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Abstract We study soliton solutions to the nonlinear Schrödinger equation (NLS)
with a saturated nonlinearity. NLS with such a nonlinearity is known to possess a
minimal mass soliton. We consider a small perturbation of a minimal mass soliton
and identify a system of ODEs extending the work of Comech and Pelinovsky (Com-
mun. Pure Appl. Math. 56:1565–1607, 2003), which models the behavior of the per-
turbation for short times. We then provide numerical evidence that under this system
of ODEs there are two possible dynamical outcomes, in accord with the conclusions
of Pelinovsky et al. (Phys. Rev. E 53(2):1940–1953, 1996). Generically, initial data
which supports a soliton structure appears to oscillate, with oscillations centered on
a stable soliton. For initial data which is expected to disperse, the finite dimensional
dynamics initially follow the unstable portion of the soliton curve.
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1 Introduction

The nonlinear Schrödinger equation (NLS) in R
d × R

+:

iut + �u + g
(

|u|2
)

u = 0, u(x,0) = u0(x) (1.1)

emerges as a leading order description of important physical systems in optics, many
body quantum systems, hydrodynamics, and plasma physics. Moreover, it is a canon-
ical equation demonstrating the competition between nonlinearity and dispersion.

In many applications, the leading order approximation of the nonlinearity, g(s), is
the power nonlinearity g(s) = ±sσ . For example, g(s) = s, yields the focusing cubic
NLS equation. Cubic NLS appears in many contexts, including many body quantum
systems, when the Hartree equation is approximated with pairwise delta function
interactions. It similarly appears in nonlinear optics if the higher order corrections to
the nonlinear index of refraction are neglected.

Such approximations may lead to nonphysical predictions. In the case of the
power-law nonlinearity, if σd ≥ 2, initial data with mass (L2 norm) in excess of
the ground state may blow up in finite time (Sulem and Sulem 1999). However, ex-
periments in the optical setting show that there is no “singularity” to speak of; the
intensity of the solutions remains finite (Josserand and Rica 1997).

The model equation can be corrected to suppress singularity formation by replac-
ing the power nonlinearity with a saturated nonlinearity. Ideally, such a nonlinearity
allows potentially unstable behavior at low intensity but regularizes it at high inten-
sity. One example of such a nonlinearity is the cubic-quintic, where g(s) = s − γ s2.
The cubic-quintic NLS (CQNLS) equation appears as a correction to the many body
system that includes (repulsive) three body delta function interactions (Barashenkov
et al. 1989; Barashenkov and Panova 1993). CQNLS also appears in models of su-
per fluids, (Josserand et al. 1995), and in nonlinear optics, (Dimitrevski et al. 1998;
Quiroga-Teixeiro and Michinel 1997; Wright et al. 1995).

Another saturated nonlinearity appearing in the optics literature is g(s) = s/

(1 + s), (Tikhonenko et al. 1996). This nonlinearity was used in Eisner and Turking-
ton (2006) to study turbulence for a one dimensional, nonintegrable equation without
singularity formation. In laser plasma interactions, g(s) = 1 − e−s is used, (Johnston
et al. 1997). In all cases, the Taylor expansion of the nonlinearity leads to CQNLS at
second order.

In this work, we consider saturated nonlinearities of the form

g(s) = s
q
2

s
p−q

2

1 + s
p−q

2

, (1.2)

where 2+ 4
d−2 > p > 2+ 4

d
> 4

d
> q > 0 for d ≥ 3 and ∞ > p > 2+ 4

d
> 4

d
> q > 0

for d < 3. For |u| large, (1.1) behaves as though it were L2 subcritical while for
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|u| small, it behaves as though it were L2 supercritical. Note that this choice of
saturated nonlinearity is focusing for all values of |u|. For our purposes, p must
be chosen substantially larger than the L2 critical exponent, 4

d
, in order to allow

sufficient regularity when linearizing the equation. For our numerical analysis, we
work in one spatial dimension with the specific nonlinearity

g(s) = s3

1 + s2
. (1.3)

A soliton solution of (1.1) is a function u(t, x) of the form

u(t, x) = eiωtφω(x), (1.4)

where ω > 0 and φω(x) is a positive, spherically symmetric, exponentially decaying
solution of the equation:

�φω − ωφω + g
(

φ2
ω

)

φω = 0. (1.5)

For our particular nonlinearity, for any ω > 0, there is a unique solitary wave solution
φω(x) to (1.5); see Berestycki and Lion (1983) and McCleod (1993).

For large ω the solitons are stable, while for small ω they are unstable. A precise
stability criterion identifying stable and unstable regions is provided in Grillakis et al.
(1990) and Shatah and Strauss (1985), generalizing earlier work on stability in Wein-
stein (1985, 1986). This amounts to examining the relation ω �→ ‖φω‖2

L2 , defining a
soliton curve. Where it is increasing as a function of ω, the solitons are stable; where
this function is decreasing the solitons are unstable. In Fig. 1, we plot this curve for
several common choices of g(s).

As can be seen numerically in Fig. 1, our saturated nonlinearity spawns a soliton of
minimal mass. Certain asymptotic methods can be used to describe the nature of the
curve–multiscale methods can provide the asymptotics as ω → 0, while variational
methods can give the asymptotics as ω → ∞. However, in this work, we forego
an analytic description of the soliton curve and focus on the minimal mass soliton
shown to exist in the numerical plot. The minimal mass soliton is a distinguished
case amongst the already special family of soliton solutions. Though solitons to the
left and right of this minimum can readily be classified as stable or unstable, the
theory fails at extrema (Weinstein 1985, 1986). This motivates a careful examination
of the dynamics of the minimal mass soliton under perturbation.

Comech and Pelinovsky (2003) demonstrated that the minimal mass soliton pos-
sesses a fundamentally nonlinear instability. They accomplished this by finding a
small perturbation that forces the solution a fixed distance away from the minimal
mass soliton in finite time. Their technique reduces the problem to studying an ODE
modeling the perturbation for short times. They show that the 0 solution to the ODE
is unstable by appropriate choice of initial data.

The purpose of this work is to numerically explore the following conjecture.

Conjecture 1.1 Though the minimal mass soliton is unstable on short time scales,
we conjecture that, on longer time scales, any solutions which is initially a small per-

turbation of the minimal mass soliton will either disperse or eventually relax toward

a nearby stable soliton.
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Fig. 1 Plots of the soliton curves (φ(ω) with respect to ω) for a subcritical nonlinearity, critical nonlinear-
ity, supercritical nonlinearity, and the saturated nonlinearity (1.3). The curves for the monomial nonlinear-
ities are found analytically, while the curves for the saturated nonlinearities are found numerically using
the method discussed in Sect. 4.1. All are in d = 1. Here, ω ≥ 0.001, as the supercritical and saturated
cases diverge as ω → 0

This conjecture is part of the more general conjecture that any solution which does
not disperse as t → ∞ must eventually converge to a finite sum of stable solitons. Al-
though the equation has a branch of unstable solitons, physically, it is expected that
general solutions to (1.1) will resolve into stable solitons plus a dispersive compo-
nent. This is referred to as the “soliton resolution” conjecture, a notoriously difficult
problem to formulate. For nonlinearities with a specific two power structure, dynam-
ics of this type were observed by Pelinovsky, Afanasjev, and Kivshar, who modeled
the behavior of solutions near a minimal mass soliton by a second order ODE via
adiabatic expansion in ω (Pelinovsky et al. 1996). This conjecture has also been ex-
plored numerically by Buslaev and Grikurov for two power nonlinearities in Buslaev
and Grikurov (2001), where they found that a solution which is initially a perturbation
of an unstable soliton tends to approach and then oscillate around a stable soliton.

By contrast, our method uses the full dynamical system of modulation parameters
to find a 4-dimensional system of ODEs which is structured to allow for eventual
recoupling to the continuous spectrum. Following Comech and Pelinovsky (2003),
we begin with the ansatz that our solution is a small perturbation of the minimal
mass soliton. We then break the perturbation into discrete and continuous spectral
components relative to the linearization of the Schrödinger operator about the soliton.
The discrete portion yields a 4-dimensional system of nonlinear ODEs. In this work,
we neglect the continuous spectrum, although it may be included in a future work. We
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further simplify the system by expanding the equations in powers of the dependent
variables and dropping cubic and higher terms.

