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Multiple-antenna systems are a promising approach to increase the data rate of wireless communication systems. One efficient
possibility is spatial multiplexing of the transmitted symbols over several antennas. Many different MIMO detector algorithms exist
for this spatial multiplexing. The major difference between different MIMO detectors is the resulting communications performance
and implementation complexity, respectively. Particularly closed-loop MIMO systems have attained a lot of attention in the last
years. In a closed-loop system, reliability information is fed back from the channel decoder to the MIMO detector. In this paper, we
derive a basic framework to compare different soft-input soft-output MIMO detectors in open- and closed-loop systems. Within
this framework, we analyze a depth-first sphere detector and a breadth-first fixed effort detector for different application scenarios
and their effects on area and energy efficiency on the whole system. We present all system components under open- and closed-loop
system aspects and determine the overall implementation cost for changing an open-loop system in a closed-loop system.

1. Introduction

Multiple-antenna (MIMO) systems are a promising ap-
proach to increase the data rate of wireless communication
systems in rich-scattering environments. Spatial multiplex-
ing is a spectrally efficient way to exploit the diversity of
the MIMO channel while an outer error correction code
ensures the desired quality of service for a given data rate.
This setting is called a Bit Interleaved Coded Modulation
(BICM) system (see Section 3). Particularly iterative MIMO
detection attained a high attention in the last years. In an
iterative receiver, reliability information is fed back from the
outer channel decoder to the MIMO detector and vice versa.
The resulting communications performance is improved by
3 dB and more compared to open-loop decoding [1, 2].

This improvement is gained at the cost of a highly
complex signal detection (Section 4). Optimal detection by
exhaustive search is infeasible for realistic scenarios (4× 4
antennas, 16- or 64-QAM). Finding the right trade-off

between communications performance and implementation

complexity and understanding the implications on the whole
receiver is one of the major challenges in the design of
iterative MIMO receivers. MIMO detection algorithms and
their implementations have been extensively studied in the
literature (Section 2). They can be divided into classes with
similar characteristics, for example, linear filters or breadth-
first tree search algorithms.

The fixed effort list detector (breadth-first search,
Section 4.2) and the sphere detector (depth-first search,
Section 4.1) are among the most promising approaches to
obtain a good communications performance in iterative
systems at reasonable implementation complexity. The fixed
effort detector processes the MIMO vectors at a constant
throughput whereas the sphere detector has a dynamic
throughput due to the nature of the depth-first search. How-
ever, the sphere detector is able to approach the optimum
detection while the communications performance of the
fixed effort detector is restricted by the storage requirements
of the generated lists.
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In this paper, we explore the design space for iterative
MIMO detection from a system perspective comparing fixed
effort and sphere detection. We start with an investiga-
tion of the system communications performance for both
algorithms (Section 5) and continue with an architectural
analysis of the complete receiver system. Not only the
implementation of the MIMO detectors but also of the other
building blocks in the iterative receiver (channel preprocess-
ing and channel decoding) needs to be studied to analyze
the whole system (Section 6). Therefore, it is mandatory to
fix some shared design constraints. We introduce a generic
architecture framework which connects the building blocks
by system memories in order to be able to exchange individ-
ual blocks easily (Section 7.1). Characteristics of each block
are analyzed in a system context (Section 7.2); for example,
the channel decoder can employ different algorithms for
open loop decoding and closed loop decoding.

A fair comparison of different MIMO detectors is only
possible as a part of an iterative receiver. Different archi-
tectures have advantages for different system constraints,
thus we compare fixed effort and sphere detector in several
throughput centric and communication centric scenarios
(Section 7.3). Eventually, we investigate the system cost in
terms of throughput, area, and power when moving from
an open-loop to a closed-loop system (Section 7.4). The
corresponding area and energy efficiency numbers drop by
more than a factor of 2 for closed-loop decoding with one
iteration.

