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Abstract –When underwater vehicles navigate close to the
ocean floor, computer vision techniques can be applied to
obtain motion estimates. A complete system to create visual
mosaics of the seabed is described in this paper. Unfortu-
nately, the accuracy of the constructed mosaic is difficult to
evaluate. The use of a laboratory setup to obtain an accurate
error measurement is proposed. The system consists on a
robot arm carrying a downward looking camera. A pattern
formed by a white background and a matrix of black dots
uniformly distributed along the surveyed scene is used to find
the exact image registration parameters. When the robot
executes a trajectory (simulating the motion of a
submersible), an image sequence is acquired by the camera.
The estimated motion computed from the encoders of the
robot is refined by detecting, to subpixel accuracy, the black
dots of the image sequence, and computing the 2D projective
transform which relates two consecutive images. The pattern
is then substituted by a poster of the sea floor and the
trajectory is executed again, acquiring the image sequence
used to test the accuracy of the mosaicking system.

I.  INTRODUCTION

Over the past few years, visual mosaics have greatly
advanced as a tool for undersea exploration and navigation
of underwater vehicles. The position and orientation of the
submersible can be calculated by integrating the apparent
motion of the images which form the mosaic. Several
strategies have been presented in the literature to recover
the vehicle motion by means of visual mosaics, e.g.
[1,2,3].  These visual positioning systems allow the
vehicle to localize itself on the mosaic map as it is being
constructed (known as Concurrent Mapping and
Localization). Once the map has been constructed, the
mosaic can be used to plan the path of the vehicle during
the execution of the mission. These visual sensors are
gradually substituting other positioning sensing
technologies, such as acoustic transponder networks [4],
for some specific tasks. While these sonic beacon systems
require the vehicle to move within the area they are

covering, visual mosaicking does not restrict the
autonomous capabilities of the submersible to a limited
area. However, mosaicking systems can only be used
when the vehicle is performing tasks near the ocean floor
and require a reasonable visibility in the working area. In
other respects, vision systems are much less costly when
compared to setting and calibrating a network of sonar-
based transponders covering the site of interest.

Unfortunately, the accuracy of the constructed mosaic
is difficult to evaluate. A possible option is to measure the
correctness of the mosaic by comparing its estimations
with the information provided by other on-board sensors
[5]. When the experiments are performed in indoor water
tanks, an overhead camera can take absolute position
measurements which are compared with those provided by
the mosaicking system [6]. This second approach can only
be applied when the vehicle moves on the surface. In both
cases, the estimation of the true trajectory is subject to
small biases. We propose the use of a laboratory setup to
reduce this bias, obtaining an accurate error measurement.

This paper is structured as follows: section II describes
the algorithm we are using to construct underwater
mosaics. Section III details the laboratory setup used to
evaluate the mosaicking system.  Next, some of the
experiments that have been performed to quantify the
errors across the mosaic are shown in section IV. Finally,
section V provides a brief conclusion and outlines future
work.

II.  THE MOSAICKING SYSTEM

The creation of the mosaic is accomplished in the
following stages: First, a correction of lens distortion is
performed. A detector of interest points then selects the
most reliable features of the undistorted image and the
correspondences of these features are matched in the next
image of the sequence. Next, the system identifies the
points which describe the dominant motion of the image
by means of a robust outlier-detection algorithm. Once the
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pairs of features describing the dominant motion have
been selected, a 2D projective transformation matrix
relating the coordinates of both images is computed.
Finally, the registered images are merged onto a composite
mosaic image [7].

A. Correction of Lens Distortion

Correcting the distortion produced by the camera
lenses and the ray diffraction at the water-camera housing
and the air-camera housing interfaces requires the
estimation of a number of intrinsic camera parameters [8].
A simplification of the Faugeras-Toscani algorithm has
been implemented to correct uniquely radial distortion,
instead of performing full camera calibration [9]:
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where ),( uu yx  are the ideal undistorted coordinates of the
measured distorted point ),( dd yx , and ),( yx cc  are the
coordinates of the center of the image. The parameters

yx kk , are the scaling factors in the x and y directions,
respectively. They account for differences on the image
axes scaling. The principal point of the image is defined
by ),( 00 yx  and represents the coordinates of the
projection of the optical center of the camera on the image
plane. 1k  is the first term of the radial correction series,
and r  is the squared distance of ),( dd yx  from the center
of the image and accomplishes:
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Once these parameters are known, image correction for
radial distortion can be computed. In our implementation,
the undistorted values are obtained from a Look Up Table
that has been computed offline.