An obstacle in studying these ODEs is that the signs and magnitudes of the coef-
ficients are not self-evident, necessitating numerical methods. We compute these val-
ues, which are intimately related to the minimal mass soliton, using the sinc spectral
method. The use of the sinc function for numerically solving differential equations
dates to Stenger (1979). It has been successfully used in a wide variety of linear and
nonlinear, time dependent and independent, differential equations (Al-Khaled 2001;
Bellomo and Ridolfi 1995; Bialecki 1991; Carlson et al. 1997; El-Gamel 2007;
Lund and Bowers 1992; Revelli and Ridolfi 2003; Stenger 2000). In this work, we
first numerically solve (1.5) for the soliton as a nonlinear collocation problem. We
then use this information to compute the generalized kernel of the operator after lin-
earization about the soliton.

With these coefficients in hand, we numerically integrate the ODE system, plot-
ting the results. We find that there are two different types of behavior for the fi-
nite dimensional system, depending on the initial data. If the initial data represents
a solution which our nonlinear PDE solver indicates can support a soliton, then we
find that the solution is oscillatory. It is initially attracted to the stable side of the
curve, and, over intermediate time scales, oscillates around a stable soliton close
to the minimal mass soliton. If we initialize with the unstable conditions found in
Comech and Pelinovsky (2003), the ODEs initially move in the unstable direction
but quickly reverse, before commencing oscillation. On the other hand, if we be-
gin with initial conditions which are expected to disperse as t → ∞, the finite di-
mensional dynamics push the solution along the unstable soliton curve towards the
value ω = 0 rather quickly. This solution agrees with the numerically computed so-
lution of the primitive equation (1.1) with corresponding initial data for as long as
the mass conservation of the solution allows, after which our model continues to fol-
low the unstable soliton curve but the actual solution disperses. In Pelinovsky et al.
(1996), the authors observed similar dynamics, with both oscillatory and dispersive
regimes.

These ODEs are an approximation valid on a short time interval. This study is
the beginning of an analysis to show that perturbations of the minimal mass soli-
ton are attracted to the stable side of the soliton curve. In a forthcoming work, we
hope to show how the continuous-spectrum part of the perturbation interacts with the
discrete-spectrum perturbation. Based on the work of Soffer and Weinstein (1999)
we expect coupling to the continuous spectrum to cause radiation damping, which
will ultimately cause the solution to have damped oscillations and select a soliton on
the stable side of the curve.

This paper is organized as follows. In Sect. 2, we introduce preliminaries and
necessary definitions. In Sect. 3, we derive the system of ODEs. In Sect. 4, we ex-
plain our numerical methods for finding the coefficients of the ODEs. In Sect. 5,
we show the numerical solutions of the ODEs and explain our results. Finally, in
Sect. 6, we present our conclusions and plans for future work. An Appendix contains
details of our numerical method for computation of the soliton and related coeffi-
cients.
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2 Definitions and Setup

Equation (1.1) is globally well-posed in H 1, the usual Sobolev space, with norm

‖u‖2
H 1 = ‖u‖2

L2 + ‖∇u‖2
L2 .

The global well-posedness for initial data in H 1 follows from the standard well-
posedness theory for semilinear Schrödinger equations. Additionally, we assume
that u0 is spherically symmetric (which means even in one dimension), implying
u(x, t) = u(|x|, t) for all t > 0. Proofs can be found in numerous references includ-
ing Cazenave (2003) and Sulem and Sulem (1999).

For data u0 ∈ H 1, there are several conserved quantities. Particularly important
invariants are:

Conservation of Mass (or Charge)

Q(u) = 1

2

∫

Rd

|u|2 dx = 1

2

∫

Rd

|u0|2 dx.

Conservation of Energy

E(u) =
∫

Rd

|∇u|2 dx −
∫

Rd

G
(

|u|2
)

dx =
∫

Rd

|∇u0|2 dx −
∫

Rd

G
(

|u0|2
)

dx,

where

G(t) =
∫ t

0
g(s)ds.

Detailed proofs of these conservation laws can be easily arrived at by using energy
estimates or Noether’s theorem, which relates conservation laws to symmetries of an
equation. See Sulem and Sulem (1999) for details.

With this type of nonlinearity, it is known that soliton solutions to NLS exist and
are unique. Existence of solitary waves for nonlinearities of the type (1.2) is proved
in Berestycki and Lion (1983): in R

1 via ODE techniques, and in higher dimensions
by minimizing the functional

T (u) =
∫

|∇u|2 dx

with respect to the functional

V (u) =
∫ [

G
(

|u|2
)

− ω

2
|u|2
]

dx.

Then, using a minimizing sequence and Schwarz symmetrization, one infers the ex-
istence of the nonnegative, spherically symmetric, decreasing soliton solution. Once
we know that minimizers are radially symmetric, uniqueness can be established via
a shooting method, showing that the desired soliton occurs at only one initial value,
(McCleod 1993).
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Of great importance is the fact that Qω := Q(φω) and Eω := E(φω) are differen-
tiable with respect to ω. This can be determined from the works of Shatah, namely
(Shatah 1983, 1985). Differentiating (1.5), Q and E all with respect to ω, we have
the relation

∂ωEω = −ω∂ωQω.

Numerical computations show that if we plot Qω with respect to ω for the saturated
nonlinearity, the soliton curve goes to ∞ as ω goes to 0 or ∞ and has a global
minimum at some ω = ω∗ > 0; see Fig. 1.

We are interested in the stability of these explicit solutions under perturbations of
the initial data. Recall the following notions of stability:

Definition 2.1 The soliton is said to be orbitally stable if, ∀ǫ > 0, ∃δ > 0 such that,
for any initial data u0 such that ‖u0 − φω‖H 1 < δ, for any t < 0, there is some θ ∈ R

such that ‖u(x, t) − eiθφω(x)‖H 1 < ǫ.

Definition 2.2 The soliton is said to be asymptotically stable, if ∃δ > 0 such that if

‖u0 − φω‖H 1 < δ, then ∃ω̃, θ̃ > 0 and ψ0 ∈ H 1 such that ‖u(x, t) − eiω̃t+θ̃φω̃(x) −
eit�ψ0‖H 1 → 0 as t → ∞.

Remark 2.1 Orbital stability suggests that a solution to (1.1) initially near the soliton
will remain near the soliton in the H 1 norm. However, asymptotic stability states
that the system actually selects a specific soliton to which it converges as time goes
to ∞. Note, technically a system can undergo a very large change in ω and still
be “asymptotically stable” provided it converges to a soliton for large time. However,
asymptotic stability is usually proved using perturbation theory, which would suggest
that in Definition 2.2, there would exist an ǫ > 0 depending on δ such that

|ω − ω̃| < ǫ.

Variational techniques developed in Weinstein (1985) and Weinstein (1986) and
generalized to an abstract setting in Grillakis et al. (1990) and Shatah and Strauss
(1985) tell us that when δ(ω) = Eω + ωQω is convex, or δ′′(ω) > 0, we are guar-
anteed stability under small perturbations, while for δ′′(ω) < 0 we are guaranteed
that the soliton is unstable under small perturbations. For a brief reference on this
subject, see Chap. 4 of Sulem and Sulem (1999). For nonlinearities that are twice
differentiable at the origin and of monomial type at infinity (which would include
our saturated nonlinearities), asymptotic stability has been studied for a finite collec-
tion of strongly orbitally stable solitons by Buslaev and Perelman (1995), Cuccagna
(2003), and Rodnianski et al. (2003).

At a minimum of Qω , soliton instability is more subtle, because it is due solely
to nonlinear effects. See Comech and Pelinovsky (2003), where this purely nonlinear
instability is proved to occur by reducing the behavior of the discrete part of the
spectrum to an ODE that is unstable for certain initial conditions.
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2.1 Linearization about a Soliton

Throughout this section, we use vector notation, ·, to represent complex functions.
Any function written without vector notation is assumed to be real. For example, the

complex valued scalar function u + iv will be written
(

u

v

)

. In this notation, multipli-

cation by i is represented by the matrix J =
( 0 −1

1 0

)

. We denote by φω the complex

vector
(

φω

0

)

, where φω is the real profile of the soliton with parameter ω. For simplic-

ity, we suppress the ω subscript, writing φ in place of φω.
For later reference, we now explicitly characterize the linearization of NLS about

a soliton solution. First, consider the linear evolution of the perturbation of a soliton
via the ansatz:

u = eJωt
( φω(x) + ρ(x, t)

)

(2.1)

with ρ =
(

ρRe
ρIm

)

. For the purposes of finding the linearized Hamiltonian at φω, we

do not need to allow the parameters θ and ω to modulate, but when we develop our
full system of equations in Sect. 3 parameter modulation will be taken into account.
Inserting (2.1) as an ansatz into (1.1) we know that since φ is a soliton solution we
have

J ( ρ)t + �( ρ) − ω ρ = −g
(

φ2) ρ − 2g′(φ2)φ2
(

ρRe

0

)

+ O
(

| ρ|2
)

. (2.2)

(This calculation is explained in more detailed at the start of Sect. 3.) Here, we have
used the following calculation of the nonlinear terms of the perturbation equation:

(

g
(

|φ + ρ|2
)

(φ + ρ) − g
(

|φ|2
)

φ
)

=
(

g
(

φ2 + 2φρRe + ρ2
Re + ρ2

Im

)

(φ + ρRe + iρIm) − g
(

φ2)φ
)

= g′(φ2)(ρ2
Re + 2φρRe + ρ2

Im

)

(φ + ρRe + iρIm)

+ 1

2
g′′(φ2)(ρ2

Re + 2φρRe + ρ2
Im

)2
(φ + ρRe + iρIm) + h.o.t.s. (2.3)

The linear terms will be absorbed into the linearized operator J Hω , while the
quadratic terms are handled explicitly; the O(ρ2) terms in the expansion of the equa-
tion around φω will be denoted by N(ω,ρ) in the sequel. In this work, after expansion
in powers of ρ, we drop all terms of order greater than two.