2. Review of State-of-the-Art Detection
Algorithms and Their Implementations

Multiple-antenna systems employing spatial multiplexing
increase the spectral efficiency. However, this improvement
comes at the cost of an increased receiver complexity. Finding
the right trade-off between communications performance
and implementation complexity in MIMO detection is one
of the key challenges in the receiver design.

In order to optimally solve the MIMO detection problem,
an exhaustive search for the best solutions can be done
over all signal constellations. The number of possible signal
constellations increases exponentially with the number of
antennas and the number of bits per modulation symbol.
For a 4 × 4 antenna system employing 16-QAM, more than
65000 constellations exist. For 64-QAM, this number rises
to more than 16000000. This makes an exhaustive search
infeasible for a hardware implementation [9].

As the optimal exhaustive search is far too complex
for hardware implementations, many suboptimal detection
algorithms exist with a big range in communications per-
formance and complexity. They can be divided into the
following classes.

2.1. Linear MIMO Detection. Zero-Forcing (ZF) and min-
imum mean square error (MMSE) filters apply an inverse
of the channel to the received signal in order to restore the
transmitted signal [10]. These linear filters can be imple-
mented at a low complexity; however, their communications
performance is very low as well. The MMSE filter considers

the noise power in the interference cancellation and therefore
shows a slightly better performance.

2.2. Successive Interference Cancellation. The successive inter-
ference cancellation (SIC) technique was initially adopted by
the vertical Bell Laboratories layered space-time (V-BLAST)
system [11]. In contrast to the basic ZF and MMSE filters,
SIC detects the transmitted streams sequentially. It chooses
the substream with largest signal-to-noise ratio and removes
the interference of each detected stream before continuing
the detection process. The performance of the SIC algorithm
is generally better than ZF and MMSE filters.

2.3. Breadth-First Tree Search Algorithms. For further im-
provement of the communications performance, the MIMO
detection problem can be mapped on a tree search. The
tree search algorithms can be divided into breadth-first and
depth-first search algorithms.

Breadth-first algorithms offer a constant throughput
with a small loss in communications performance compared
to an optimal detection. Among the best known techniques
are the K-best algorithm [12, 13] and the fixed-complexity
detector [14]. While traversing the tree, the K-best detector
keeps the K best nodes in each level. This requires sorting
operations which result in a high implementation cost. The
fixed-effort detector follows a regular tree traversal path
which is determined at design time. This regularization
enables the design of highly-efficient parallel architectures
[14], however, at slightly lower communications perfor-
mance than the K-best algorithm. In general, the communi-
cations performance of breadth-first algorithms depends on
the number of nodes visited in each layer of the tree.

2.4. Depth-First Tree Search Algorithms. Depth-first detectors
apply pruning criteria to remove parts of the tree in the
search to reduce the computational complexity [15]. They
approach the ML solution for hard output and the MAP
solution for soft output. Sphere detectors achieve the best
communications performance among the different detection
techniques, but due to the nature of the depth-first search,
their throughput is variable. The sequential tree search order
makes it difficult to parallelize the detection. There exist
many sub-optimal variants regarding enumeration tech-
nique, pruning criterion, or simplified metric calculations,
for example, [3, 16].

The hardware implementation of sphere detection has
been extensively explored for hard- and soft-output versions,
for example, [17, 18]. Different forms of pipelining have been
proposed to increase the architecture parallelism [3, 19].

2.5. Iterative MIMO Detection and Channel Decoding. In this
paper, we investigate iterative receivers where MIMO detec-
tor and channel decoder exchange reliability information to
increase the communications performance. Therefore, the
aforementioned algorithms have to be adjusted to utilize the
given soft-input information. Studer et al. implemented a
soft-input soft-output extension of the linear MMSE filter
(called MMSE-PIC) in [8]. Breadth-first algorithms have
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been extended to list detectors. Thereby, the breadth-first
algorithm generates a number of candidate vectors which are
stored in a list. The iterative detection process is only based
on the available vectors in the list. In contrast to breadth-
first algorithms, soft information can be directly included in
depth-first sphere detection algorithms, for example, [1, 2].
Witte et al. presented the first implementation of such a soft-
input soft-output sphere detector in [5] based on the single-
tree-search algorithm (STS) of [20].

