep, and then removing 

from the context of this blocked part as much ‘logical material’ as possible. In other 

words, we prove as much as we can of a given formula in the presence of a part that 

has been blocked. The splitting theorem states properties of what is left of the context 

of the blocked part, in relation to the shape of the blocked part. It turns out that 

the splitting property is just a generalisation of the shape of Gentzen calculi rules, and 

coincides precisely with them when we stipulate that the blocked part of a formula is at 

the shallowest possible level. 

Splitting is, a priori, a hard theorem to prove, but, thanks to the decomposition theorem 

proved in Straßburger and Guglielmi (2009), we only need to prove it for a fragment of 

NEL, and this is what we do in this paper. Once splitting is available, cut elimination 

follows immediately. 

The main results of this paper have already been presented, without proof, in Guglielmi 

and Straßburger (2002) – the proofs of the statements have been available for several 

years in a manuscript on the web. 

2. The system 

In this section we give a brief summary of the system NEL as defined in Straßburger and 

Guglielmi (2009) – see that paper for further details and introductory comments. 

Definition 2.1. There are countably many positive and negative atoms. They, positive or 

negative, are denoted by a, b, . . . .  Structures are denoted by S , P , Q, R, T , U, V , W , X 
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566 A. Guglielmi and L. Straßburger 

Associativity Singleton 

[�R � [� U] = [� T � � [R] = (R) =  〈R〉T ] � � R � � U] = R 

(�R � (T� ) � � R � T� � �U) = (� U) Negation 

〈�R � 〈T� 〉 � � = 〈�R � T� � �U〉 U〉 = ◦ ◦ 

Commutativity [R1 � � Rh] = (R̄1 � � R̄h)· · ·  · · ·  

[�R � T� ] = [T� � �R] (R1 � � Rh) = [R̄1 � � R̄h]· · ·  · · ·  

(�R � T� ) = (T� � �R) 〈R1 � � Rh〉 = 〈R̄1 � � R̄h〉· · ·  · · ·  

Unit ?R = !R̄

[◦ � �R] = [�R] !R 

¯̄

= ?R̄

( � �R) = (�R) R = R ◦ 

〈◦ � �R〉 = 〈�R〉 Contextual Closure 

=〈�R � ◦〉 〈�R〉 
if R = T then S{R} = S{T } 

Fig. 1. Basic equations for the syntactic equivalence =. 

and Z . The structures of the language NEL are generated by 

� �� � � �� |S ::= a | ◦ |  [ S � · · ·  � S 
� ] | ( S � · · ·  

�� 
� S ) | 〈S 

� 
� · · ·  � S 

� 〉 |  ?S | !S S̄

>0 >0 >0 

where , the  unit, is not an atom and S̄ is the negation of the structure S . Structures with ◦
a hole that does not appear in the scope of a negation are denoted by S{ }. The structure 

R is a substructure of S{R}, and  S{ }  is its context. We will simplify the notation for 

context in cases where structural parentheses fill the hole exactly: for example, S[R � T ] 

stands for S{[R � T ]}. The structures of the language NEL are equivalent modulo the 

relation =, defined in Figure 1. There, �R, T and �� U stand for finite, nonempty sequences 

of structures (elements of the sequences are separated by �, � or �, as appropriate in the 

context). 

Definition 2.2. Figure 2 shows the system SNEL (symmetric non-commutative exponential 

linear logic). The rules ai↓, ai↑, s, q↓, q↑, p↓, p↑, e↓, e↓, w↓, w↑, b↓, b↑, g and↓ 

g are called atomic interaction, atomic cut, switch, seq, coseq, promotion, copromotion,↑ 

empty, coempty, weakening, coweakening, absorption, coabsorption, digging and codigging, 

respectively. The down fragment of SNEL is {ai↓, s, q↓, p↓, e↓, w↓, b↓, g↓}, the  up fragment 

is {ai ↑, g↑}. Figure 3 then shows system NEL, where the rule is called ↑, s, q↑, p↑, e↑, w↑, b ◦↓ 

unit. 