We are interested in studying the linearized equation:

∂t

(

ρRe

ρIm

)

= J H

(

ρRe

ρIm

)

+ h.o.t., (2.4)

where

H =
(

0 L−
−L+ 0

)

, (2.5)



J Nonlinear Sci (2010) 20: 425–461 433

L− = −� + ω − g(φω), (2.6)

L+ = −� + ω − g(φω) − 2g′(φ2
ω

)

φ2
ω. (2.7)

Definition 2.3 A Hamiltonian, H is called admissible if the following hold:

(1) There are no embedded eigenvalues in the essential spectrum,
(2) The only real eigenvalue in [−ω,ω] is 0,
(3) The values ±ω are nonresonant.

Definition 2.4 Let NLS be taken with nonlinearity g. We call g admissible if there
exists a minimal mass soliton, φmin, for NLS and the Hamiltonian, H, resulting from
linearization about φmin is admissible in terms of Definition 2.3.

The spectral properties assumed for the linearized Hamiltonian equation in order
to prove stability results are typically those from Definition 2.3; see (Buslaev and
Perelman 1995; Demanet and Schlag 2006; Schlag 2009; Rodnianski et al. 2003;
Krieger and Schlag 2006; Erdogan and Schlag 2006). However, we note that this
condition is a constraint used to control the dispersive estimates necessary for per-
turbative analysis in analytic results, though it is sometimes possible to numerically
solve this sort of problem even if Definition 2.3 does not hold; see, for example,
Buslaev and Grikurov (2001).

In this work, we must simply assume that g is an admissible nonlinearity so that
we may only concern ourselves with known discrete spectrum functions without cou-
pling to endpoint resonances or embedded eigenvalues. However, this assumption is
justified by the observed dynamics. Great care must be taken in studying the spec-
tral properties of a linearized operator; although admissibility is expected to hold
generically, certain algebraic conditions on the soliton structure itself factor into the
analysis, often requiring careful numerical computations. See Demanet and Schlag
(2006) as an introduction to such methods and the difficulties therein. To this end, in
the forthcoming work (Marzuola and Simpson 2010), two of the authors look at an-
alytic and computational methods for verifying these spectral conditions in the case
of sufficiently supercritical monomial nonlinearities, though as of yet are unable to
prove anything about saturated nonlinearities.

2.2 The Discrete Spectral Subspace

We approximate perturbations of the minimal mass soliton by projecting onto the
discrete spectral subspace of the linearized operator. Notationally, we refer to Pd

as the projection onto the finite dimensional discrete spectral subspace Dω of H 1

relative to H. Similarly, Pc represents projection onto the continuous spectral sub-
space for H. We now describe, in detail, the discrete spectral subspace at the minimal
mass.

Let ω∗ be the value of the soliton parameter at which the minimal mass soliton
occurs. It is proved in Comech and Pelinovsky (2003) (Lemma 3.8) that the discrete
spectral subspace Dω of H at ω∗ has real dimension 4. This results from the extra or-
thogonality at minimal mass, which gives a dimension 4 generalized kernel exhibited
by the following chain of equalities:
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L−φω∗ = 0,

L+(−φ′
ω∗) = φω∗ ,

L−α = −φ′
ω∗ ,

L+β = α.

The functions e1 =
( 0

φω

)

and e2 =
(

φ′
ω

0

)

are in the generalized kernel of H at every

ω. Clearly, e1 is purely imaginary and e2 is real. In addition to e1 and e2, at ω∗ there

are two more linearly independent elements of Dω, the purely imaginary e3 =
( 0

α

)

and the purely real e4 =
(

β

0

)

.

Applying Comech and Pelinovsky (2003) (Lemma 3.9), e3 and e4 can be extended
as continuous functions of ω in such a way that e3(ω) is purely imaginary, e4(ω) is
purely real. We write

e3(ω) =
(

0
α(ω)

)

and

e4(ω) =
(

β(ω)

0

)

,

with α and β real-valued functions. The linearized operator, restricted to this sub-
space, is

J H(ω)|Dω =

⎛

⎜

⎜

⎝

0 1 0 0
0 0 1 0
0 0 0 1
0 0 a(ω) 0

⎞

⎟

⎟

⎠

, (2.8)

where a(ω) is a differentiable function that is equal to 0 at ω∗.
Before proceeding to the derivation of the ODEs, it is helpful to make a minor

change of basis. Our goal is that, in the new basis, {̃e1, ̃e2, ̃e3, ̃e4}, 〈̃e1, ̃e3〉 = 0, which
will make it easier for us to compute the dual basis. Replace e3 by

̃e3 = e3 − 〈e1, e3〉
‖e1‖2

e1 =
[

0
α̃

]

.

To preserve the relationship e3 = JHωe4, we need to replace e4 by

̃e4 = e4 − 〈e1, e3〉
‖e1‖2

e2 =
[

β̃

0

]

.

To preserve the relationship JHωe3 = e2 + a(ω)e4, we replace e2 by

̃e2 =
(

1 + 〈e1, e3〉
‖e1‖2

)

e2 =
[

ẽ2

0

]

.
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To preserve JHωe2 = e1, we get that e1 must be replaced by

̃e1 =
(

1 + 〈e1, e3〉
‖e1‖2

)

e1 =
[

0
ẽ1

]

.

With these substitutions, the JHω matrix on Dω remains the same and we obtain the
relationship 〈̃e3, ̃e1〉 = 0. From here on, we will assume that we are working with this
modified basis and simply take ej := ̃ej for j = 1,2,3,4.

We will define ξi to be the dual basis to the revised ei within Dω. That is, the ξi

are defined by ξi ∈ Dω and

〈ξi, ej 〉 = δij .

If we make the change of basis described above, then we can compute the ξj as
follows. Define D = ‖e2‖2‖e4‖2 − 〈e2, e4〉2. Then:

ξ1 = 1

‖e1‖2
e1,

ξ2 = ‖e4‖2

D
e2 − 〈e2, e4〉

D
e4,

ξ3 = 1

‖e3‖2
e3,

ξ4 = −〈e2, e4〉
D

e2 + ‖e2‖2

D
e4.

As with the ej ’s,

ξj =
[

0
ξj

]

for j = 1,3 and

ξj =
[

ξj

0

]

for j = 2,4 to distinguish between vectors and their scalar components.

3 Derivation of the ODEs

To derive the ODEs, we start with a small spherically symmetric perturbation of
the minimal mass soliton, then project onto the discrete spectral subspace. Here, we
closely follow Comech and Pelinovsky (2003).

We begin with the following ansatz, which allows θ and ω to modulate:

u(t) = e(
∫ t

0 ω(t ′)dt ′+θ(t))J
( φω(t) + ρ(t)

)

. (3.1)

Here, we are suppressing the dependence of u, φ, and ρ on |x| for notational simplic-
ity. Recall we have assumed u to be spherically symmetric, so no other modulation
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parameters occur. Unlike in Comech and Pelinovsky (2003) we do not assume that
the rotation variable θ(t) is identically zero, so we need to include θ modulation in
our full ansatz. Note that the derivation which follows applies for all nonlinearities
in any dimension; specialization is required only to get explicit numerical results.
This model includes the full dynamical system for spherically symmetric data and
is designed in such a way that coupling to the continuous spectral subspace could
easily be reintroduced. The authors plan to analyze the effect of that coupling, which
is expected to be dissipative, in a future work.