2.6. State-of-the-Art MIMO Detection Architectures. Archi-
tectures for MIMO detection have been extensively studied
in the literature for all kind of algorithms. Several silicon
implementation results of the proposed MIMO detection
architectures are listed in Table 1.

A fundamental one-node-per-cycle hardware architec-
ture for the hard-output depth-first sphere decoder is
introduced in [3] together with the l∞-norm approximation
for complexity reduction. This architecture has been firstly
extended to a soft-output version in [4] by applying tech-
niques including single-tree-search, sorted QR decomposi-
tion and LLR clipping, and further enhanced to be soft-input
soft-output in [5], to perform iterative MIMO decoding.
Other architectural improvements, such as the modified best
first with fast descent (MBF-FD) MIMO detection [6], and
the parallel and scalable architecture for modified metric
first (MMF) list sphere detection (LSD), have been proposed
to enhance detection efficiency and performance. The basic
architectural considerations for implementing the depth-
first sphere decoders are generalized in [21], from high-level
architecture and enumeration strategy to approximations
and pipeline interleaving.

The architecture for K-best algorithm is modified in [22]
by applying bidirectional partial tree search and hybrid two-
step scheme to reduce complexity. Another similar approach,
namely, the early pruned technique, is applied to reduce the
complexity of the K-best algorithm [7].

Besides the sphere decoders, several other MIMO detec-
tion algorithms have been investigated. In [23], the Markov
chain Monte Carlo (MCMC) simulation techniques are
reported to achieve comparable performance to LSD. The
MMSE-SIC algorithm has also been improved to be soft-
input soft-output and achieve very high throughput by
applying parallel architecture [8].

3. System Model

In this paper, we focus on a bit interleaved coded modulation
(BICM) scheme like that shown in Figure 1. The source
generates a random infoword u of length Kc which is
encoded by the channel encoder. The interleaved codeword
XN consists of Nc bits which are linearly grouped into N
subblocks xn:

XN = (x1, x2, . . . , xn, . . . , xN ). (1)

Each subblock xn consists of Q coded bits:

xn =
(
x1,n, x2,n, . . . , xq,n, . . . , xQ,n

)
, xq,n ∈ {−1, +1}. (2)

Each xn is mapped directly to a complex symbol s =
map(xn) chosen from a 2Q-ary QAM modulation scheme.
MT symbols are combined in one transmission vector st. MT

is the number of transmit antennas:

st =
(
s1,t, s2,t, . . . , sm,t, . . . , sMT ,t

)
. (3)

The whole modulated sequence is represented by

ST = (s1, s2, . . . , st, . . . , sT). (4)

T time slots are needed to transmit all symbols of one
codeword. The transmission of vector st in time step t is
modeled by

yt = Ht · st + nt (5)

with Ht the channel matrix of dimension MT×MR and nt the
noise vector of dimension MR whose entries are zero-mean
and unit variance Gaussian variables. The elements of Ht

are modeled as independent, complex, zero-mean, Gaussian
random variables. Real and imaginary part are independent
variables each with variance σ2 = N0/2. It is assumed that
Ht is ergodic, that is, its entries change independently after
each channel use. Furthermore, Ht is perfectly known by the
MIMO detector and all employed antenna constellations are
symmetric with MT = MR = M. The received vectors yt are
gathered in the matrix YT

YT =
(

y1, y2, . . . , yt, . . . , yT
)

(6)

with

yt =
(
y1,t, y2,t, . . . , ym,t, . . . , yMR,t

)
. (7)

Before the decoding starts, the channel preprocessing
applies a QR decomposition on YT and Ht (for details see
Section 4). This results in the transformed received vectors
ŶT and updated channel matrices Rt. The decoding process is
iterative between MIMO detector and channel decoder. They
exchange probability information on the codeword. The soft-
in-soft-out MIMO detector determines the likelihood of the
bits for each received vector ŷt using the a priori information
La
t from the channel decoder. Only the extrinsic information

λ
e = λ− La is passed on to the channel decoder.