All inference rules in SNEL have the form 

S{T }
ρ 
S{R} 
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567 A system of interaction and structure V: the exponentials and splitting 

ai
S{◦} 

ai
S (a � ā) 

↓ 
S [a � ā] 

↑ 
S{◦} 

S ([R � U] � T ) 
s 
S [(R � T ) � U] 

S〈[R � U] � [T � V ]〉 S (〈R � U〉 � 〈T � V 〉) 
q q↓ 

S [〈R � T 〉 � 〈U � V 〉] 
↑ 
S〈(R � T ) � (U � V )〉 

S{![R � T ]} S (?R � !T ) 
p p↓ 

S [!R � ?T ] 
↑ 
S{?(R � T )} 

e 
S{◦} 

e
S{?◦}

↓ 
S{!◦} 

↑ 
S{◦} 

w
S{◦} 

w
S{!R}

↓ 
S{?R}

↑ 
S{◦} 

S [?R � R] S{!R}
b b↓ 

S{?R}
↑ 
S (!R � R) 

S{??R} S{!R}
g g↓ 

S{?R}
↑ 
S{!!R} 

Fig. 2. System SNEL. 

ai
S{◦} 

e
S{◦}

◦↓
◦ 

↓ 
S [a � ā] 

↓ 
S{!◦} 

S ([R � U] � T ) S〈[R � U] � [T � V ]〉 S{![R � T ]}
s q p
S [(R � T ) � U] 

↓ 
S [〈R � T 〉 � 〈U � V 〉] 

↓ 
S [!R � ?T ] 

w
S{◦} 

b
S [?R � R] 

g
S{??R}

↓ 
S{?R}

↓ 
S{?R}

↓ 
S{?R} 

Fig. 3. System NEL. 

saying that if a structure matches R in a context S{ }, it can be rewritten as specified by 

T in the same context S{ }  (or vice versa when reasoning topdown). The unit rule of NEL 

is special in this respect, as it has no context; however, we only use it for convenience, 

and we could easily do without it by slightly adapting the notion of proof. 

A derivation ∆ is a chain of consecutive applications of instances of inference rules. A 

derivation with no premise is called a proof, denoted by �. A system S proves R if there 
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is in the system S a proof � whose conclusion is R. We use  

T 

∆S ‖‖ 

R 

to denote a derivation ∆ with premise T and conclusion R whose rules are in S , and  

S 
−‖
‖ � 

R 

to denote a proof � in S whose conclusion is R. 

Definition 2.3. A rule ρ is derivable in the system S if ρ /∈ S and for every instance 

T 
ρ 
R 

there exists a derivation from T to R in S . We say that a rule ρ is admissible for the system 

S if ρ /∈ S and for every proof in S ∪ {ρ} there is a proof in S with the same conclusion. 

Two systems are equivalent if they prove the same structures. Two systems S and S ′ are 

strongly equivalent if for every derivation from T to R in S there is a derivation from T 

to R in S ′, and  vice versa. 

Notice that interaction and cut are atomic in SNEL; we can define their general versions 

as follows. 

Definition 2.4. The following rules are called interaction and cut, respectively: 

S{◦}
i↓ 

S[R � R̄] 
and 

S(R � R̄) 
i↑ 

S{◦} 

¯where R and R are called principal structures. 

The following two propositions were shown in Straßburger and Guglielmi (2009). 

Proposition 2.5. The rule i is derivable in {ai↓, s, q↓, p↓, e↓}, and, dually, the rule i is↓ ↑ 

derivable in the system {ai↑, s, q↑, p↑, e↑}. 

Proposition 2.6. Each rule ρ in SNEL is derivable in {i ↑, s, ρ↓}, and, dually, each rule ↑ ↓, i
ρ in SNEL is derivable in the system {i↓, i↑, s, ρ↑}.↓ 

As an immediate consequence of Propositions 2.5 and 2.6, we get the following 

proposition. 

Proposition 2.7. The systems NEL ∪ {i↑} and SNEL ∪ {◦↓} are strongly equivalent. 

In the remainder of this paper we will give the proof of the cutelimination theorem, 

which, as usual in deep inference, means proving that the upfragment is admissible. 
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569 A system of interaction and structure V: the exponentials and splitting 

T 

{g↑} ‖‖ 

T1 

{b↑} ‖‖ 

T2 

{w↑} ‖‖ 

T3 

{e↓} ‖‖ 

T4 

T 

{ai↓} ‖‖ 

T5 

SNEL ‖‖ ∆ 

R 

� {s, q↓, q↑, p↓, p↑} ‖‖ 

R5 

{ai↑} ‖‖ 

R4 

{e↑} ‖‖ 

R3 

{w↓} ‖‖ 

R2 

{b↓} ‖‖ 

R1 

{g↓} ‖‖ 

R 

Fig. 4. Decomposition of derivations (Theorem 2.11). 

Theorem 2.8 (Cut admissibility). System NEL is equivalent to SNEL ∪ {◦↓}. 

The following corollaries are immediate consequences of cut admissibility. 