Differentiating (3.1) with respect to t , we get

ut =
[

(ω + θ̇ )J ( φ + ρ) + ω̇ φ′ + ̇ρ
]

ei(
∫ t

0 ω(t ′)dt ′+θ(t)),

where for a time dependent function g(t) we represent differentiation with respect to
t by ∂tg = ġ and for an ω dependent function f (ω) we denote differentiation with
respect to the soliton parameter ω by ∂ωf = f ′. Plugging the above ansatz into (1.1)
and canceling the phase term yields

−(ω + θ̇ )( φ + ρ) + ω̇J φ′ + J ̇ρ + � φ + � ρ + g
(

|φ + ρ|2
)

( φ + ρ) = 0. (3.2)

Recall that since φ is a soliton solution, −ωφ + �φ + g(|φ|2)φ = 0, yielding

−θ̇ φ − (ω + θ̇ )( ρ) + ω̇J φ′ + J ̇ρ + � ρ + g
(

| φ + ρ|2
)

( φ + ρ) − g
(

φ2)φ = 0. (3.3)

We multiply by J , solve for ρ, and simplify. At the same time, we collect the � ρ
and −ω ρ terms with the linear portion of g(| φ + ρ|2)( φ + ρ)−g(φ2) φ, which yields
JHω as defined in (2.5). The remaining terms of the nonlinearity are at least quadratic
in ρ; recall that the quadratic terms are described in (2.3) and denoted N(ω,ρ).

Defining ρj (t) as the coefficient of ej (t) in ρ, we have

ρ =
[

ρRe

ρIm

]

= ρ1e1 + ρ2e2 + ρ3e3 + ρ4e4 + ρc.

Then the above calculations give us

̇ρ = JHω ρ − θ̇

(

0
φ

)

− θ̇J ρ − ω̇

(

φ′

0

)

+ N(ω, ρ). (3.4)

Taking the inner product of (3.4) with each of the ξi as defined in Sect. 2.2, and
applying (2.8) yields the following system:

〈ξ1, ̇ρ〉 = ρ2 − θ̇ − θ̇〈ξ1, J ρ〉 + 〈ξ1, N〉,
〈ξ2, ̇ρ〉 = ρ3 − ω̇ − θ̇〈ξ2, J ρ〉 + 〈ξ2, N〉,

(3.5)
〈ξ3, ̇ρ〉 = ρ4 − θ̇〈ξ3, J ρ〉 + 〈ξ3, N〉,
〈ξ4, ̇ρ〉 = a(ω)ρ3 − θ̇〈ξ4, J ρ〉 + 〈ξ4, N〉.

From this point forward in our approximation, we drop the ρc component as a higher
order error term. Using the product rule, we solve the left-hand side for ρ̇i and put the



J Nonlinear Sci (2010) 20: 425–461 437

extra terms from the derivative of the operator that projects onto the discrete spectral
subspace onto the right-hand side.

We have, as in Comech and Pelinovsky (2003), that

Pd ̇ρ =
∑

ej ρ̇j + ω̇
∑

eiΓijρj − ω̇PdP ′
d ρ,

where we have implicitly defined

Γij = 〈ξi, e
′
j 〉

and used that

Pd

d

dt
Pc ρ = −ω̇PdP ′

d ρ.

This gives

ρ̇1 + θ̇ = ρ2 − θ̇〈ξ1, J ρ〉 + 〈ξ1, N〉 + ω̇
(

〈ξ1,P
′
d ρ〉 −

∑

Γ1jρj

)

,

ρ̇2 + ω̇ = ρ3 − θ̇〈ξ2, J ρ〉 + 〈ξ2, N〉 + ω̇
(

〈ξ2,P
′
d ρ〉 −

∑

Γ2jρj

)

,

(3.6)
ρ̇3 = ρ4 − θ̇〈ξ3, J ρ〉 + 〈ξ3, N〉 + ω̇

(

〈ξ3,P
′
d ρ〉 −

∑

Γ3jρj

)

,

ρ̇4 = a(ω)ρ3 − θ̇〈ξ4, J ρ〉 + 〈ξ4, N〉 + ω̇
(

〈ξ4,P
′
d ρ〉 −

∑

Γ4jρj

)

.

There is also coupling to the continuous spectrum through terms such as 〈ξ1, J ρ〉
which we omit. This can be included in the error term and is not analyzed in our
finite dimensional system.

To make the system well determined, we must introduce two orthogonality condi-
tions. The first is 〈ρ, e2〉 = 0, and the second is 〈ρ, e1〉 = 0. These represent the choice
of ω(t) and θ(t) respectively that minimize the size of ρ, which yields ρ2 = ρ̇2 = 0,
and ρ1 = ρ̇1 = 0, respectively.

The reduced system is then:

θ̇ = −θ̇〈ξ1, J ρ〉 + 〈ξ1, N〉 + ω̇
(

〈ξ1,P
′
d ρ〉 −

∑

Γ1jρj

)

,

ω̇ = ρ3 − θ̇〈ξ2, J ρ〉 + 〈ξ2, N〉 + ω̇
(

〈ξ2,P
′
d ρ〉 −

∑

Γ2jρj

)

,

(3.7)
ρ̇3 = ρ4 − θ̇〈ξ3, J ρ〉 + 〈ξ3, N〉 + ω̇

(

〈ξ3,P
′
d ρ〉 −

∑

Γ3jρj

)

,

ρ̇4 = a(ω)ρ3 − θ̇〈ξ4, J ρ〉 + 〈ξ4, N〉 + ω̇
(

〈ξ4,P
′
d ρ〉 −

∑

Γ4jρj

)

.

In Comech and Pelinovsky (2003), the authors further reduce this system to prove
there is an initial nonlinear instability. (Note that they have a slightly different system
because they have assumed that θ ≡ 0.) We are interested in the dynamics on an in-
termediate time scale; thus, we retain quadratically nonlinear terms in our equations.
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Our notation is as follows. First, we have

〈ξ1, J ρ〉 = 〈ξ1, ρ2φ
′ + ρ4β〉 = ρ4〈ξ1, β〉,

since ρ2 = 0. Denote

c14 =
〈

ξ1
(

ω∗), β
(

ω∗)〉,

which is the lowest order term and the only one that will figure into our quadratic
expansion. Notice that this is a real inner product of functions that normally do not
appear in the same component of the complex vectors, because of the J in the equa-
tion.

Similarly, we have

〈ξ2, J ρ〉 = 〈ξ2,−ρ1φ − ρ3α〉 = −ρ3〈ξ2, α〉,

since ρ1 = 0. Denote

c23 =
〈

ξ2
(

ω∗), α
(

ω∗)〉,

which is again the highest order term.
Then we have

〈ξ3, J ρ〉 = 〈ξ3, ρ2φ
′ + ρ4β〉 = ρ4〈ξ3, β〉,

since ρ2 = 0. Denote

c34 =
〈

ξ3
(

ω∗), β
(

ω∗)〉.

Finally, we have

〈ξ4, J ρ〉 = 〈ξ4,−ρ1φ − ρ3α〉 = −ρ3〈ξ4, α〉,

since ρ1 = 0. Denote by

c43 =
〈

ξ4
(

ω∗), α
(

ω∗)〉.

We also write gij for the term Γij (ω) = 〈ξi, e′
j 〉 at ω = ω∗.

Next, consider the terms 〈ξj ,P
′
d ρ〉. These terms are the ej components of P ′

d ρ.
We have

PdP ′
d ρ = Pd

[

4
∑

j=1

〈ξ ′
j , ρ〉ej +

4
∑

j=1

〈ξj , ρ〉e′
j

]

=
4
∑

j=1

4
∑

k=3

〈ξ ′
j , ek〉ρkej + ρ3Pd e′

3 + ρ4Pd e′
4

=
4
∑

j=1

4
∑

k=3

〈ξ ′
j , ek〉ρkej + ρ3(Γ13e1 + Γ33e3) + ρ4(Γ24e2 + Γ44e4)

= 〈ξ ′
1, e3〉ρ3e1 + 〈ξ ′

2, e4〉ρ4e2 + 〈ξ ′
3, e3〉ρ3e3
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+ 〈ξ ′
4, e4〉ρ4e4ρ3(Γ13e1 + Γ33e3) + ρ4(Γ24e2 + Γ44e4)

=
(

〈ξ ′
1, e3〉 + Γ13

)

ρ3e1 +
(

〈ξ ′
2, e4〉 + Γ24

)

ρ4e2

+
(

〈ξ ′
3, e3〉 + Γ33

)

ρ3e3 +
(

〈ξ ′
4, e4〉 + Γ44

)

ρ4e4.

