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A SYSTEM SUPPORTING THE EVALUATION OF THE OPERATIONAL
EFFECTIVENESS OF NAVAL TASKS BASED ON AGENT SIMULATION∗
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Abstract. This paper considers a system for supporting the multi-dimensional analysis of alternative configurations of military
naval units, which is currently the object of a research and development project between Orizzonti Sistemi Navali, an Italian ship
design company, and the University of Genova (Italy). The project aims at providing a decision making aid in the early phase of the
vessels’ design. In particular, the agent-based simulation framework included in such a system is presented and its characteristics are
compared with a set of four existing frameworks, i.e, MANA, NetLogo, Stage and MASON. Agent-based simulation is specifically
exploited in the early design phase for the evaluation of the vessel efficiency in a set of reference naval tasks. The comparison
is performed considering a common reference scenario and a set of qualitative and quantitative key performance indicators. The
results obtained show both the effectiveness and efficiency of the proposed agent-based simulation environment for the considered
application case.
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1. Introduction. During the early design phase of military naval vessels, it is of fundamental importance
being able to evaluate their operational effectiveness with respect to the set of the main naval tasks in which
such vessels will be engaged. This capability, indeed, allows to consider the possible different alternative design
configurations from a multi-dimensional standpoint, associating with each of them aMeasure of the Effectiveness

(MOE) of a specifically configured vessel in the main scenarios in which it is intended to operate, besides a
number of key performance indicators as, for example, the cost.

This kind of analysis is investigated in a research project currently carried on in collaboration with Orizzonte
Sistem Navali (OSN), an Italian company with great experience in total naval ship design and integrated support
services. The project aims at supporting the design of naval vessels through the development of a system,
denoted as Operational Evaluator Model (OEM), providing the evaluation of the operational effectiveness of
particular ship configurations for a set of specified operating scenarios [1] [2]. This paper presents the main
characteristics of such an operational evaluation support system, specifically focusing on the new simulation
framework included in the OEM.

In general, simulation can significantly improve the design phase of naval units and specifically, in the
considered context, Agent-Based Simulation (ABS) can play a fundamental role [3] [4] [5] [6] [7]. Therefore, one
of the aims of the project consists in exploiting ABS in order to support the naval designers in their exploration
of the space of alternative solutions and in the identification of a suitable ship configuration able to satisfy the
customer requirements with good performance in terms of both operational effectiveness and costs. It must
be underlined that, in the context of this project, the purpose of simulation is neither that of supporting the
operational decisions of the commander, nor that of evaluating the effectiveness of operational tactics; differently,
here simulation is used to provide ship designers and stakeholders with insights on what could be the expected
behaviour of a vessel configured to satisfy certain requirements (e.g., maximum speed, presence of a helicopter
on board, kinds of weapons). This means that the simulation specifically focuses on the ship configuration,
whereas other aspects that in a real scenario may influence the performance of an operational vessel, such as,
the meteo conditions or human factor as the commander skill, are considered fixed or not explicitly modelled.

This paper first presents in Section 2 the architecture and main functionalities of the OEM, as well as the
characteristics of the developed ABS framework. In order to compare such framework with other existing ABS
environments, a case study is introduced in Section 3 consisting in the so-called Anti-surface Warfare (ASuW).
In particular, such a scenario assumes a set of patrol vessels in charge of protecting a strategic facility, e.g., a
port located in a gulf, from the possible attack of small fast boats. Note that, in the last years, this scenario
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has been usually associated with the defence from terrorist attacks. The patrol vessels use the radar to detect
the threats and their actions are coordinated by a command centre on land; the patrol vessels have missiles and
a gun to defend themselves from the missiles launched by the small fast boats, and their mission is considered
successful if they are able to neutralize all the threats before these latter reach the facility. In Section 4 the
implementation of this scenario with the new ABS Framework (in the following denoted as ABSF) included
in the OEM is illustrated. In addition, in Section 5 a set of performance indicators are defined to facilitate
the comparison of the different simulation environments. Such indicators assign to each of the considered
frameworks a rating providing a qualitative or quantitative evaluation, having applied each environment to the
same reference naval operational scenario.

The different simulation environments considered in the analysis presented in Section 6 of this paper are
the followings:

• MANA (Map Aware Non-uniform Automata), developed by the Operational Analysis Section of the
New Zealand Defense Technology Agency (DTA), is released for academic research purposes; the tool
is used in a number of studies, such as the management of urban warfare, maritime surveillance and
coastal patrol [8].