Corollary 2.9. The rule i is admissible for system NEL.↑ 

Corollary 2.10. For any two structures T and R, we have 

SNEL 

T 

‖
‖ if and only if 

NEL 
−‖
‖ 

[T̄ � R]
R 

Our cut elimination proof relies on the following theorem, which is a special case of a 

more general one, whose proof can be found in Straßburger and Guglielmi (2009). 

Theorem 2.11 (Decomposition). Every derivation ∆ in SNEL can be rewritten as shown 

in Figure 4. 
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3. Splitting 

Three approaches to cut elimination in deep inference have been explored in previous 

papers, but none of them can be applied in our case. 

First, we could hope to rely on semantics, as Br¨ unnler and unnler and Tiu did in Br¨

Tiu (2001) for classical logic. However, to date, there is no provability semantics for 

NEL (in the sense, for example, of phase spaces (Okada 1999) or other model theoretic 

semantics) that we could use for a completeness argument. 

Second, we could hope to use the approach taken in Br¨ unnlerunnler (2003), where Br¨

presents a simple syntactic method that employs the atomicity of cut together with certain 

proof theoretical properties of classical logic. More recent papers that refine his method 

by using atomic flows are Guglielmi and Gundersen (2008) and Guglielmi et al. (2010b). 

However, this approach cannot be used for NEL because contraction cannot be applied 

to arbitrary formulas as in classical logic. 

Third, we could hope to do as in (Guglielmi and Straßburger 2001; Straßburger 2003b), 

where we relied on permutations of rules. However, traditional techniques based on simple 

notions of ruleinstance permutation cannot work. To use permutation arguments for NEL 

requires a more general notion of permutation than the usual one. The following remark 

shows an example that illustrates the point and gives some hints to anybody who would 

like to proceed in that direction. 

Remark 3.1. Let P and Q be arbitrary provable structures with P = = Q. Consider � ◦ �
then the following proof, where we first stack two proofs of P and Q one on top of the 

other and then interweave two structures over the atoms a, b and c and their duals, and 

where the bottom rule instance is a q :↑

NEL 
−‖
‖ 

P 

NEL ‖‖ 

(P � Q) 
2 ai· ↓ 

(P � 〈[b � b̄] � [c � c̄]〉 � Q) 
q↓ 

(P � [〈b � c〉 � 〈 ̄b � c̄〉] � Q) (1) 
s 

(P � [〈b � c〉 � (〈 ̄b � c̄〉 � Q)]) 
ai↓ 

(P � 〈[a � ā] � [〈b � c〉 � (〈 ̄b � c̄〉 � Q)]〉) 
q↓ 

(P � [〈a � b � c〉 � 〈ā � (〈 ̄b � c̄〉 � Q)〉]) 
s 

[(P � 〈a � b � c〉) � 〈ā � (〈 ̄b � c̄〉 � Q)〉] 
q↑ 

[〈(P � 〈a � b〉) � c〉 � 〈ā � (〈 ̄b � c̄〉 � Q)〉] 

We can further suppose that the atoms a, b, c and their duals do not appear in P and 

Q. If so, any permutation of the bottom q instance over the rule instances immediately ↑ 

above it leads to an unprovable structure, because some two dual atoms a/ā or b/b̄ or c/c̄ 

would become connected by a connective different from a �. In order  for a proof to exist,  

any rule instance changing the mutual logical relations of the a/ā, b/b̄ and c/c̄ atoms in 
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the conclusion must be an instance of q . As an example of the contrary, consider ↑

〈[(P � 〈a � b〉) � 〈ā � (〈b̄ � c̄〉 � Q)〉] � c〉
q (2)↓ 

[〈(P � 〈a � b〉) � c〉 � 〈ā � (〈 ̄b � c̄〉 � Q)〉] 

where c and c̄ are not able to be joined in any ai going upwards. This represents a↓ 

difficulty for any argument based on permuting up the q rule. ↑ 

However, we can observe that the entire proofs of P and Q could be permuted below 

the q instance, step by step. The two structures P and Q act as sort of ‘locks’ for the ↑ 

substructure made of a, b and c atoms (and their duals). Once the locks are open, by 

independently proving them and so reducing them to the unit, the permuting up of the 

q instance can take place. ↑ 

So, an approach to proof normalisation based on permutations is not necessarily ruled 

out completely, but appears to be complicated and is not pursued in this paper. 

By using the idea in this example, it is not difficult to construct another example 

(different from the one used in Tiu (2006)) that shows the necessity of deep inference for 

designing cutfree systems for logics incorporating a selfdual noncommutative connective, 

like NEL. 