Therefore, the relevant nonzero terms are

〈ξ1,P
′
d ρ〉 =

(

〈ξ ′
1, e3〉 + Γ13

)

ρ3,

〈ξ2,P
′
d ρ〉 =

(

〈ξ ′
2, e4〉 + Γ24

)

ρ4.

We denote

p13 =
〈ξ ′

1

(

ω∗), e3
(

ω∗)〉,

p33 =
〈ξ ′

3

(

ω∗), e3
(

ω∗)〉,

and

p24 =
〈ξ ′

2

(

ω∗), e4
(

ω∗)〉,

p44 =
〈ξ ′

4

(

ω∗), e4
(

ω∗)〉.

Note that some cancellation will occur with the Γij terms that appear separately in
the system of ODEs, leaving only these pij terms in the finally system.

Finally, the terms 〈ξi, N(ω, ρ)〉 must be computed. We are only interested in the
quadratic terms, which according to (2.3) are

3Jg′(φ2)φρ2
Re + 2Jg′′(φ2)φ2ρ2

Re + Jg′(φ2)φρ2
Im + 2g′(φ2)φρReρIm. (3.8)

Recall that, since ρ1 and ρ2 are 0, the projection onto the discrete-spectrum of ρRe is
just ρ3e3 and the projection onto the discrete-spectrum of ρIm is just ρ4e4. We now
have to compute the lowest-order terms of

〈ξ1, N(ω, ρ)
〉

.

The multiplier of ρ2
3 in 〈ξ1, N(ω, ρ)〉 is

n133 =
〈

ξ1,
(

3g′(φ2)φ + 2g′′(φ2)φ2)e2
3

〉

.

Similarly, we define

n144 =
〈

ξ1, g
′(φ2)φe2

4

〉

,

n234 =
〈

ξ2,−2g′(φ2)φe3e4
〉

,

n333 =
〈

ξ3,
(

3g′(φ2)φ + 2g′′(φ2)φ2)e2
3

〉

,

n344 =
〈

ξ3, g
′(φ2)φe2

4

〉

,

n434 =
〈

ξ4,−2g′(φ2)φe3e4
〉

.
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Notice that, as in the computation of the cij , these are real inner products between
real functions that normally appear in different components of the complex vectors.

Lastly, we need to estimate a(ω). Recall that a(ω∗) = 0, and that a(ω) appears
in (3.7) multiplied by ρ3, so we are seeking only the linear term, a(ω) ∼ a0(ω −ω∗).
We calculate, as in Lemma 3.10 of Comech and Pelinovsky (2003),

a0 = a′(ω∗)= − 2

〈φω∗ , β〉
(

〈φ′
ω∗ , φ′

ω∗〉 − 〈φω∗ , φ′′
ω∗〉
)

.

With these assumptions, we conclude the following.

Proposition 3.1 The quadratic approximation for the evolution of a perturbation of

the minimal mass soliton, (3.3), ignoring coupling to the continuous spectrum, is

θ̇ = −c14θ̇ρ4 + n133ρ
2
3 + n144ρ

2
4 + ω̇p13ρ3,

ω̇ = ρ3 + c23θ̇ρ3 + n234ρ3ρ4 + ω̇p24ρ4,
(3.9)

ρ̇3 = ρ4 − c34θ̇ρ4 + n333ρ
2
3 + n344ρ

2
4 + ω̇p33ρ3,

ρ̇4 = a0
(

ω − ω∗)ρ3 + c43θ̇ρ3 + n434ρ3ρ4 + ω̇p44ρ4.

In this system, we implicitly assume that θ , (ω−ω∗), ρi and their time derivatives
are all of the same order.

4 Numerical Methods

From here on, we use numerical techniques to analyze solutions to (3.9). We will

work in one space dimension, with the specific saturated nonlinearity g(s) = s3

1+s2 as
described in the Introduction. In this setting, our assumption of spherical symmetry
on the initial data becomes an assumption that u0 is even. Though we have a com-
plete description of the generalized kernel of J H, including its size and the relation
among the elements, nothing is expressible in terms of elementary functions. As this
kernel determines the coefficients in our ODE system, we numerically compute it,
permitting us to subsequently integrate the ODEs numerically.

The sinc function, sin(πx)/(πx) was used to compute solitary wave solutions
when analytical expressions were not readily available in Lundin (1980). It has
also been used to study time dependent nonlinear wave equations (Al-Khaled 2001;
Revelli and Ridolfi 2003; Bellomo and Ridolfi 1995; Carlson et al. 1997), and a vari-
ety of linear and nonlinear boundary value problems (Bialecki 1989, 1991; El-Gamel
et al. 2003; El-Gamel and Zayed 2004; El-Gamel 2007; Mohsen and El-Gamel 2008).

We will use the sinc function to estimate the coefficients in three steps:

• Compute a discrete representation of the minimal mass soliton, φω∗ .
• Compute discrete representations of the generalized kernel of H, i.e., the deriva-

tives with respect to ω.
• Compute necessary inner products for the coefficients.
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4.1 Sinc Discretization

The problem of finding a soliton solution of (1.5) is a nonlinear boundary value prob-
lem posed on R. We respect this description in our discretization by approximating
functions with the sinc spectral method. This technique is thoroughly explained in
(Lund and Bowers 1992; Stenger 1993, 1981, 2000) and briefly in Appendix A.1. In
the sinc discretization, the problem remains posed on R and the boundary conditions,
that the solution vanish at ±∞, are naturally incorporated.

Given a function u(x): R → R, u is approximated using a superposition of shifted
and scaled sinc functions:

CM,N (u,h)(x) ≡
N
∑

k=−M

uk sinc

(

x − xk

h

)

=
N
∑

k=−M

ukS(k,h)(x), (4.1)

where xk = kh for k = −M, . . . ,N are the nodes and h > 0. There are three para-
meters in this discretization, h, M , and N , determining the number of and spacing of
lattice points. This is common to numerical methods posed on unbounded domains;
see Boyd (2001).

A useful and important feature of this spectral method is that, when evaluated at a
node,

CM,N (u,h)(xk) = uk. (4.2)

Additionally, the convergence is rapid both in practice and theoretically. See Theo-
rem A.1 in Appendix A.1 for a statement on optimal convergence.

Since the soliton is an even function, we may take N = M . We will thus write

CM(u,h)(x) ≡ CM,M(u,h)(x). (4.3)

The symmetry implies u−k = uk for k = −M, . . . ,M . We take advantage of this
constraint in our computations. In addition, we slave h to M in accordance with (A.8).

To compute a discrete sinc approximation of the ground state, we frame the soliton
equation as a nonlinear collocation problem. Approximating φ(x) as in (4.1), we seek
coefficients {Rk} such that

∂2
xCM(φ,h)(xk) − λCM(φ,h)(xk) + g

(∣

∣CM(φ,h)(xk)
∣

∣

2)
CM(φ,h)(xk) = 0,

for k = −M, . . . ,M. (4.4)

By satisfying (4.4), the discrete approximation solves the soliton equation in the
strong sense at the nodes, also known as collocation points. This is in contrast to
a Galerkin formulation, which solves the equation in the weak sense. However, for
the one-dimensional problem under consideration, sinc-Galerkin and sinc-collocation
lead to the same algebraic system.
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Equation (4.4) yields a system of nonlinear algebraic equations. Let φ be the col-
umn vector associated with the discrete approximation of φ:

CM(φ,h)(xk) �→ φ =

⎛

⎜

⎜

⎜

⎝

φ−M

φ−M+1
...

φM

⎞

⎟

⎟

⎟

⎠

. (4.5)

Differentiation of a sinc approximated function that is evaluated at the collocation
points corresponds to matrix multiplication:

∂2
xCM(φ,h)(xk) �→ D(2) φ. (4.6)

Explicitly, D(2) is

D
(2)
jk = d2

dx2
S(j,h)(x)|x=xk

=

⎧

⎨

⎩

1
h2

−π2

3 , j = k,

1
h2

−2(−1)k−j

(k−j)2 , j �= k.
(4.7)

Using (4.2),

g
(∣

∣CM(φ,h)(xk)
∣

∣

2)
CM(φ,h)(xk) = CM

(

g
(

|φ|2
)

φ,h
)

(xk) = g
(

|φk|
)2

φk .

Thus,

g
(∣

∣CM(φ,h)(xk)
∣

∣

2)
CM(φ,h)(xk) �→ g

(

| φ|2
) φ ≡

⎛

⎜

⎝

g(|φ−M |2)φ−M

...

g(|φM |2)φM

⎞

⎟

⎠
.