The channel decoder processes the whole codeword at
a time. It uses the interleaved a priori information λ

a from
the MIMO detector for the calculation of the estimated
information bit sequence û and the a posteriori logarithmic
likelihood ratios (LLRs) Λ of the codeword. The extrinsic
information Le = Λ − λ

a is returned to the MIMO detector
thus closing the iterative loop.

4. MIMO Detection

A received symbol vector yt can be seen as a weighted
superposition of the entries of st disturbed by Gaussian
noise. The task of the MIMO detector is the equalization
and separation of the originally sent symbols st. The MIMO
detector works on one received vector yt at a time.
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Table 1: ASIC implementations of recently reported MIMO detectors.

Publication [3] [4] [5] [6] [7] [8]

Algorithm
Hard-output Soft-output SISO Soft-output Hard-output SISO

sphere decoder STS-SD STS-SD MBF-FD K-best MMSE-PIC

Antenna 4× 4 4× 4 4× 4 8× 8 4× 4 4× 4

Modulation 16-QAM 16-QAM 16-QAM 64-QAM 64-QAM 64-QAM

Iterative decoding no no yes no no yes

Constant throughput no no no no yes yes

Technology 250 nm 250 nm 90 nm 130 nm 130 nm 90 nm

Clock frequency 71 MHz 71 MHz 250 MHz 198 MHz 138 MHz 568 MHz

Core area 50 KG 57 KG 96 KG 350 KG 491 KG 410 KG

Max. throughput 169 Mbit/s 70 Mbit/s 72 Mbit/s 429 Mbit/s 1200 Mbit/s 757 Mbit/s

Power consumption — — — 58.2 mW 185 mW 189.1 mW
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Figure 1: System model of bit interleaved coded modulation scheme with iterative MIMO detection and channel decoding in the receiver.

For all detection-related explanations, the time indices of
y, H , and s are dropped for ease of notation. Even if not
mentioned specifically for each equation, the vectors s and
x are always connected via s = map(x). xq,m denotes the qth
bit of the mth symbol in s.

For iterative detection and decoding the MIMO detector
computes logarithmic likelihood values (LLRs) on each bit

λ
(
xq,m

)
= ln

P
(
xq,m = +1 | y

)

P
(
xq,m = −1 | y

) . (8)

For independent xq,m, the probability P(xq,m = +1 | y)
is obtained by summing up the probabilities of all possible
symbol vectors s which contain xq,m = +1:

P
(
xq,m = +1 | y

)
=

∑

∀s|xq,m=+1

P
(

s | y
)
. (9)

Using Bayes theorem, P(s | y) can be expressed as

P
(

s | y
)
= P(s) · P

(
y | s

)

P
(

y
) . (10)

We can observe that the analyzed probability consists of three
parts. P(s) takes into account that not every s is equally

likely given the a priori information La from the channel
decoder. As the codeword is interleaved before the QAM
mapping the bits xq,m are assumed independent from each
other. Therefore, P(s) is the product of its bits’ probabilities:

P(s) =
∏

i

P
(
xq,m

)
. (11)

The conditional probability P(y | s) illustrates how likely it
is to receive the signal y when s has been sent. It equals the
probability of the noise needed to receive y when s is sent
over the channel H. As the noise n is additive white Gaussian
with variance N0, P(y | s) can be written as

P
(

y | s
)
= P

(
n = y −Hs

)
= 1√

2π
e−‖y−Hs‖2/N0 . (12)