• NetLogo, developed at the Center for Connected Learning (CCL) of the Northwestern University (USA)
by Uri Wilensky, is an open source visual environment that is particularly suitable for the analysis of
complex natural and social phenomena, as well as military tasks. NetLogo provides a simple program-
ming language in order to characterize the behavior of the agents and to specify the evolution of the
simulation, and it is equipped with a graphics viewer that allows the users to visualize the evolution of
the simulation and to interact with the agents [9].

• Stage, developed by Presagis Inc., is a commercial visual environment that allows to develop models of
very complex war scenarios in terms of the involved platforms (avionics, naval, land, etc.) as it includes
highly accurate models of sensors (radar, sonar, Missile Warning Set, etc.) and weapons (missiles, guns,
etc.) [10].

• MASON, developed at Evolutionary Computation Laboratory of the George Mason University, is an
open source function library developed in Java. MASON is designed to serve as the basis for a wide range
of multi-agent simulation tasks, ranging from swarm robotics to machine learning to social complexity
environments [11, 12, 13].

A previous version of the comparative analysis of the first three different ABS environments is provided
in [14], where a number of limitations of such environments pointed out the need for a new ABS framework for
the operational evaluation of military naval tasks. In this paper such an analysis is extended with the inclusion
of MASON. It must be observed that NetLogo and MASON are general purpose environments, whereas MANA
and Stage have been specifically designed for the simulation of military scenarios. As revealed by the comparative
analysis, only NetLogo and MASON appear suitable for appropriate modelling the chosen reference scenario.
Therefore, in Section 7 the statistical equivalence of the simulation models implemented using ABSF, NetLogo
and MASON is demonstrated. Even if MASON tool overcomes most of the limitations highlighted in [14], in
Section 8 the higher quality of the new ABS framework here proposed is confirmed. Finally, Section 9 reports
some concluding remarks.

2. The OEM architecture and functionalities. The Operational Evaluation Model (OEM) is a de-
cision support system aiming at the multi-dimensional analysis of alternative ship design configurations, in
particular, with the capability of estimating the effectiveness of the considered vessel in a set of operational
scenarios, and of taking it into account in the overall evaluation. OEM has been developed in the programming
language C# and it includes in an integrated environment a framework for ABS modelling and simulating mil-
itary naval scenarios. The overall architecture of such a support system is shown in Fig. 2.1. The environment
is composed by five main modules: Model Definer, Experiment Designer, Model Simulator, Data Analyser and
Decision Support System. The Data Analyser and the Decision Support System modules are not yet imple-
mented in the current version of OEM, but they will be the object of the next developments of the project. The
following of this section provides a description of each module.

2.1. Model Definer. The Model Definer (MD) is a visual development tool that allows the definition
of simulation models by exploiting an UML-like formalism. In particular, through MD a user, the Simulation
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Fig. 2.1. The overall architecture of the Operational Evaluation Model.

Modeler in Fig. 2.1, can specify an ABS model by means of the following three types of diagrams:

• class-diagram, used to define both entities, i.e., the prototypes of the agents that can be included in
the simulation models, and the set of messages that such agents can generate during the simulations;
the user can define a new agent prototype by specifying:

– the Unique name for the prototype;
– the Attributes that represent the knowledge of the entity (e.g., the maximum speed for a naval

unit);
– the States that represent the operating modes of the entity (e.g., possible states for a naval unit

could be Idle, Patrolling, Following and so on);
– the Message traps that determine the behaviours to be activated when receiving messages;
– the Behaviours corresponding to a set of activity-diagrams associated with the various states and

Message traps;
• object-diagram, used to specify the instances of the agents deriving them from the available entities (e.g.,
having defined a Naval Unit entity, instances of agents as Unit1 or Unit2 with specific characteristics
can be derived). To define a new instance of an agent the modeler user must specify:

– the Unique name for the agent;
– the Values for the Attributes included in the referenced agent prototype;

• activity-diagram, used to define the behaviour of the agents. An activity diagram consists in the
sequence of actions that an agent must perform when it is in a specific state or when it receives a
specific message. The ABSF included in the OEM provides a library of generic blocks (e.g., Change
state or Send message) and a library of naval blocks for ship simulations (e.g., Get radar detected agents

or Follow route).