B. Selection of Interest Points

The next step of the mosaicking algorithm consists of
the selection of adequate interest points in the present
image to be matched in the next frame.  These candidate
features should be adequate in the sense of being easy to
match in the next image. Therefore, the selection of robust
interest points depends, to a large extent, on the technique
used to detect correspondences. Normally, small windows
containing high frequencies are quite adequate since they
are located in the border of different image textures. For
this reason, our interest point detector searches for small
zones presenting high spatial gradient information in more
than one direction. To do this, the image is convolved with

two directional high-pass filters (in the x and y directions).
The areas with the highest value in both directions are
selected. In fact, this strategy is quite similar to that
followed by some corner detectors [10,11] or feature
trackers [12]. When a feature is selected, the algorithm
goes on to search for any other selected features in its
neighborhood. If a higher-valued feature exists in this
neighborhood, only the best feature is selected as an
interest point. This avoids the selection of other features in
the same neighborhood and ensures a reasonable
distribution of the interest points within the image.

C. Region Matching and Texture Characterization

Finding correspondences between images is not an
easy task in computer vision, and even less in underwater
imaging. On that account we pay special attention to the
matching process, carrying out a two step approach.  First,
a block-matching strategy is applied to the gray-level
images [13], selecting a set of candidate matches for a
given interest point. Then a texture characterization of the
points is used for selecting the best correspondence. For
every interest point in the present image I, a correlation
score is computed in the next image I ′ . This is performed
by comparing a small n×n window centered at the interest
point [ , ]x y=m  with all the possible locations of the
feature [ , ]x y′ ′ ′=m  in the next image, as shown in (4).
These possible locations of the feature ′m  are limited to a
window of I ′ , centered at the coordinates of m in the first
image. The size of this window depends on the motion
between consecutive images.
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where ( , )I x y  is the average of the gray-levels in the n×n
neighborhood, and ( )2 Iσ  is the standard deviation of the
image I in the n×n window centered at the interest point
m, which is given by:
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In this way, it is possible to find in I ′  a set of possible
correspondences i′m of every interest point in I. To decide
which of these matches is the right one, the textural
characteristics of these areas of image I are used as a
matching vector to be correlated with the selected matches
of the next image I ′ . An extensive study has been carried
out in order to compare different texture operators. We
have implemented and tested different configurations of
some statistical-based texture operators, i.e. co-occurrence
matrix [14], energy filters [15], local binary patterns [16],
contrast features [16] and Markov random field models
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[17], among others. Two texture parameters have been
selected because of their excellent performance in helping
to solve the correspondence problem, as well as their fast
computation times: Energy filters [15] and Contrast
features [16,18].

Texture energy filters consist of pre-filtering the image
with a set of 3×3 and 5×5 masks, and then computing a
series of statistical measures for every mask (in our case
standard deviation and positive/negative mean):
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where n is the size of the vector which stores the
neighboring pixels, and ic  is the ith element of this vector.

We have extended the definition of contrast feature
given by Ojala and Pietikäinen [18]. The authors proposed
the use of a 3×3 neighborhood to be used jointly with
Local Binary Patterns. We also consider the 5×5 and 7×7
neighborhoods of the selected point as the region to
analyze. The contrast operator consists of performing a
gray-scale differentiation in the region which is being
considered.  The neighboring pixels are compared with the
selected point, computing the average of those neighbors
with a gray-value higher than that of the center pixel. A
second average is computed with the neighbors with an
intensity value below the selected pixel. Then, the
difference of both averages is computed. This value is
known as contrast of the texture. Different values of
contrast are obtained depending on the size of the selected
neighborhood.

Both texture operators result in a vector of texture
values characterizing every interest point of the present
image I, namely:

• Energy L3L3 Standard Deviation 3×3
• Energy E3E3 Positive Average 3×3
• Energy E3E3 Negative Average 3×3
• Energy L5S5 Positive Average 3×3
• Energy E5L5 Standard Deviation 3×3
• Energy E5S5 Negative Average 3×3
• Contrast 3×3
• Contrast 5×5
• Contrast 7×7

For a more detailed description of how these texture
operators are derived see [15,16]. Once this vector of 9
parameters has been computed for a given interest point of

the first image I, it is then computed for every candidate
match in I ′ . After a process of normalization, the texture
vector of the interest point is compared with the textural
properties of all the possible matches by means of the
weighted Euclidean distance. A texture similarity measure
is then obtained for every possible correspondence.

After this process, every candidate match has two
measures of similarity: (i) a block-matching correlation
score obtained through (4); and (ii) a texture score
produced by feature characterization. By averaging these
two values, the best correspondence is selected.

Once this procedure has been accomplished, for every
interest point in image I a unique match is obtained in
image I ′ .