Luckily, to prove cut admissibility for NEL we can use the technique called splitting 

in Guglielmi (2007). As that paper explains, this technique establishes a clear connection 

with the sequent calculus, at least for the fragments of proof systems that allow for a 

sequent calculus presentation (in our case, the commutative fragment). 

See Guglielmi (2007) for an intuitive explanation of splitting – we will only mention 

here that the technique relies on two separate phases: 

(1) Context reduction: 

If a structure S{R} is provable, then S{ }  can be reduced (by performing inference 

steps going upwards in the derivation) to the structure [{ }  � U], for some U, such 

that [R � U] is provable (the hole can be filled by any structure that does not play an 

active part in inference steps). 

(2) Splitting: 

If [(R � T ) � P ] is provable, then P can be reduced to [P1 � P2] such that [R � P1] 

and [T � P2] are provable. 

Context reduction is in turn proved by splitting, which is then at the core of the 

matter. In this section we will state and prove splitting proper; we will then tackle context 

reduction in Section 4. 

For notational convenience, we define system NELc to be the system obtained from NEL 

by removing the rules for weakening, absorption and digging (which was called non-core 

in Straßburger and Guglielmi (2009)): 

NELc = NEL \ {w↓, b↓, g↓} = {◦↓, ai↓, s, q↓, p↓, e↓}. 

The following lemma was called ‘shallow splitting’ in Guglielmi (2007). The proof is 

very similar, so we will not give it in full here. But note that we organise the case analysis 

here in a different way from in Guglielmi (2007) so that we can reuse it for Lemmas 3.3 

and 3.4. 
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Lemma 3.2 (Splitting). Let R, T , P be any NEL structures. 

(i) If [(R � T ) � P ] is provable in NELc, then there are structures PR and PT such that 

[PR � PT ] 

NELc ‖‖ and 
NELc 

−‖
‖ and 

NELc 
−‖
‖ 

[R � PR] [T � PT ]
P 

(ii) If [〈R � T 〉 � P ] is provable in NELc, then there are structures PR and PT such that 

〈PR � PT 〉 

NELc ‖‖ and 
NELc 

−‖
‖ and 

NELc 
−‖
‖ 

[R � PR ] [T � PT ]
P 

Proof. We prove both statements simultaneously by structural induction on the number 

of atoms in the conclusion and the length (number of rule instances) of the proof, ordered 

lexicographically. Without loss of generality, we can assume R = = T (otherwise both � ◦ �
statements are trivially true). 

(i) Consider the bottommost rule instance ρ in the proof of [(R � T ) � P ]. We can 

distinguish three kinds of case: 

(a) The first kind appears when the redex of ρ is inside R, T or P . Then we have the 

following situation: 

NELc 
−‖
‖ � 

[(R′ � T ) � P ] 
ρ 

[(R � T ) � P ] 

where we can apply the induction hypothesis to � because it is one rule shorter 

(if ρ = ai also the conclusion is smaller). We get ↓ 

[PR′ � PT ] 

NELc ‖‖ ∆P and 
NELc 

−‖
‖ �R 

and 
NELc 

−‖
‖ �T 

[R′ � PR ] [T � PT ]
P 

From �R , we can  get  

NELc 
−‖
‖ �

′
R 

[R′ � PR] 
ρ 

[R � PR] 

and we are done. The situation is similar if the redex of ρ is inside T or P . 

(b) The second kind of case is where the substructure (R � T ) is inside the redex of ρ, 

but is not modified by ρ. These cases can be compared with the ‘commutative cases’ 

in the usual sequent calculus cutelimination argument. We will only show one 

representative example – a complete case analysis can be found in Guglielmi (2007) 
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and Straßburger (2003a). Suppose we have 

NELc 
−‖
‖ � 

[〈[(R � T ) � P1 � P3] � P2〉 � P4] 
q↓ 

[(R � T ) � 〈P1 � P2〉 � P3 � P4] 

We can apply the induction hypothesis to � because it is one rule shorter (the 

size of the conclusion does not change). This gives us 

〈Q1 � Q2〉 
NELc 

−‖
‖ �1 NELc 

−‖
‖ �2

NELc ‖‖ ∆1 and and 
[(R � T ) � P1 � P3 � Q1] [P2 � Q2]

P4 

We can apply the induction hypothesis again to �1, because the number of atoms 

in the conclusion is now strictly smaller (because we can assume that the instance 

of q is not trivial). We get ↓ 

[PR � PT ] 

NELc ‖‖ ∆2 and 
NELc 

−‖
‖ �R 

and 
NELc 

−‖
‖ �T 

[R � PR ] [T � PT ]
[P1 � P3 � Q1] 

We can now build the following derivation from ∆1, ∆2 and �2: 

[PR � PT ] 

NELc ‖‖ ∆2 

[P1 � P3 � Q1] 

NELc ‖‖ �2 

[〈[P1 � Q1] � [P2 � Q2]〉 � P3] 
q↓ 

[〈P1 � P2〉 � P3 � 〈Q1 � Q2〉] 

NELc ‖‖ ∆1 

[〈P1 � P2〉 � P3 � P4] 

and we are done. All other cases in this group are similar. 