The third part P(y) is constant during the detection of y and
is cancelled out when applying (10) and (12) to (8):

λ
(
xq,m

)
= ln

∑
∀s|xq,m=−1 P(s) · e−‖y−Hs‖2/N0

∑
∀s|xq,m=+1 P(s) · e−‖y−Hs‖2/N0

. (13)

The large number of multiplications and the exponential
function involved in the computation of (13) make it less
attractive for implementation. Therefore, it is transformed
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into the logarithmic domain where the exponential func-
tion disappears and the multiplications become additions.
Hereby, a problem is posed by the additions. The Jacobian
logarithm is used to formulate them as

ln(ex + ey) = max∗
(
x, y

)
, (14)

with

max∗
(
x, y

)
= max

(
x, y

)
+ ln

(
1 + e−|x−y|

)
. (15)

The max∗-operation can be approximated by the normal
max-operation. This leads to the Max-Log-Map approxima-
tion [1]:

λ
(
xq,m

)
≈ max
∀s|xq,m=−1

{
lnP

(
y | s

)
+ lnP(s)

}

− max
∀s|xq,m=+1

{
lnP

(
y | s

)
+ lnP(s)

}
,

λ
(
xq,m

)
≈ max
∀s|xq,m=−1

⎧⎨
⎩−

∥∥y −Hs
∥∥2

N0
+
∑
∀q,m

lnP
(
xq,m

)
⎫⎬
⎭

− max
∀s|xq,m=+1

⎧⎨
⎩−

∥∥y −Hs
∥∥2

N0
+
∑
∀q,m

lnP
(
xq,m

)
⎫⎬
⎭.

(16)

Exchanging maximum by minimum operations the next
equation is obtained:

λ
(
xq,m

)
≈ min
∀s|xq,m=+1

{∥∥y −Hs
∥∥2 −N0

∑
∀q,m

lnP
(
xq,m

)}

− min
∀s|xq,m=−1

{∥∥y −Hs
∥∥2 −N0

∑
∀q,m

lnP
(
xq,m

)}
.

(17)

An interpretation for (17) is that we derive the LLR value
λ(xq,m) from the most likely symbol vectors s with xq,m

being +1 or −1, respectively. The metric d(s) measures the
likelihood that a specific vector s has been sent:

d(s) =
∥∥y −Hs

∥∥2 −N0

∑
∀q,m

lnP
(
xq,m

)
. (18)

Small metrics d(s) relate to a high probability of s having
been sent.

Calculating all possible d(s) to determine (17) becomes
quickly infeasible for higher antenna constellations and/or
higher-order modulations as the complexity grows with
2QM . Therefore, many sub-optimal algorithms with lower
complexity exist. Most of them are based on a tree search.
In order to map the metric calculations (18) on a tree, the
channel matrix H is decomposed into a unitary matrix Q

and an upper-triangular matrix R. The Euclidean distance is
rewritten as

∥∥y −Hs
∥∥2 =

∥∥y′ − Rs
∥∥2

(19)

with y′ = QHy. Equation (18) is replaced by the equivalent
metric

d(s) =
∥∥y′ − Rs

∥∥2 −N0

∑

∀q,m

lnP
(
xq,m

)
. (20)

The triangular structure of R allows the recursive calculation
of d(s)

dm = dm+1 + γm
(
s(m)

)
(21)

with the starting point dM+1 = 0 and d(s) = d1. The metric
update γm(s(m)) depends on the partial symbol vector s(m) =
(sm, sm+1, . . . , sM):

γm
(
s(m)

)
=

∣∣∣∣∣∣y
′
m −

M∑

j=m
Rm, js j

∣∣∣∣∣∣

2

−N0

Q∑
q=1

lnP
(
xq,m

)
. (22)

This recursive structure can be represented by a tree with
M+1 levels as shown in Figure 2 for the modulation alphabet
{−1, +1}. The root node corresponds to dM+1 and each leaf
node corresponds to the metric d(s) of one possible vector
s. Each level corresponds to the detection of one symbol
sm. Branches are labeled with an element of the modulation
alphabet. When advancing from a parent to a child node, the
metric of the child node dm is calculated from the metric of
the parent node dm+1 and the branch metric γm.