The kind of agent model that the ABSF allows to define is quite general; different classes of agents (e.g., reactive,
goal driven or belief-intention-desire agents) can be specified with the above mentioned model elements, provided
that an appropriate set of building blocks is used to generate the agents’ behaviour. MD generates an output
file that can be successively translated in a C# source program and then compiled. In this way the activity
of designing and implementing a simulation model is greatly simplified without worsening the computational
efficiency of the executable simulation code finally generated.

2.2. Experiment Designer. The Experiment Designer (ED) is a visual tool for the definition of simula-
tion campaigns. In particular, it allows to specify the set of scenario configurations to be tested by exploiting
some Design Of Experiments algorithms [15] (e.g, Full Factorial or Nearly Orthogonal Latin Hypercube [16]).
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2.3. Model simulator. The Model Simulator (MS) is the core of the environment as it allows the syn-
chronous evolution of the agent behaviours. MS has two different use modes:

• graphic mode – the real-time evolution of the simulation is graphically visualized in a window so that
the user can observe and validate the behaviour of different agents. The window also includes controls
for slowing down or speeding up the simulation, for suspending or resuming it, as well as zooming the
graphic simulation area. A log including the fundamental simulation events occurred is also provided;

• batch mode – this mode allows to compress the time required to simulate the single experiments not
providing any graphical representation of the simulation. The interface requires the specification of a
configuration input file, in order to execute multiple experiments for a large number of the ship con-
figurations, and the number of repetitions for each configuration needed to obtain a suitable statistical
relevance.

2.4. Data Analyser. The Data Analyser (DA) is the module devoted to execute the statistical analysis
of the results collected through the batch simulation mode with the purpose of generating a proper surrogate
model. The surrogate model is an analytic function, e.g., a polynomials or a neural network, that returns a
value of a MOE as a function of the values of a set of input parameters. The generic structure of the surrogate
model is:

MOE = f(p1, ...., pn) (2.1)

where n is the number of parameters. An example of polynomial surrogate model (without cross-parameters)
of the m-th order with n parameters is:

f = a11p1 + a21p2 + ....+ an1pn + a12p
2

1 + a22p2
2 + ....+ an2p

2

n+

+......+ a1mpm1 + a2mpm2 + ....+ anmpmn
(2.2)

where a11, ..., anm are the unknown coefficients.
To estimate the unknown coefficients, DA implements a set of algorithms e.g. Ordinary Least Squares for

polynomial structures and Back Propagation for neural network structures.

2.5. Decision Support System. The Decision Support System (DSS) module provides a set of tools
for multi-criteria decision support in order to perform the analysis of the alternative design configurations for
a naval unit. DSS references the list of admissible ships (i.e., corresponding to design configurations that can
actually be developed) contained in a Ship Database, and it is able to provide a 3D graphic representation of the
vessel corresponding to a selected configuration by invoking an appropriate external 3D visualization module.
DSS provides users with a tool for the multi-dimensional comparison of the alternatives, in particular the Pareto-
optimal ones, in order to support the selection of the most suitable one for the stakeholders’ requirements.

2.6. Graphic User Interface. The first four modules (i.e,. MD, ED, MS, DA) share an unified Graphic
User Interface (GUI) that allows the user to define a simulation model, specify the campaign of experiments,
simulate the model, validate the simulation outcomes and generate an appropriate surrogate model. Such model
is then provided as input to the DSS module that will be equipped with a separate GUI, denoted as Dashboard,
that will be developed in the next prosecution of the OEM project. The users of the unified GUI should be
expert in the naval domain, i.e., they should know the the details of the tasks to be modelled and simulated.
Differently, the Dashboard users play the role of the Ship Designer, that is, they are responsible of selecting one
or more vessel configurations that will be considered for the following steps of the new naval unit development.

Fig. 2.2 and Fig. 2.3 illustrate two views of the unified GUI associated with the ED and MS modules. Fig. 2.2
shows the design parameters tab where the user can specify DOE factors, random or constants parameters. In
case of DOE factors and random parameters upper and lower limits must be set and the kind of method for
the generation of the experimental campaign must be chosen (e.g., full factorial or NOLH). Fig. 2.3 shows the
simulation view tab where the user can select the type of simulation (batch or graphic), and the simulation
input parameters. For example, in case of graphic simulation the user must specify the configuration number
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Fig. 2.2. The design parameter tab of the ED module.

to simulate, the simulation speed and the dimension of the simulated area (note that the possible geographic
coordinates are defined as scenario parameters). The interface allows to change the simulation speed during its
execution, as well as pausing or stopping the run.