(c) The final type of case is where the substructure (R � T ) is destroyed by ρ. These  

cases can be compared to the ‘key cases’ in a standard sequent calculus cut

elimination argument. We have only one possibility. The most general situation is 

as follows: 

NELc 
−‖
‖ � 

[([(R1 � T1) � P1] � R2 � T2) � P2] 
s 

[(R1 � R2 � T1 � T2) � P1 � P2] 
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where one of R1 and R2 might be , but not both of them (and similarly for T1◦
and T2). As before, we can apply the induction hypothesis to � and get 

[Q1 � Q2] 
NELc 

−‖ �1 NELc 
−‖ �2

NELc ‖ ∆1 and ‖ and ‖
‖

[(R1 � T1) � P1 � Q1] [(R2 � T2) � Q2]
P2 

We can apply the induction hypothesis again to �1 and �2. (Because we assume 

that the instance of s is nontrivial, the conclusions are strictly smaller than the 

one of the original proof.) We get 

[PR1 
� PT1

] 
NELc 

−‖ �R1 
NELc 

−‖ �T1NELc ‖ ∆3 and ‖ and ‖
‖

[R1 � PR1
] [T1 � PT1

]
[P1 � Q1] 

and 

[PR2 
� PT2

] 
NELc 

−‖ �R2 
NELc 

−‖ �T2NELc ‖‖ ∆4 and 
[R2 � 

‖
PR2

]
and 

[T2 � 

‖
PT2

]
Q2 

Now let PR = [PR1 
� PR2

] and  PT = [PT1 
� PT2

]. We can build 

[PR1 
� PR2 

� PT1 
� PT2

] 

NELc ‖ ∆4 NELc 
−‖ �R1 

[PR1 
� PT1 

� Q2] [R1 � PR1
] 

NELc ‖ ∆3 and NELc ‖ �R2 

[P1 � Q1 � Q2] [(R1 � [R2 � PR2
]) � PR1

] 

NELc ‖ ∆1 

s 
[(R1 � R2) � PR1 

� PR2
] 

[P1 � P2] 

and a similar proof of [(T1 � T2) � PT1 
� PT2

], and we are done. 

(ii) The case for [〈R � T 〉 � P ] is similar to the one for [(R � T ) � P ], and we leave it as 

an exercise. 

We can now tackle modalities, for which we can also exhibit a splitting lemma. 

Lemma 3.3 (Splitting for modalities). Let R and P be any NEL structures. 

(i) If [!R � P ] is provable in NELc, then there are structures P1, . . . , Ph for some h � 0 

such that 

[?P1 � � ?Ph]· · ·  
NELc 

−‖
NELc ‖ and‖ 

[R � P1 � 

‖ 

� Ph]
P 

· · ·  
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(ii) If [?R � P ] is provable in NELc, then there is a structure PR such that 

!PR 

NELc 
−‖

NELc ‖ and ‖
‖ 

[R � PR]
P 

Proof. The proof is similar to the previous one. We use the same induction measure 

and the same pattern in the case analysis as before: 

(i) We again consider the bottommost rule instance ρ in the proof of [!R � P ], and we 

have the same three classes of cases as in the proof of Lemma 3.2: 

(a) The redex of ρ is inside R or P . 

This case is the same as in the proof of Lemma 3.2. 

(b) The substructure !R is inside the redex of ρ, but is not changed by ρ. 

This case is almost literally the same as for Lemma 3.2. We only have to replace 

(R � T ) by !R, and  

[PR � PT ] [?P1 � � ?Ph]· · ·  

NELc ‖ ∆2 by NELc ‖ ∆2 

[P1 � P3 � Q1] [P1 � P3 � Q1] 

(As for the previous lemma, the full details can be found in Straßburger (2003a).) 

(c) The substructure !R is destroyed by ρ. 