Based on this tree search, many different MIMO detec-
tion algorithms exist. The main differences between the
algorithms can be described by how they traverse the tree,
for example, breadth-first, depth-first, or metric-first, and
how branches of the tree are excluded. In general, those
algorithms result in different communications performance
and implementation complexities. In the next sections, we
will present two different algorithms and show the trade-offs
between them.

4.1. Sphere Detector. The sphere detector is a depth-first
search which considers all symbol vectors s in the compu-
tation of (17) which lie inside a sphere of radius r around
the received vector y, that is, for which d(s) < r. The radius
r is determined before the search starts. The choice of the
radius offers a trade-off between very good communications
performance and throughput. For a high radius, many nodes
are visited and the resulting communications performance is
close to the optimum. For a low radius, the search is very fast
but the communications performance is degraded.

During the search, the sphere detector may visit many
leaf nodes but only stores the data relevant for the com-
putation of the LLR values (17). Furthermore, sorted QR
decomposition [24] and MMSE preprocessing [10] are used
as additional techniques for complexity reduction.

4.2. Fixed Effort List Detector. A fixed effort detector [25]
generates a list L of leaf nodes and their according Euclidean
distances. It is based on a breadth-first search in which the
number of child nodes is predetermined for every layer of
the tree. Thus, the number of visited nodes is constant for
one so-called node distribution. Typically, in the beginning
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Figure 2: Detection problem represented by a tree for the modulation alphabet {−1, +1} (BPSK) and MT antennas.

of the tree search, many children nodes are visited while, in
lower layers, only one or two nodes are expanded. Therefore,
the use of a sorted QR decomposition which moves the
unreliable layers to the top of the tree is mandatory [14, 24].
Each candidate in the list consists of a bit vector x and the
corresponding Euclidean distance dE.

In order to obtain soft-output LLRs and to be able to
process a priori information, the fixed effort MIMO detector
has to be followed by an LLR generator. In the LLR generator,
the a posteriori LLRs are approximated by (17) but the
minimum search only runs over those vectors s which have
been stored in the list L. Also, the Euclidean distance has been
stored in L and does not have to be recalculated.

5. Results Communications Performance

The design space for iterative MIMO detection and channel
decoding is enormous considering all the possibilities for
sub-optimal algorithms, the choice of the channel code,
scheduling between detector and decoder, channel and
modulation parameters, and so forth. Covering all these
possibilities is out of scope of this paper. Therefore, we
introduce the following restrictions on the design space. As
channel code we employ a WiFi compliant 64-state non-
systematic, nonrecursive convolutional code. The decoding
of convolutional codes is noniterative thus removing the
scheduling problem between inner and outer iterations. We
use code rate 1/2 and code words of 2304 bits. This code
length has been chosen to allow a comparison with existing
LDPC codes of the WiMax, WiFi standards [26]. This in-
depth comparison will be done in a future publication. The
channel is modeled as Rayleigh fading with 4 transmit and 4
receive antennas.

As a first step of the design space exploration we compare
the communications performance for two different MIMO
detection algorithms, namely, the sphere detector and the
fixed effort detector from Section 4. The two algorithms offer
a trade-off between hardware efficiency and communications

efficiency. Two modulation schemes are compared—16-
QAM and 64-QAM—which pose different requirements to
the MIMO detector in terms of complexity.