3. The Anti-Surface Warfare Scenario. In this section the main features of the ASuW scenario used
as reference for the ABS framework comparison is introduced (for reader’s convenience, the list of the acronyms
used for this scenario is provided in Tab. 3.1). The ASuW scenario consists in considering a facility in a gulf (i.e.,
a port) that must be protected against threats, represented by a group of Small Fast Attack Crafts (SFAC) [17].

Table 3.1

ASuW acronyms table.

Acronym Meaning

ASuW Anti Surface Warfare
OPV Offshore Patrol Vessel
SFAC Small Fast Attack Craft
SAM Surface-to-Air Missile
SSM Surface-to-Surface Missile

The port is guarded by a set of Offshore Patrol Vessels (OPV) patrolling the area. The OPVs are equipped
with a radar, so that they can detect the presence of the SFACs, and with ASuW weapons used to contrast
the threats, which consist in a fixed number of surface-to-surface missiles (SSM) and a gun. The SFACs are
assumed to be equipped with four SSM missiles used to attack the OPVs. Specifically, in this scenario it has
been assumed that a SFAC launches a SSM against an OPV as soon as it realizes to be engaged or followed by
it. On the other hand, the OPVs have three surface-to-air (SAM) missiles that are utilized, together with the
gun, to neutralize the attacking missile.

The OPVs are coordinated by an ASuW Commander that influences their behavior. The mission of the



206 D. Anghinolfi, A. Capogrosso, M. Paolucci, and P. Francesco

Fig. 2.3. The simulation view tab of the MS module.

OPVs is considered successful if the port is defended, i.e., if all the threats are neutralized before reaching their
target (the port). In this scenario a helicopter can be included in the OPVs configuration; in this case, the
helicopter is assumed to perform the function of radar picket, i.e., it stays on a fixed position with the purpose
of improving the threat detection ability of the defence system.

The ASuW scenario specifically considered in this paper includes nine SFACs and three OPVs. The gulf
subject to possible attacks is schematically represented as a rectangular area of about 50 × 100 nautical miles
(nm), situated in the Gulf of Taranto (Italy) so that the coasts are not affecting the operations. The scenario
is shown in Fig. 3.1 where the horizontal line in the upper (north) side of the area represents the SFAC target.

In Fig. 3.1 the three OPVs patrolling routes (consisting of straight stretches between successive patrol
points) are represented, as well as the area in which the SFACs are assumed to be initially located when the
simulation starts and the position of the helicopter, if present. The SFAC attack and OPV contrast strategies
are summarized as follows:

• the OPVs patrol the area, according to given routes, whereas the helicopter, if present, maintains a
fixed position;

• each SFAC moves from its starting position following a vertical trajectory (from south to north) at
constant speed until reaching the target line;

• the SFACs start from a random position within the area shown in Fig. 3.1;
• the OPVs and the helicopter, if present, can detect the threats by radar sensor;
• if a threat is detected, its position is communicated to the ASuW Commander who assigns the OPVs
to the SFACs. Specifically, the SFACs to be engaged are ordered according to their distance from the
target line (threat evaluation);

• a list of at most three SFACs is assigned to each OPV; in particular, each SFAC is assigned to the
nearest OPV;

• each OPV directs towards the first target in its list; if the list is empty, the OPV continue its patrol
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Fig. 3.1. Geometric representation of the considered ASuW scenario.

route;
• as soon as a SFAC realizes to be engaged or followed by an OPV, it launches a SSM against the OPV;
• the OPV engages with weapons a SFAC that is within its intercepting range in two cases:
(a) whenever is attacked by a SSM from the SFAC or
(b) whenever the SFAC is at sight range (in this latter case OPV can classify the SFAC as a threat).
The preferred weapon system used by the OPV are the SSM missiles; if the OPV runs out of missiles
it engages with the gun. A threat is neutralized with a probability given by a function depending on
the kind of weapon and on the distance between the launcher and the target;

• if OPV is attacked by a SSM, it launches one or possibly two SAM to neutralize it. If this defence
action fails, OPV tries to contrast the missile with the gun.