D. Estimating the Dominant Motion through Outlier
Rejection

After the correspondences have been solved, a set of
displacement vectors relating the features of two images of
the sequence is obtained. Every vector relates the coor-
dinates of the same feature in both images. Our aim is now
to recover the apparent motion of the camera from these
features. This can be done by computing a 2D
transformation matrix H which relates the coordinates of a
feature in a frame with its coordinates in the previous one:

′= ⋅m H m  or 
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where ( , ,1)T
i ix y=m  and  ( , ,1)T

i ix y′ ′ ′=m  denote a
correspondence point in two consecutive images; the
symbol ~ indicates that the points are expressed in
homogeneous coordinates, and ≅ expresses equality up to
scale. The matrix that performs this transformation is
known as “homography” [19], and can be computed by
SVD if 4 or more pairs of matchings are available, as
shown in (10).
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Although an accurate texture analysis is devoted to the
matching procedure, some false matches (known as
outliers) could still appear among the right correspon-
dences. For this reason, a robust estimation method has to
be applied. The Least Median of Squares (LMedS) algo-
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rithm can be used for finding the matrix H which
minimises the median of the squared residuals errM :

( )( ) ( )( )2 2 1, ,err j j j jj
M med d d −′ ′= +m Hm m H m (11)

where 1 2 3(x ,x ,x )=m  are the homogeneous coordinates
of a 2D point m  defined in the image plane I, being

1 3 2 3( , ) (x x , x x )i ix y= =m  its corresponding Cartesian

coordinates; and ( )2 ,j jd ′m Hm  is the square distance

from a point jm , defined on image I, to the projection on
the same image plane of its correspondence j′m . Hence,
the error is defined by the distance of a point to the
projection of its correspondence [20].

The LMedS algorithm works as follows: given the
regression problem of computing the matrix H from a set
of data points, compute a candidate solution based on a
randomly chosen 4-tuple from the data. Then, estimate the
fit of this solution to all the data, defined as the median of
the squared residuals.

Once the best solution has been found, a minimal
median is obtained. As from the median, the mean and the
standard deviation can be computed (see [20] for details).
Therefore, in our implementation, those points at a
distance larger than the median are eliminated, and matrix
H is recomputed with the remaining points.

E. Mosaic Construction

The process of mosaic construction is described below.
First, the initial image in the sequence is selected as a base
frame. The mosaic coordinate system is placed at the
origin of this reference frame. Then, when image (k+1) has
to be added to the mosaic, a 2D planar transformation
kHk+1 provides its best fitting with respect to the previous
image. In order to obtain a global registration from image
(k+1) to the mosaic reference frame, the following matrix
product has to be performed [21]:

1
1 1

1..

i
k i

i k
+ +

=

= ∏H H (12)

where 1
1k+H  is the homography that produces the co-

ordinates of a point in the mosaic image, from the
coordinates of the same point in image  (k+1).

For every image added to the common frame, the
mosaic can be updated according to four different
strategies: (a) first in; (b) last in; (c) temporal mean; or (d)
temporal median. Depending on the strategy followed the
mosaic is only updated within the regions in which no
information existed before (a); or every new image is
completely added to the mosaic (b); or a temporal filter is
applied to render the mosaic image on the overlapping
regions (c) and (d).  The temporal filters are very useful to
remove transient data from the mosaic, keeping only the
background.

III.  EXPERIMENTAL SETUP

As the mosaic increases in size, small errors in the
estimation of dominant motion between consecutive
frames provoke an accumulated error. It is possible to
reduce this error by periodically registering the current
frame with the mosaic image. In this work we want to be
able to evaluate the nature of error propagation in the
resulting mosaic quantitatively. A laboratory setup to
obtain an accurate error measurement is proposed. The
system consists on a robot arm carrying a down-looking
camera (see Fig. 1). This robot has limited accuracy, but
good repeatability. The accuracy parameter is defined as
the distance between an arbitrarily prescribed location and
the one that has actually been achieved, while the
repeatability is measured as the radius of the sphere which
contains the points reached after positioning the tool in the
same place repeatedly [22].

Fig. 1. Experimental setup. A robot arm carries a down-looking
camera and takes images of a poster simulating the sea floor.

The robot arm is required to execute the same pre-
defined trajectory twice. A calibration pattern formed by a
white background and a matrix of black dots uniformly
distributed along the surveyed scene is initially placed
under the robot, covering the working area. It will be used
to detect the exact image registration parameters. When
the robot executes a trajectory (simulating the motion of a
submersible), an image sequence is acquired by the
camera. The radial distortion produced by the lenses is
corrected for the whole sequence. The first image of the
sequence is warped to a reference frame, which represents
the ideal transform of the calibration pattern onto a virtual
mosaic frame, i.e., the distance in pixels from any black
dot to one of its horizontal and vertical neighbors is always
constant. This initial 2D transformation from the first
image to the reference frame would be the identity matrix
if the initial position of the camera had the image plane
perfectly parallel to the scene.