There are two possibilities (ρ = e and ρ = p ): ↓ ↓

NELc 
−‖ NELc 

−‖ � 

[ � P ] and [![R � P1] � Q2] 
e

◦ 
p↓ 

[! � P ] 
↓ 

[!R � ?P1 � Q2]◦ 

For ρ = e , we are done immediately by letting h = 0.  For  ρ = p , we can apply ↓ ↓
the induction hypothesis to � and get structures P2, . . . , Ph such that 

[?P2 � � ?Ph]· · ·  
NELc 

−‖
NELc ‖ and ‖

‖ 
[R � P1 � P2 � � Ph]

Q2 

· · ·  

We then immediately get 

[?P1 � ?P2 � � ?Ph]· · ·  

NELc ‖

[?P1 � Q2] 

(ii) As before, we consider the bottommost rule instance ρ in the proof of [?R � P ]: 

(a) The redex of ρ is inside R or P . 

This case is the same as before. 
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(b) The substructure ?R is inside the redex of ρ, but is not changed by ρ. 

As before, this case is almost literally the same as in the proof of Lemma 3.2. This 

time we have to replace (R � T ) by ?R, and  

[PR � PT ] !PR 

NELc ‖‖ ∆2 

[P1 � P3 � Q1] 

by NELc ‖‖ ∆2 

[P1 � P3 � Q1] 

(c) The substructure ?R is destroyed by ρ. 

For this case there is only one possibility: 

NELc 
−‖ � 

[![R � P1] � P2] 
p↓ 

[?R � !P1 � P2] 

We can apply part (i) of the lemma and get 

[?Q1 � � ?Qh]· · ·  
NELc 

−‖ �R
NELc ‖ ∆ and ‖

‖
[R � P1 � Q1 � � Qh]

P2 

· · ·  

Now let PR = [P1 � Q1 � . . . � Qh]. We can then build 

![P1 � Q1 � � Qh]· · ·  

{p↓} ‖
‖ 

[!P1 � ?Q1 � � ?Qh]· · ·  

NELc ‖ ∆ 

[!P1 � P2] 

as desired. 

Lemma 3.4 (Splitting for atoms). Let a be any atom and P be any NEL structure. If there 

is a proof 

NELc 
−‖

[a � P ] 

then there is a derivation 

ā 

NELc ‖

P 
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Proof. After the previous two proofs, this is an almost trivial exercise. Case (a) is as 

before, and for (b), we have to replace (R � T ) by  a, and  

[PR � PT ] ā 

NELc ‖‖ ∆2 

[P1 � P3 � Q1] 

by NELc ‖‖ ∆2 

[P1 � P3 � Q1] 

For case (c), the only possibility is 

NELc 
−‖ �′ 

P1 
ai↓

[a, ̄a, P1] 

from which we immediately get 

ā 

NELc ‖

[ā, P1] 

as desired. 

4. Context reduction 

The idea of context reduction is to reduce a problem that concerns an arbitrary (deep) 

context S{ } to a problem that only concerns a shallow context [{ } � P ]. In the case of 

cut elimination, for example, we will then be able to apply splitting. 

Before giving the statement, we need to define the modality depth of a context S{ } to 

be the number of ! and ? in whose scope the { } occurs. In the following lemma, the { }
is treated as an ordinary atom. 

Lemma 4.1 (Context reduction). Let R be a NEL structure and S{ } be a context. If S{R}
is provable in NELc, then there is a structure PR such that 

! · · · ![{ } � PR] 
NELc 

−‖ � 
NELc ‖ ∆ and ‖

‖
[R � PR]

S{ }  

where the number of ! in front of [{ } � PR ] is the modality depth of S{ }. 

Proof. We proceed by structural induction on the context S{ }. The base case, when 

S{ } = { }, is trivial. 

We can now distinguish four cases: 

(a) S{ } = [(S ′{ } � T ) � P ] where, without loss of generality, T =� ◦. Note that we do 

allow P = . We can apply splitting (Lemma 3.2) to the proof of [(S � T ) � P ]◦ ′{R}
and get 
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[PS � PT ] 
NELc 

−‖ �S NELc 
−‖ �T

NELc ‖ ∆P and ‖ and ‖

P 

‖
[S ′{R} � PS ] [T � PT ] 

Because T = , we can now apply the induction hypothesis to �S and get � ◦

! · · · ![{ } � PR ] 
NELc 

−‖ � 
NELc ‖ ∆′ and ‖

‖
[R � PR ]

[S ′{ } � PS ] 

From this we can build 

! ![{ } � PR ]· · ·

NELc ‖‖ ∆′ 

[S ′{ } � PS ] 

NELc ‖ �T 

s 
[(S ′{ } � [T � PT ]) � PS ] 

[(S ′{ } � T ) � PS � PT ] 

NELc ‖ ∆P 

[(S ′{ } � T ) � P ] 

as desired. 