The OPV radar range depends on the radar height and on SFAC height. In particular, denoting with hOPV

and hSFAC the height respectively of the OPV radar and of the SFAC, the OPV radar range RR is given by

RR = 2.22×
(

√

hOPV +
√

hSFAC

)

(3.1)

Moreover, the turn rate ( θ̇) of the OPV (that influences its maneuverability) depends on the OPV length
(L) and speed (V ), as follows:
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θ̇ =
V

R
(3.2)

where R ∼= 2L.
The weapon success probability functions have been provided by Italian Navy officers and they depend on

the type of weapon. Fig. 3.2 and Fig. 3.3 plot the success probability function respectively for the gun and the
SSM missile.

Fig. 3.2. Success probability function for the gun.

The probabilities for SAM missiles to destroy an SSM have been assessed by an analytic study of the anti-air
warfare scenario. Tab. 3.2 reports a subset of such data, showing the probability that the first SAM destroy the
SSM (PK1) and the one for the second SAM (PK2) as a function of the SAM and SSM types, and the OPV
radar height (expressed in meter). Note that the value zero for PK2 denotes the impossibility to launch the
second SAM in time to contrast the attacking SSM.

Fig. 3.3. Success probability function for an SSM missile.

Table 3.2

An excerpt of the success probabilities for SAM contrasting SSM.

SSM SAM Radar Height Pk1 Pk2
1 1 18 84.8 65.9
1 1 19 85.6 66.7
1 2 18 67.2 60.9
1 2 19 66.9 61.8
1 1 18 60.7 0.0
... ... ... ... ...

4. Implementation of the ASuW scenario. This section illustrates how the ASuW scenario can be
defined in the OEM system, in particular providing an idea of the kind of interaction of a Simulation Modeler
user with the MD module.
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The elements of the ASuW scenario that show an autonomous behaviour are modelled as agents. Therefore,
in this scenario four classes of agents are introduced: the OPV, the SFAC, the Commander and the (launched)
Missile. The missile agents are created during the simulation whenever an OPV or SFAC agent lunches an
available missile, whereas the other classes of agents are created during the initialization of the scenario. Note
that an element such as the helicopter, that, in a different scenario, could be modelled as agent, here simply
plays the role of a sensor providing information to the OPVs and the Commander.

Fig. 4.1 and 4.2 give two examples of views of the unified GUI that are needed by the MD module.
Specifically, Fig. 4.1 shows the class diagram tab that allows the definition of the entity and the message traps,
whereas Fig. 4.2 shows the activity diagram tab used to define the behaviour of the agents. Any new item in
both interfaces can be defined by dragging the item prototype from the toolbox in the left of the window to
the workspace and then setting the appropriate properties. The items in the toolbox of the class diagram tab
represent the prototypes of classes and messages, whereas the ones in the toolbox of the activity diagram tab
correspond to the building blocks available to formalize the agent actions.

The Fig. 4.1 shows the definitions of the classes (OPV, Commander, Missile, SFAC ) and the messages (En-
emiesDetected, FollowEnemies, HitByMissile) for the ASuW scenario as it appears in the class-diagram tab of
the MD GUI. The OPV class is characterized by two different states, i.e., Patrol and Follow, respectively asso-
ciated with the patrolling behaviour, which makes the OPV reaching in sequence a number of patrolling points,
and the following behaviour, which makes the OPV direct towards a target (this behaviour is implemented by
the workflow shown in Fig. 4.2). The Commander class has a single state ProcessEnemies associated with its
threat evaluation and assignment behaviour. The SFAC class has two states, Idle and MoveToTarget, the first
needed to model the possible delay before starting to move towards the target and the second associated with
the SFAC mission of reaching the target line. Finally, the Missile class has a state Follow associated with the
behaviour that moves it towards the target and a TargetReached state, assumed when the missile finishes its
trajectory hitting or missing the target.

The model includes three kind of messages: the EnemiesDetected message, sent by an OPV to the Com-
mander when the OPV detects a SFAC; the FollowEnemies message, sent by the Commander to an OPV in
order to assign the threat; the HitByMissile message, send by a missile to its target when this latter is reached.
Whenever a recipient receives a message it invokes the corresponding message trap behaviour. As an example,
when an OPV receives a FollowEnemies message it starts its Follow routine.