Robot Arm

Camera
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Fig. 2. Mosaic created from a sequence of 208 images. The size of the mosaic is 2700 × 1600 pixels.
The individual images are 384 × 288 pixels

The estimated motion computed from the encoders of the
robot serves as an initial estimate of the actual motion. Then,
this estimate is refined by automatically detecting, to
subpixel accuracy, the black dots of the calibration pattern in
the image sequence. An initial estimate of the position of the
black dots in the image is predicted from the information
provided by the robot. When these dots are detected in the
image the error can be corrected. From the new position of
the calibration dots, a 2D projective transform which relates
every pixel to the virtual mosaic image is computed. Next,
the pattern is substituted by a poster of the sea floor and the
trajectory is executed again. This second time, the acquired
image sequence is used to test the accuracy of the
mosaicking system.

IV.  RESULTS

We have performed several experiments to compare the
accuracy of our mosaicking algorithm against the real
values. Normally, as the mosaic increases in size, drift error
is expected to increase. We have performed several tests
with different parameterization of the mosaicking system
which have proved this fact, even though not always
happens. Fig. 2 shows an example of one of the mosaics that
has been automatically created, by means of the algorithm
described in section II. In this case, the trajectory described
by the camera starts at the lower part of the picture and
moves up. If we analyze this mosaic, it appears as “visually
correct” within the whole area, except a small misalignment

between the first images and the first time the camera
crosses an already visited zone, in the lower part of the
image. In the second loop, when the camera passes through
its way for a second time, no misalignments are visible. It is
not possible to quantify the distortion of the mosaic in any
other area of the image by means of a visual inspection.
However, if we plot this path against the real one, other drift
errors can be detected, as shown in Fig. 3.

Fig. 3. Results of experiments for mosaic construction. Estimated
(dashed) and real (solid) trajectories followed by the robot arm.
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The mosaicking algorithm has estimated this trajectory
by computing the motion between every pair of consecutive
images in the sequence. Fig. 2 represents the position of the
pixel located at the center of the images. Since there exists a
considerable overlap between every image and the next one,
the same area is common to several images. In this case, an
alternative would be the selection of a reference image, and
the estimation of motion between this image and the next
few frames. This second approach yields to a mosaic
presenting less drift (because incremental errors increase
more slowly), but usually with a worst visual appearance.
On the contrary, the methodology that has been used to
create the mosaic of Fig. 2 generates maps with a good
visual appearance, but is less adequate to estimate the
position of an underwater vehicle.

The lower right corner of Fig. 2 presents a drift of 46
pixels. If we want to use the mosaicking system to position
an underwater vehicle, this drift would suppose an error in
the order of 25 to 50 cm depending on the altitude of
navigation of the submersible. This drift is kept
approximately constant along the horizontal path in the
lower part of the figure. This can be more easily observed in
Fig. 4. Almost at the end of the path (in the second cross
over), the drift has been reduced to 6 pixels. In this way, the
visual analysis of the mosaic looks quite good, while
considerable errors in the estimation of the trajectory have
occurred.

V.  CONCLUSIONS AND FUTURE WORK

The construction of visual mosaics of the ocean floor can
provide accurate position estimates for local navigation of
underwater vehicles. We have presented an approach to
quantify the distortion across visual mosaics. A solution to
the problem of measuring error propagation in the
construction of a mosaic has been proposed. This solution is
valid for laboratory testing only, but it has also proved to be
helpful in testing and tuning the different parameters of our
mosaicking system, e.g. selection of texture operators,
number of interest points, comparative of different motion
models, etc.

The construction of a mosaic for robot navigation suffers
from drift errors, which are not distributed uniformly across
the mosaic, but rather appear in certain areas. This is
probably due to the lack of adequate information in the
images acquired on these areas to produce good motion
estimates.

Our approach to construct underwater mosaics has been
validated by means of the experimental set-up. Further
experiments will be carried out to enhance the performance
of the mosaicking algorithm. In this work we have only
dealt with planar scenes. In the future, perspective
projection of non-planar objects should be studied in the
construction of mosaics. The use of this validation tool will
suppose a step forward towards the creation of a robust
mosaicking methodology to be applied in real missions.

(a)

(b)

Fig. 4. Temporal evolution of the estimated (dashed) and real
(solid) trajectories for the X and Y coordinates,

respectively (a) and (b).
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