With these relations, the discrete system is

D(2) φ − ω φ + g
(

| φ|2
) φ = 0. (4.8)

It is this equation to which we apply a nonlinear solver, subject to an appropriate
guess. We discuss an important subtlety in Appendix A.2.

4.2 Computing the Minimal Mass

Now that we have an algorithm for finding a discrete representation of a soliton,
we seek to find the value of the soliton parameter for the one possessing minimal
mass, along with the corresponding discretized soliton. The sinc discretization has
the property that the L2(R) inner product is well approximated by

〈f,g〉 =
∫

fg dx ≈
M
∑

−M

hfkgk = h( f · g).
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Thus, the mass of the soliton can be estimated by

‖φ‖2
L2 ≈ h| φ|2.

Recognizing that φ = φ(ω), we seek to minimize the functional h| φ(ω)|2 with respect
to ω. The argument ω for which the minimum occurs will be ω∗. To find the minimal
mass, we take the derivative, getting a discrete representation of the minimal mass
orthogonality condition:

2h φ · φ′ = 0. (4.9)

We solve (4.9) to find ω∗, computing φω∗ in the process.
The value of ω∗ can be obtained by other algorithms. In the one-dimensional case,

the soliton equation possesses a first integral, permitting the minimal mass to be com-
puted by numerical quadrature and minimization; a comparison of our results and this
approach appears in Appendix A.4.1. Though these approaches are quite accurate for
the task of computing the minimal mass, they are inadequate at computing the gener-
alized kernel. Thus, we seek to solve the problem consistently by finding the minimal
mass for a given 2M + 1 dimensional approximation of the problem.

4.3 Discretized Generalized Kernel

As seen in Sect. 2.2, at the minimal mass soliton φω∗ , there are four functions asso-
ciated with the kernel satisfying the second order equations:

L−φω∗ = 0, (4.10)

L+(−φ′
ω∗) = φω∗ , (4.11)

L−α = −φ′
ω∗ , (4.12)

L+β = α. (4.13)

These four functions can also be discretized with sinc, as in (4.1). The operators, L±,
have discrete spectral representations:

L+ �→ L+ ≡ −D(2) + ωI − diag
{

g
( φ2

ω∗
)}

, (4.14)

L− �→ L− ≡ −D(2) + ωI − diag
{

g
( φ2

ω∗
)

− 2g′( φ2
ω∗
) φ2

ω∗
}

. (4.15)

Taking u = φ, we successively solve for φ′, α, and β . A singular value decomposition
must be used to get α since L− has a nontrivial kernel.

Furthermore, we compute discrete approximations of the derivatives of φ, φ′, α,
and β taken with respect to ω at ω∗. The relevant operators are formed analogously
to (4.14) and (4.15).

4.4 Convergence

Amongst the many calculations made, the most important is of ω∗, the parameter of
the minimal mass soliton. We summarize the results in Table 1. We see that h| φ|2



444 J Nonlinear Sci (2010) 20: 425–461

Table 1 The convergence of
the sinc discretization to the
minimal mass soliton

M h| φ|2 ω∗

20 3.820771417633398 0.177000229690401

40 3.821145471868853 0.177576993694258

60 3.821148930202135 0.177587655985074

80 3.821149018422933 0.177588043323139

100 3.821149022493814 0.177588063805561

200 3.821149022780618 0.177588065432740

300 3.821149022780439 0.177588065432795

400 3.821149022780896 0.177588065433095

500 3.821149022780275 0.177588065432928

robustly converges, achieving twelve digits of precision and ω∗ appears to achieve
eleven digits of precision. These are consistent with the values in Table 4 from Ap-
pendix A.4, where they were computed using different methods.

For the purposes of our simulations, we believe we have sufficient precision, ap-
proximately ten significant digits, for the time integration of our system of ODEs.
Some data for the convergence of the coefficients appearing in (3.9) is given in Ap-
pendix A.3.

5 Numerical Results

We explore here the dynamics of the finite dimensional system (3.9) and compare
with solutions for the full nonlinear PDE (1.1) with corresponding initial data.

To solve (3.9), we use the solver ode45 from MATLAB after properly preparing
the initial data using the soliton-finding codes in Sect. 4.1.

5.1 PDE Solver

In order to determine the accuracy of our results, we also use a nonlinear solver to
approximate the solutions with a perturbed minimal-mass soliton as initial data. For
this nonlinear solver, we use a finite element scheme in space and a Crank–Nicholson
scheme in time. This is similar to the method used in Holmer et al. (2007). In brief,
we discretize our (1.1) by method of lines, using finite elements in space and Crank–
Nicholson for time-stepping. This method is L2 conservative, though it is not energy
conserving. A similar scheme was implemented without potential in Akrivis et al.
(2003), where the blow-up for NLS in several dimensions was investigated.

We require the spatial grid to be large enough to ensure negligible interaction with
the boundary. As absorbing boundary conditions for cubic NLS currently require high
frequency limits to apply successfully, we choose simply to carefully ensure that our
grid is large enough in order for the interactions to be negligible throughout the ex-
periment. For the convergence of such methods without potentials, see the references
in Akrivis et al. (1991, 1997, 2003).
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We select a symmetric region about the origin, [−R,R], upon which we place a
mesh of N elements. The standard hat function basis is used in the Galerkin approxi-
mation. We allow for a finer grid in a neighborhood of length 1 centered at the origin
to better study the effects of the soliton interactions.

In terms of the hat basis, the PDE (1.1) becomes:

〈ut , v〉 + i〈ux, vx〉/2 − i
〈

g
(

|u|2
)

u,v
〉

= 0,

u(0, x) = u0, u(t, x) =
∑

v

cv(t)v,

where 〈·, ·〉 is the standard L2 inner product, v is a basis function, and u, u0 are linear
combinations of the v’s.

Since the v’s are hat functions, we have a tridiagonal linear system. Let ht > 0 be
a uniform time step, and let

un =
∑

v

cv(nht )v

be the approximate solution at the nth time step. Implementing Crank–Nicholson, the
system becomes:

〈un+1 − un, v〉 + iht

〈(

(un+1 + un)/2
)

x
, vx

〉

= iht

〈

g
(∣

∣

(

un+1 + un

)

/2
∣

∣

2)
(un+1 + un)/2, v

〉

, u0 =
∑

v

αvv.

By defining

yn = (un+1 + un)/2,

we have simplified our system to

〈yn, v〉 + i
ht

4

〈

(yn)x, vx

〉

= i
ht

2

〈

|yn|2yn, v
〉

+ 〈un, v〉.

An iteration method from Akrivis et al. (2003) is now used to solve this nonlinear
system of equations. Namely, we set

〈

yk+1
n , v

〉

+ i
ht

4

〈(

yk+1
n

)

x
, vx

〉

= i
ht

2

〈∣

∣yk
n

∣

∣

2
yk
n, v
〉

+ 〈un, v〉.

We take y0
n = un and perform three iterations in order to obtain an approximate solu-

tion.
For our problem, we have taken (1.1) with the nonlinearity

|u|6
1 + |u|4 u.

Then, the minimal mass soliton occurs at

ω∗ = 0.177588065433.
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5.2 Results

With the numerical schemes outlined above, we then compare our finite dimen-
sional model to the numerically integrated solution with appropriate initial data
ω0 = ω(0) < ω∗, α0 = ρ3(0), β0 = ρ4(0), and θ0 = θ(0) = 0 for simplicity. In
Figs. 3, 4, 5, we take β0 > 0 and vary α0, ω0. Similarly, in Figs. 6, 7, 8, we take
β0 < 0 and once again vary α0, ω0. Note that we are comparing solutions to the ODEs
to solutions of (1.1) with the correct initial parameters so that the initial profiles are
identical. The initial data for both the finite and infinite dimensional solvers always
consists of an orbitally unstable soliton being perturbed by elements of the general-
ized kernel of the linearized operator H at ω∗. Also, all the numerics we present are
given in terms of plotting |u(t,0)|, the amplitude of the solution at 0, versus time t .
The computed correlation between the amplitude of a soliton φω at 0 and the soliton
parameter ω can be seen in Fig. 2.