For each class of agents at least one behaviour must be modelled. For example, in Fig. 4.2 the behaviour
prescribing an agent to follow a given target is shown. The behaviours are modelled using workflows. A workflow
starts always with a Start block and finishes always with a End block. Considering the workflow in Fig. 4.2, at
each time step the agent:

1. updates its position;
2. calculates the distance to the target and stores this value in a local variable;
3. checks if the distance is lower than a threshold, and in the positive case the agent changes its state to

TargetReached, otherwise the agent remains in its current state.
After the definition of the classes and the messages, a simulation model can be specified by creating the

instances of the agents involved in the simulation. This can be done in the agent tab of the MD GUI, where an
Object Diagram can be generated. As an example, Fig. 4.3 shows the agents included in the ASuW scenario
that includes a Commander, three OPVs and five SFACs. Note that in this diagram there are no missile agents
as these latter are only created at run time. In the agent tab the user must provide the initial values of the
attributes for each agent instance (e.g., for OPV 1 PatrolSpeed is set to 16 kn).

5. Performance Indicators. In order to compare the considered simulation environments, both qualita-
tive and quantitative key performance indicators (KPIs) have been defined. The qualitative KPIs aim at defining
the ability of the simulation environment to comply with specific characteristics, whereas the quantitative KPIs
provide some numerical indexes as detailed in the following.

5.1. Qualitative indicators. The following KPIs are used to evaluate the environment’s capacity to
implement simulation scenarios with a degree of complexity comparable to the considered ASuW scenario.

1. Possibility to execute Monte Carlo simulations. This is possible if the environment allows operating
with random variables.
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Fig. 4.1. Definition of classes (OPV, Commander, Missile, SFAC) and messages (EnemiesDetected, FollowEnemies, Hit-
ByMissile) involved in the ASuW scenario with MD Module of OEM.

2. Possibility of running multiple experiments in batch mode. This property makes it possible to execute
extended experimental campaigns; specifically, the environment must allow reading the parameters
characterizing the different experiments from some data structure or file, as well as writing the results
in an appropriate way.

3. Presence of an integrated visual development environment. Such a tool reduces the complexity of
defining new simulation model and the time needed for the development.

4. Possibility to implement complex agents. This is a qualitative judgement of what is the level of the
complexity in the definition of the agents allowed by the environment, specifically in term of the type of
data managed by the agents and of the elaborateness of the agent behaviour. As an example, the index
takes into account the possibility of including complex data types (such as lists of structures) in the
agent attributes. In the specific case of the ASuW scenario this index is specified considering the ability
of the environment to define and manage the list of SFAC assigned to each OPV by the Commander.

5. Possibility to define complex coordination politics for the agents. With reference to the ASuW scenario,
this index expresses the possibility of defining the ASuW Commander agent able to coordinate the
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Fig. 4.2. An example of behaviour definition with the MD Module.

OPVs actions according to the complex threat evaluation and assignment rules.
6. Possibility to implement and manage the communication between agents. In the considered scenario

this feature is needed to allow the ASuW commander communicating with the OPVs.
7. Availability of language primitives of an appropriate level. In the ASuW it is necessary to use mathe-

matical equations, for example to implement the turn rate and the radar range.

5.2. Quantitative indicators. The following numerical KPIs can be adopted to compare the models
developed by means of the different environments.

1. Number of code lines. This can be considered an index of the complexity of the development of the
models, as well as of development time (note that this index is estimated by considering only the code
needed to define agents and their behaviour);

2. Average time to perform a single run (in seconds);
3. Average time to perform 1000 runs (in seconds);

6. Comparison among MANA, NetLogo, Stage and MASON. This section discusses the features
and eventual limitations emerged by comparing the ways in which the ABS frameworks, different from the
ABSF included in the OEM, model and simulate the ASuW scenario.
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Fig. 4.3. Definition of the Agents involved in the ASuW scenario with MD Module of OEM

• MANA - It allows to define the topological characteristics of the scenario, such as the type and size of
accessible areas and the presence of hot-points (i.e., starting points, target points and patrol points) [18].
The agent characteristics are defined by drop-down menus and scroll bars; for example, the tendency of
the agents to direct towards either the next patrol point or the nearest threat, the speed and the agent
icon. Agents can be equipped with armaments and sensors and their associated hit/detect probability
can be specified by a data table as a function of distance. The MANA environment allows to execute
a sequence of different runs of the scenario. The main limitation of MANA (confirmed also by a
personal communication with one of its designers) is that it does not provide a programming language
for describing complex agent behaviours. This made impossible to implement the scenario ASuW as
described. In particular, the ASuW agent Commander assignment rules, the OPV air-air missiles
defence behaviour, and the evaluation of algebraic expressions (i.e., the ones needed for the rate of turn
and the radar range) cannot be implemented.