(b) The cases S{ } = [〈S ′{ } � T 〉 � P ] and  S{ } = [〈T � S ′{ }〉 � P ] are handled similarly 

to (a). 

(c) For the case S{ } = [!S ′{ } � P ], we can apply splitting (Lemma 3.3) to the proof of 

[!S ′{R} � P ] and get 

[?P1 � � ?Ph]· · ·  
NELc 

−‖ �S
NELc ‖ ∆P and ‖

P 

‖
[S ′{R} � P1 � · · ·  � Ph] 

Applying the induction hypothesis to �S , we get  PR such that 

! · · · ![{ } � PR ] 
NELc 

−‖ � 
NELc ‖ ∆′ and‖

[R � 

‖
PR ]

[S ′{ } � P1 � · · ·  � Ph] 
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From this we can build 
!! ![{ } � PR] · · ·

NELc ‖ ∆′ 

![S ′{ } � P1 � · · ·  � Ph] 

{p↓} ‖
‖ 

[!S ′{ } � ?P1 � · · ·  � ?Ph] 

NELc ‖ ∆P 

[!S ′{ } � P ] 

Note that in this case the number of ! in front of [{ } � PR] increases. 

(d) The case where S{ } = [?S ′{ } � P ] is similar to (c). 

5. Elimination of the up fragment 

In this section, we will first show four lemmas, which are all easy consequences of splitting 

and which say that the core up rules of system SNEL are admissible if they are applied in 

a shallow context [{ } � P ]. Then we will show how context reduction is used to extend 

these lemmas to any context. As a result, we get a proof of cut elimination that can be 

considered modular, in the sense that the four core up rules ai↑, q↑, p and e are shown ↑ ↑ 

to be admissible, each independently of the others. 

Lemma 5.1. Let P be a structure and a be an atom. If [(a � ā) � P ] is provable in NELc, 

then P is also provable in NELc. 

Proof. We apply splitting to the proof of [(a � ā) � P ]. This yields 

[Pa � Pā] 
NELc 

−‖ NELc 
−‖

NELc ‖‖ and 
[a � 

‖ 

Pa] 
and 

[ā � 

‖ 

Pā]
P 

By applying Lemma 3.4, we get derivations from ā to Pa and from a to Pā. From these  

we can build our proof 

◦↓ 

ai
◦ 

↓
[ā � a] 

NELc ‖

[Pa � Pā] 

NELc ‖

P 

as desired. 

Lemma 5.2. Let R, T , U, V and P be any NEL structures. If [(〈R � U〉 � 〈T � V 〉) � P ] is  

provable in NELc, then [〈(R � T ) � (U � V )〉 � P ] is also provable in NELc. 
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Proof. By applying splitting several times to the proof of [(〈R � U〉 � 〈T � V 〉) � P ], we 

get structures PR , PT , PU and PV such that 

[〈PR � PU〉 � 〈PT � PV 〉] 
NELc 

−‖ NELc 
−‖ NELc 

−‖ NELc 
−‖

NELc ‖‖ 
[R � 

‖ 

PR] [U � 

‖ 

PU] [T � 

‖ 

PT ] [V � 

‖ 

PV ]
P 

Combining these, we can build the proof 

NELc 
−‖

〈([R � PR] � [T � PT ]) � ([U � PU] � [V � PV ])〉
s, s, s, s 

〈[(R � T ) � PR � PT ] � [(U � V ) � PU � PV ]〉
q↓, q↓

[〈(R � T ) � (U � V )〉 � 〈PR � PU〉 � 〈PT � PV 〉] 

NELc ‖

[〈(R � T ) � (U � V )〉 � P ] 

as desired. 

Lemma 5.3. Let R,T and P be any NEL structures. If [(?R � !T ) � P ] is provable in 

NELc, then [?(R � T ) � P ] is also provable in NELc. 

Proof. As above, we apply splitting several times to the proof of [(?R � !T ) � P ] and  

get structures PR , P1, . . . , Ph such that 

[!PR � ?P1 � � ?Ph]· · ·  
NELc 

−‖ NELc 
−‖

NELc ‖ and ‖ and ‖
‖ 

[R � PR] [T � P1 � � Ph]
P 

· · ·  

Combining these, we can build the proof 

NELc 
−‖

s, s 
!([R � PR] � [T � P1 � · · ·  � Ph]) 

![(R � T ) � PR � P1 � � Ph]· · ·  

{p↓} ‖
‖ 

[?(R � T ) � !PR � ?P1 � � ?Ph]· · ·  

NELc ‖

[?(R � T ) � P ] 

as desired. 