When β0 > 0, the initial data is expected to allow the admission of a solution with
a soliton component as t increases. The finite dimensional system shows that if we
initially perturb the system either toward the stable or the unstable side of the curve,
the system produces immediate oscillations. Specifically, if the dynamics begin to
diverge, the higher order nonlinear corrections in (3.9) arrest the solution, resulting
in fairly uniform oscillations about the minimal mass soliton; see Figs. 3, 4, 5. As one
can see, for initial values ω0 ≈ ω∗, we see a good fit for several oscillations of our
finite dimensional approximation to the dynamics of the full solution. As expected,
this weakens as ω0 diverges from ω∗ due to the nature of our approximations in

Fig. 2 A plot of the maximum amplitude with respect to the L2 norm for a saturated nonlinear
Schrödinger equation. Computed at M + 1 = 101 collocation points for ω ∈ [0.01,1.5]
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Fig. 3 A plot of the solution to the system of ODE’s as well as the full solution to (1.1) derived for
solutions near the minimal soliton for ρ3(0) > 0 and ρ3(0) < 0, ρ4(0) > 0 for ω0 = 0.177588, N = 1000
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Fig. 4 A plot of the solution to the system of ODE’s as well as the full solution to (1.1) derived for
solutions near the minimal soliton for ρ3(0) > 0 and ρ3(0) < 0, ρ4(0) > 0 for ω0 = 0.17, N = 500
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Fig. 5 A plot of the solution to the system of ODE’s as well as the full solution to (1.1) derived for
solutions near the minimal soliton for α0 = ρ3(0) > 0 and α0 = ρ3(0) < 0, β0 = ρ4(0) > 0 for ω0 = 0.15,
N = 500
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Sect. 3. We conjecture that such oscillations about the minimal mass when coupled
to the continuous spectrum will lead generically to a damped convergence of the
solution towards a stable soliton near the minimal mass soliton on a long time scale,
similar to the oscillations observed in LeMesurier et al. (1988).

For β0 < 0, and other initial parameters sufficiently small, the initial data is be-
low the minimal mass and is expected to disperse as t → ∞. In this regime, we see
the amplitude fall below the value associated with the minimal mass soliton, forcing
ω(t) < ω∗, the minimal mass value. Thus, we are on the unstable branch of the soli-
ton curve. Clearly, conservation of mass for (1.1) forbids the primitive system from
indefinitely behaving as a perturbed soliton with a progressively smaller value of ω.
Indeed, we see divergence of the nonlinear solution from our solution as t increases.
As our approximation is based on an expansion about ω∗, the deviation eventually
renders it invalid.

However, on shorter time scales, there is reasonable agreement between the full
solution and our finite dimensional approximation; see Figs. 6, 7, 8. This occurs re-
gardless of whether we initially perturb in the stable or unstable direction. Our find-
ings confirm the regimes predicted in Pelinovsky et al. (1996).

It remains to briefly comment on the convergence of our numerical methods. The
ODE solver, ode45, for the finite dimensional system of ODEs is a standard Runge–
Kutta method with known strong convergence results documented in a number of
introductory texts on numerical methods. In addition, the finite element solver for the
full nonlinear problem has well-established analytic convergence results; see Akrivis
et al. (1991). Hence, the solutions for the corresponding systems are known to be
accurate representations of the actual continuous solutions. Though we have not fully
justified in this work the spectral decomposition used to derive (3.9), the fact that
the infinite dimensional dynamics are so well approximated by the finite dimensional
system constructed from these spectral assumptions is quite good evidence that this
approximation is a valid one. However, as mentioned in Sect. 2.1, investigating the
validity of spectral assumptions will be an important topic of future research.

6 Conclusions and Discussion of Future Work

In this work, we have used a sinc discretization method to compute the coefficients
of the dynamical system (3.9), which is valid near the minimal mass soliton for a
saturated nonlinear Schrödinger equation. We find that the dynamical system is an
accurate approximation to the full nonlinear solution in a neighborhood of the min-
imal mass. Moreover, we see that there are two distinct regimes of the dynamical
system.

The first regime given by ρ4(0) > 0 represents oscillation along the soliton curve.
The finite dimensional oscillations are valid solutions on long time scales in the con-
servative PDE, hence we may observe long time closeness of our finite dimensional
approximation to the full solution of (1.1).

The second regime given by ρ4(0) < 0 is the dispersive regime, which results in
motion along the unstable branch of the soliton curve. Indeed, a perturbation of this
type reduces the mass, which near the minimal mass should lead to dispersion in
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Fig. 6 A plot of the solution to the system of ODE’s as well as the full solution to (1.1) derived for solu-
tions near the minimal soliton for α0 = ρ3(0) > 0 and α0 = ρ3(0) < 0, β0 = ρ4(0) < 0 for ω0 = 0.177588,
N = 1000
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Fig. 7 A plot of the solution to the system of ODE’s as well as the full solution to (1.1) derived for
solutions near the minimal soliton for α0 = ρ3(0) > 0 and α0 = ρ3(0) < 0, β0 = ρ4(0) < 0 for ω0 = 0.17,
N = 500
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Fig. 8 A plot of the solution to the system of ODE’s as well as the full solution to (1.1) derived for
solutions near the minimal soliton for α0 = ρ3(0) > 0 and α0 = ρ3(0) < 0, β0 = ρ4(0) < 0 for ω0 = 0.15,
N = 500
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the primitive system. Obviously, we eventually leave the regime of validity for our
approximation. But it is notable that on the shorter time scales, our system captures
some aspect of the full dynamics.

We cannot numerically verify our conjecture that soliton-preserving perturbations
of unstable solitons dynamically select stable solitons. However, when we begin with
perturbations that are expected to continue to have a soliton component, we see os-
cillations about the minimal mass; this strongly suggests that, through coupling to
the continuous spectrum, the oscillations will damp toward a near-minimal-mass sta-
ble soliton. This would be quite satisfying from a physical perspective as the system
would be moving toward the configuration of lowest energy in some sense.

Our ultimate objective is to rigorously characterize the stability properties of the
minimal mass soliton. We conjecture that perturbations giving rise to oscillatory dy-
namics in the finite dimensional system will, in the primitive equation, transition to
a stable soliton. Excess mass will be lost by radiation damping. Likely, using current
techniques this analysis can only be truly done in a perturbative setting, though we
also conjecture that initial conditions near strongly unstable solitons should exhibit
similar behavior. Hopefully, more powerful techniques will eventually be developed
for the global study of the stable soliton curve as an attractor of the full nonlinear
dynamics.
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Appendix A: Details of Numerical Methods

A.1 Sinc Approximation

Here, we briefly review sinc and its properties. The texts (Lund and Bowers 1992;
Stenger 1993) and the articles (Stenger 1981, 2000; Bellomo 1997) provide an ex-
cellent overview. As noted, sinc collocation and Galerkin schemes have been used to
solve a variety of partial differential equations.

Recall the definition of sinc,

sinc(z) ≡

⎧

⎨

⎩

sin(πz)
πz

, if z �= 0,

1, if z = 0,
(A.1)

and for any k ∈ Z, h > 0, let

S(k,h)(x) = sinc

(

x − kh

h

)

. (A.2)
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The sinc function can be used to exactly represent functions in the Paley–Wiener
class. We spectrally represent functions with sinc in a weaker function space. First,
we define a strip in the complex plane,

Dd =
{

z ∈ C | |Im z| < d
}

. (A.3)

We work in the following function space.

Definition A.1 Bp(Dd) is the set of analytic functions on Dd satisfying:

∥

∥f (t + i·)
∥

∥

L1(−d,d)
= O

(

|t |a
)

, as t → ±∞, with a ∈ [0,1), (A.4a)

lim
y→d−

∥

∥f (· + iy)
∥

∥

Lp + lim
y→d−

∥

∥f (· − iy)
∥

∥

Lp < ∞. (A.4b)

Then we have the following theorem.

Theorem A.1 (Theorem 2.16 of Lund and Bowers 1992) Assume f ∈ Bp(Dd), p =
1 or 2, and f satisfies the decay estimate

∣

∣f (x)
∣

∣≤ Ce−α|x|. (A.5)

If h is selected such that

h =
√

πd/(αM) ≤ min{πd,π/
√

2}, (A.6)

then
∥

∥∂n
x f − ∂n

x CM(f,h)
∥

∥

L∞ ≤ CM(n+1)/2e((−
√

πdαM)).

d identifies a strip in the complex plane, of width 2d , about the real axis in which
f is analytic. An appropriate choice of this parameter may not be obvious; others
have found d = π/2 sufficient.

For the NLS equation of order 2σ + 1,

dNLS = π√
2ωσ

.