• NetLogo - The scenario is defined by a graphical interface that integrates a development environment
and an automated analyser to simplify and speed up the design of the scripts used to specify the
agent behaviours. The NetLogo scripting language is a high-level language, interpreted by the provided
simulation engine, that includes a large set of functions for configuration, movement and communication.
This language allows the management of pseudo-random variables, as well as the input and output files,
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so making the execution of multi-run simulation batches possible. An interesting feature is that the
graphic interface can be deactivated during the multi-run simulation, making in this way the simulation
quite fast. Summing up, NetLogo includes all the features needed to implement the ASuW scenario.

• Stage - It has a graphical environment that allows to create very sophisticated environments. Stage
enables creating simulation models with realistic details, as it provides very detailed models of ships,
vehicles, aircrafts, sensors and radar. The agent behaviour can be defined by an interpreted script
language inspired by the C language. Stage integrates a development environment and an automated
script analyser. The agents communicate using a standard communication protocol. In addition, the
execution of a simulation can be distributed in a computer network to parallelize the computational
burden. Stage definitely allows implementing the ASuW scenario. However, two main limitations were
observed that prevent the use of Stage in batch mode: it is quite hard (at least for conventional designers
or users) to simulate excluding the graphic output; it is not possible to perform multiple simulations.

• MASON - The scenario and the agent behaviours must be defined by coding in Java language. The
framework supplies some features like a very high performance random numbers generator and some
high efficiency data-structures. It supplies also some features to implement a customizable graphic
interface. As an alternative, the simulation can run in batch mode, i.e. without interface, to speed-up
it. In addition, the execution of a simulation can be distributed in a computer network to parallelize the
computational burden. Therefore, MASON includes all the features needed to implement the ASuW
scenario.

Table 6.1

KPI comparison for the simulation environments

MANA NetLogo Stage MASON

Qualitative Indicators

Monte Carlo simulations × √ √ √

Batch multiple experiments
√ √ × √

Visual development environment
√ √ √ √

Complex agent definition × √ √ √

Complex agent coordination politics × √ √ √

Communication among agents × √ √ √

Appropriate language primitives × √ √ √

Quantitative Indicators

Source lines of code – 1000 700 1300
Average time for single run (s) – 0.6 480 0.015

Average time for 1000 runs (s) – 754 – 20

Tab. 6.1 summarizes the main features observed (here a cross denotes the lack of the corresponding feature,
whereas a dash the impossibility to collect the data). Observing the quantitative KPIs, the number of code’s
lines needed by Mason to implement the agent behaviours is greater than the one of NetLogo: this indicates
that NetLogo provides an higher level language compared to the one provided by Mason. The low number of
lines of code required for the implementation of the scenario in Stage is due to the fact that the environment
has been developed specifically for the management of military simulations.

Finally, the batch run time results are shown only for NetLogo and MASON, as MANA does not allow the
appropriate design for the considered scenario and Stage does not permit the batch execution mode. Comparing
the simulation times obtained using Mason and NetLogo, it can be noticed that the first is about 40 times faster
than the second. This result is due to the fact that NetLogo uses a scripting language, while Mason uses Java
language which is semi-compiled.

7. Equivalence test for the compared scenario models. After modeling the ASuW scenario with
ABSF, it was possible to compare it with Mason and NetLogo, as these latter emerged as the only environments
able to appropriately simulate such a naval task scenario. However, the comparison is sensible only after having
verified that the models developed with the three different frameworks are able to produce equivalent results
from the statistical standpoint. Therefore a set of experiments was performed to verify the equivalence of the
ABSF, MASON and NetLogo models for the ASuW scenario. In particular, 24 possible OPV configurations
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were analyzed and for each of them 1000 repetitions were executed, each of which producing a binary value
(representing the success/failure in defending the target) as simulation outcome. The tested configurations
correspond to all the combinations of the values for the parameters shown in Tab. 7.1.

Table 7.1

The tested OPV configurations

Parameter Values

OPV Height m {13, 23}
OPV Speed kn {37, 35, 30}

Helicopter presence {true, false}
Gun presence {true, false}

The binary outcomes obtained from the models were divided into 20 groups, each consisting of 50 elements.
For each group the relative OPV success frequency was calculated. As an example, Tab. 7.2 shows the success
frequencies obtained for the configuration characterized by OPV Height = 13m, OPV Speed = 37kn, Helicopter
presence = true, Gun presence = true.