Lemma 5.4. Let P be any NEL structure. If [? � P ] is provable in NELc, then [ � P ] is  ◦ ◦ 

also provable in NELc. 

Proof. We leave this as a trivial exercise. 
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Using context reduction (Lemma 4.1), we can extend the statements of Lemmas 5.1–5.4 

from shallow contexts [{ }  � P ] to arbitrary contexts S{ }, which we do in the following 

lemma. 

Lemma 5.5. Let R, T , U and V be any structures, a be an atom and S{ }  be any context. 

Then we have the following: 

(i) If S(a � ā) is provable in NELc, then so is S{◦}. 
(ii) If S(〈R � U〉 � 〈T � V 〉) is provable in NELc, then so is  S〈(R � T ) � (U � V )〉. 
(iii) If S(?R � !T ) is provable in NELc, then so is  S{?(R � T )}. 
(iv) If S{?◦} is provable in NELc, then so is  S{◦}. 

Proof. All four statements are proved similarly – we will only show the third one here. 

Let a proof of S(?R � !T ) be given. We apply context reduction to get a structure P such 

that 

! ![{ }  � P ] 
NELc 

−‖
‖ � 

· · ·  

NELc ‖‖ ∆ and 
[(?R � !T ) � P ]

S{ }

By Lemma 5.3, there is a proof �′ of [?(R � T ) � P ], and plugging ?(R � T ) into the hole 

of ∆, we can build 

{◦↓, e↓} 
−‖
‖ 

! !· · ·  ◦ 

NELc ‖‖ �
′ 

! ![?(R � T ) � P ]· · ·  

NELc ‖‖ ∆ 

S{?(R � T )}

It is obvious that the other statements can be proved in the same way. 

Lemma 5.6. If a structure R is provable in NELc ∪ {ai↑, q↑, p↑, e↑}, it is also provable in 

NELc. 

Proof. The instances of the rules ai↑, q↑, p and e are removed one after the other ↑ ↑ 

(starting with the topmost one) using Lemma 5.5. 

We can now very easily give a proof of the cutelimination theorem for the system NEL. 

Proof of Theorem 2.8. Cut elimination is obtained in two steps: 

NELc ∪ {ai ↑, e↑} 
−‖
‖ NELc 

−‖
‖↑, q↑, p

◦↓ 
1 R′ 2 R′ 

SNEL 

◦
‖
‖

−→ 
{w↓, b↓, g↓} ‖

‖ 

−→ 
{w↓, b↓, g↓} ‖‖

R R R 
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Step 1 is an application of the decomposition (Theorem 2.11). The instances of g and↑, b↑ 

w disappear because their premise must be the unit , which is impossible. Step 2 is just ↑ ◦
Lemma 5.6. 

This technique shows how admissibility can be proved uniformly for the cut rule (the 

atomic one) and the other up rules, which are actually very different rules from the cut. 

Hence, our technique is more general than cut elimination in the sequent calculus for two 

reasons: 

(1) It applies to connectives that admit no sequent calculus definition, such as seq. 

(2) It can be used to show admissibility of noninfinitary rules that involve no negation, 

like q and p↑ ↑. 

6. Perspectives 

We think that the techniques developed here for splitting can be exported to the many 

modal logics already available in deep inference (some of which have no known cutfree 

presentation in Gentzen formalisms). The reason is that linear logic modalities have a 

similar behaviour to those of modal logic. This is particularly obvious if we observe that 

the promotion rule of NEL is the same as the K rule of all modal logics in deep inference 

(corresponding to the K axiom of basic modal logic). Of course, contraction in linear 

logic, and in NEL, is restricted, but the splitting theorems, crucially, do not make any use 

of it. 

Apart from its use in proving cut elimination, splitting is a powerful tool for reducing 

proof search nondeterminism in deep inference proof systems. This is explored in 

Kahramanoğulları (2006; 2008b). 

We are currently investigating, in the context of the INRIA ARC project REDO, the 

relations between splitting and the focusing technique in linear logic (Andreoli 1992; 

Miller 1996), which is at the basis of ludics (Girard 2001). It appears that focusing can 

be justified and greatly generalised by splitting in deep inference. It seems that splitting is 

a way to explore the duality between any subformula and its context, so revealing a new 

logical symmetry. 
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