Saturated NLS “interpolates” between second and seventh order NLS. We thus reason
that it is fair to take d = π/

√
6ω. Though we do not prove that the soliton and the

associated elements of the kernel lie in these Bp(Dd) spaces or satisfy the hypotheses
of Theorem A.1, we use (A.6) to guide our selection of an optimal h. Since the soliton
has α = √

ω, we reason that it should be acceptable to take

h =
√

πd

αM
=
√

π2

6ωM
. (A.7)

(A.7) is dependent on both M and ω. Were we to use (A.7) as is, it would complicate
approximating, amongst other things, the derivative with respect to ω of the soliton.
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To avoid this, we use a priori estimates on ω∗, given in Appendix A.4.1. Since we
know that ω∗ ∼ 0.18 < 0.25, it is sufficient to take

d = π
√

2/3.

Likewise, since ω∗ > 0.1, we may take

α =
√

1/10.

Thus, instead of (A.7), we use

h = π

√√
20/3

M
. (A.8)

We conjecture that this is a valid grid spacing for all ω ∈ (0.1,0.25); our computa-
tions are consistent with this assumption.

A.2 Numerical Continuation

As discussed in Sect. 4.1, the discrete system approximating (1.5) is

F( φ) = D(2) φ − ω φ + g( φ) φ = 0. (A.9)

The multiplication in g( φ) φ is performed elementwise. In order to solve this discrete
system, we need a good starting point for our nonlinear solver. We produce this guess
by numerical continuation.

Define the function

ĝ(x; τ) = x3

1 + τx2
.

Note that ĝ(x,0) is 7th order NLS and ĝ(x,1) = g(x), saturated NLS. We now solve

G( φ; τ) = D(2) φ − λ φ + ĝ( φ; τ) φ = 0. (A.10)

At τ = 0, the analytic NLS soliton serves as the initial guess for computing φτ=0.
φτ=0 is then the initial guess for solving (A.10) at τ = �τ . We iterate in τ until we
reach τ = 1. This is numerical continuation in the artificial parameter τ , (Allgower
and Georg 1990). This process succeeds with relatively few steps of �τ ; in fact only
O(10) steps are required.

A.3 Convergence Data

Table 2 offers some examples of the robust and rapid convergence seen in the coef-
ficients of (3.9). These values are all computed at the minimal mass soliton; also see
Table 1.
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Table 2 The convergence of several coefficients for the ODE system, computed at ω∗

M a0 c14 p13 n133

20 −0.54851448504 6.04829942099 −6.04829942099 8.79376331231

40 −0.553577138662 6.12521927361 −6.12521927361 8.81625889017

60 −0.553555163933 6.12811479039 −6.12811479039 8.81709463059

80 −0.553550441653 6.12827391288 −6.12827391288 8.81713847275

100 −0.553549989603 6.12828576495 −6.12828576495 8.81714173314

200 −0.553549934797 6.12828700415 −6.12828700415 8.81714206225

300 −0.553549934793 6.12828700423 −6.12828700423 8.81714206227

400 −0.553549934795 6.12828700421 −6.12828700421 8.81714206223

500 −0.553549934794 6.12828700423 −6.12828700423 8.81714206227

Table 3 The value of the
coefficients in (3.9) computed
with M = 200

Coefficient Value

g33 −6.61999411752

g44 −12.4582451458

c14 6.12828700415

c23 1.46358108488

c34 4.0422919871

c43 0.131304385722

p13 −6.12828700415

p24 −17.9305799071

p33 6.61999411752

p44 12.4582451458

n133 8.81714206225

n144 1.84068246508

n234 1.45559877602

n333 −0.792198288158

n344 0.013887281387

n434 −0.0822482271619

a0 −0.553549934797

A.4 Comparisons with Other Methods

We can benchmark our sinc algorithm against several other methods. Available al-
gorithms include numerical quadrature along with more recent approaches such
as spectral renormalization, also called the Petviashvili method (Petviashvili 1976;
Ablowitz and Musslimani 2005; Lakoba and Yang 2007), the imaginary time method
(Bao and Du 2004; Yang and Lakoba 2008), and the squared operator method (Yang
and Lakoba 2007).
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A.4.1 Quadrature Methods

The soliton equation may be integrated once to get

1

2
(∂xφ)2 − 1

2
λφ2 + 1

4

[

φ4 − log
(

1 + φ4)]= 0. (A.11)

Equation (A.11) yields an implicit algebraic expression for the amplitude, φ(0),

−1

2
λφ(0)2 + 1

4

[

φ(0)4 − log
(

1 + φ(0)4)]= 0. (A.12)

Using (A.11) and (A.12), we can express the mass as

‖φ‖2
L2 =

∫ ∞

−∞
φ(x)2 dx = 2

∫ ∞

0
φ(x)2 dx

= 2

∫ φ(0)

0
ρ2
{

λρ2 − 1

2

[

ρ4 − log
(

1 + ρ4)]
}−1/2

dρ.

Thus, the mass of the soliton with parameter ω is

‖φω‖2
L2 = 2

∫ φ(0;ω)

0
ρ2
{

ωρ2 − 1

2

[

ρ4 − log
(

1 + ρ4)]
}−1/2

dρ. (A.13)

Equations (A.12) and (A.13) can be used to approximate ω∗ by numerically minimiz-
ing (A.13). To compute the amplitude of the soliton, we solve (A.12) using Brent’s
method with a tolerance of 1.0e–14. We use the singular integral integrator QAGS
from QUADPACK, which for this problem is, unfortunately, limited to a relative er-
ror of 5.0e–12 and an absolute error of 1.0e–15. Trying different routines from the
optimization module of SciPy, (Jones et al. 2001), we summarize our results in Ta-
ble 4, which contains data from our sinc computations. There is a spread of O(1e–12)
amongst the computed minimal masses and a spread of O(1e–7) amongst the ω∗.
These differences are consistent with the prescribed relative error of the quadrature,

Table 4 The soliton parameter and mass of the minimal mass soliton computed by several methods,
including both quadrature and spectral renormalization. Also included is some of the data for the sinc
method which appeared in Table 1

Algorithm ω∗ ∫

|φ|2 dx

fminbound 0.177588368745261 3.821149022780204

Brent 0.177587963826864 3.821149022778472

golden 0.177587925853761 3.821149022776717

Spec. Re. 0.177588064106709 3.821149022780361

sinc with M = 100 0.177588063805561 3.821149022493814

sinc with M = 200 0.177588065432740 3.821149022780618

sinc with M = 400 0.177588065433095 3.821149022780896
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suggesting the precision of this approach to computing the minimal mass and asso-
ciated ω is limited by the quadrature algorithm. Note that we do not compute the
solitary wave with this technique; we merely identify the minimal mass soliton para-
meter and the mass of that soliton.

A.4.2 Spectral Renormalization Methods

A Fourier transform may be applied to the soliton equation to get

φ̂ω(k) = F (g(φ2
ω)φω)(k)

k2 + ω
(A.14)

where k is the wave number. Let us introduce variable w(x), with φω(x) =
θw(x),where θ is an unknown, nonzero, constant. Introducing this into (A.14), we
have

ŵ(k) = F (g(θ2w2)w)(k)

k2 + ω
≡ Qθ [ŵ](k). (A.15)

Multiplying (A.15) by ŵ(k)∗, the complex conjugate, and integrating over all k, we
compute

G(θ; ŵ) ≡
∫

∣

∣ŵ(k)
∣

∣

2
dk −

∫

ŵ(k)∗Qθ [ŵ](k)dk = 0. (A.16)

This may be interpreted as a constraint on θ . This motivates the iteration described
in Ablowitz and Musslimani (2005). Suppose we know wm(x) and θm, a pair of
approximations of the true values. To get the next approximation, we compute

ŵm+1(k) = Qθm [ŵm](k) (A.17)

and then solve

G(θ; ŵm+1) = 0 (A.18)

for θm+1. We repeat this until the sequence {wm} satisfies our convergence crite-
ria. From this, we then recover φω. The advantage of this method is that one can
use the fast Fourier transform. Using spectral renormalization, we then minimize
the approximate mass numerically. This is readily implemented in MATLAB, us-
ing fzero to solve (A.18) for a given value of ω and fminbnd to find the min-
imal mass value of ω. We iterate in w until either ‖wm+1 − wm‖ℓ2 < Abs. Tol. or
‖wm+1 − wm‖ℓ2/‖wm+1‖ℓ2 < Rel. Tol. This is performed with a relative and ab-
solute tolerances of 1e–15 in the spectral renormalization component, and a tolerance
of 1e–15 in both fminbnd and fzero. Our spatial domain is [−200,200) with 212

grid points. As seen in Table 4, this is in good agreement with both the sinc method
and the quadrature method.
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