Table 7.2

The relative success frequency for a tested configuration.

Groups ABSF NetLogo MASON

1 94.1 88.2 74.5
2 88.2 90.2 82.3
3 92.1 86.3 88.2
4 82.3 92.2 90.2
5 94.1 78.4 80.4
6 82.3 86.3 90.2
7 86.3 84.3 84.3
8 92.2 90.2 82.3
9 92.2 66.7 84.3
10 80.4 78.4 98.0
11 92.2 96.1 94.1
12 90.2 86.3 96.1
13 82.3 82.3 90.2
14 82.0 88.0 88.0
15 88.2 92.2 90.2
16 90.2 95.1 84.2
17 88.2 86.3 76.5
18 84.3 92.2 86.3
19 86.3 92.2 78.4
20 81.8 100.0 93.9

Successively, the hypotheses needed to correctly perform the test of analysis of variance (ANOVA) were
verified on the obtained data. In particular, the well-known Jarque-Bera test was used to verify the hypothesis
of normality of the data series and the Welch test to verify the hypothesis homoscedasticity. Then, the ANOVA
test was used to validate the hypothesis of equivalence of the models. Fig. 7.1 shows the box-plots obtained from
the ANOVA test. From Fig. 7.1 it can be observed how the three boxes are almost overlapped, so that it can be
concluded that the three implemented models can be considered statistically equivalent for the configurations
shown in Tab. 7.2. The equivalence of the three models was also confirmed for the other configurations in
Tab. 7.1.

8. Comparison between ABSF, NetLogo and MASON. Having established the equivalence of the
models produced by ABSF, NetLogo and MASON, the three frameworks were evaluated over the KPIs defined
in Section 5. Tab. 8.1 reports the obtained results for the quantitative KPIs, provided that the three considered
environments have the same qualitative characteristics.

Observing the number of lines of code it is possible a first conclusion: ABSF does not require any coding
to characterize the considered scenario, i.e., the involved agents and their behaviours, but the design of the
scenario is performed using the GUI of the MD module.
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Fig. 7.1. The box-plot produced by ANOVA

Table 8.1

KPI comparison of ABSF, NetLogo and MASON

Quantitative Indicators ABSF NetLogo MASON

Source lines of code 0 1000 1300
Average time for single run (s) 0.003 0.6 0.015

Average time for 1000 runs (s) 5 754 20

Observing the comparison among the simulation times needed by ABSF, NetLogo and MASON, it can
be observed that the average times for 1000 runs obtained by ABSF were about 4 times lower than those
obtained by MASON, and 150 times lower than those obtained by NetLogo. It is worth recalling that for the
three models the simulation experiments were run on the same computer and they were executed without any
graphical interface to minimize the computational burden.

9. Conclusions. This paper presents the main features of a project carried on in collaboration with OSN,
an Italian company specialized in total naval ship design, aiming at supporting the early phase of military naval
unit design. In particular the OEM support system should enable human designers and stakeholders to evaluate
different configurations also from the point of view of the operational effectiveness of the resulting ship in a set
of operating scenarios.

This paper devotes particular attention to the agent-based simulation framework included in the OEM
and it provides evidence in favour of its suitability as a tool for rapidly modelling military naval scenarios
and efficiently simulating them. To this end, the main characteristics and limitations of a set of agent-based
simulation environments have been analysed, using as a reference a specific Anti-surface Warfare scenario. As
a result of such an analysis, the quality of ABSF as excellent simulation tool was proved, since it is able to
overcome the main limitations of the other simulation environments considered and to outperform, in terms of
ease of development and run execution speed, MASON, the best one among the competitors.

The high quality computational performance showed by ABSF are actually very important, as it allows to
decrease the time needed for exploring the space of the possible configurations of the naval units, so facilitating
a deeper alternative analysis. Differently from MASON, the Model Definer module included in the proposed
framework lets the user define scenarios without the need to know or learn any programming language, or, as
is the case for NetLogo, any scripting languages.

Finally, it can be noted that the use of libraries of generic blocks allows ABSF to be able not only to
perform simulations of naval units but also of different contexts. In other words, ABSF, through appropriate
verticalizations of the block libraries, can be considered a generic simulation environment.
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