Figures 3 and 4 show the communications performance
results for the two algorithms for 4 × 4 antennas, 16-
QAM and 64-QAM, respectively. The frame error rate is
measured after the convolutional decoder. The red curves
show the results of the close-to-optimum sphere detector.
The green and blue curves stem from the fixed effort detector
with different list sizes L. We limited the number of outer
iterations to 3. Currently, this is the highest number of
iterations we assume in a hardware realization since the
throughput will linearly decrease with the iterations. Anyway,
additional iterations will not result in a further significant
gain in communications performance [1, 2].

In both figures, we observe a similar behaviour of the
different algorithms. Both, the sphere detector and the fixed
effort detector have their largest gain within the first iteration
(up to 4 dB for the sphere detector and around 3 dB for
the fixed effort detector). Furthermore, the communications
performance of the fixed effort detector depends significantly
on the list size L. Particularly for small list sizes (green
curves), more than one iteration does not significantly
improve the performance anymore. Whereas the difference
between small (green) and big list sizes (blue curves) is small
in iteration 0, it is well known that, for the larger list sizes,
the communications performance is better in successive
iterations. When an extremely large list is adopted (e.g., 1024
for 16-QAM and 4096 for 64-QAM), the performance of the
fixed effort list detector approaches the soft-output depth-
first sphere detector.

Recapitulatory, the most important observations are
listed in the following. After iteration 0, fixed effort and
sphere detector based MIMO detection obtain a similar
communications performance. Both achieve the biggest gain
within the first iteration. The communications performance
of the fixed effort detector depends heavily on the list size.
For small list sizes, no more than one iteration is beneficial
as the decoding process “gets stuck,” that is, does not further
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Figure 3: Communications performance of 4× 4 antennas system,
16-QAM modulation for different MIMO detection algorithms.
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Figure 4: Communications performance of 4× 4 antennas system,
64-QAM modulation for different MIMO detection algorithms.

improve. The best communications performance is achieved
by sphere detection with several outer iterations.

6. Results VLSI Components

In this section, we will present the architectures and imple-
mentation results of the different VLSI components which
will be combined and analyzed as an iterative receiver in
Section 7.

All designs were synthesized in a 65 nm low-power bulk
CMOS standard cell library. Target frequency after place
& route is 300 MHz which is typically used for industrial
designs. In order to ensure 300 MHz after place & route,
synthesis was done with a target frequency of 360 MHz.
We considered the following PVT parameters: Worst Case
(WC, 1.1 V, 125◦C), Nominal Case (NOM, 1.2 V, 25◦C) and
Best Case (BC, 1.3 V, −40◦C). Synthesis was performed with
Synopsis Design Compiler in topographical mode, place &
route (P&R) with Synopsys IC Compiler. Synthesis as well as
P&R were performed with Worst Case PVT settings of the
65 nm library.

6.1. QR Decomposition. From the bunch of existing algo-
rithms, we chose the modified Gram-Schmidt process [27]
to compute the QR decomposition due to its simplicity
and stability when working with finite precision values.
Input and output matrices are quantized with 12 bits for
real and imaginary values, respectively. It has been shown
that this quantization yields only a minor degradation in
system communications performance [28]. The resulting
architecture runs a sorted QR decomposition with MMSE
preprocessing for a 4× 4 channel matrix in 167 clock cycles.
After P&R it has an area of 0.14 mm2 and consumes a power
of 12.0 mW in nominal case when running at 300 MHz.

6.2. Convolutional Decoder. In open-loop systems, convolu-
tional codes can be decoded with the Viterbi algorithm [29]
which provides the ML solution, that is, a sequence of hard
output bits. In closed-loop MIMO systems, however, soft-
output LLR values of the whole codeword are needed for
the outer iterations. Thus, the BCJR algorithm [30] has to
be applied to obtain the soft-output MAP solutions. Input
and output LLR values are quantized with 6 bits each.

State-of-the art convolutional decoders process 1 bit per
clock cycle. Consequently, they obtain a throughput of
300 Mbit/s at a clock frequency of 300 MHz. In [31], a 65 nm
technology Viterbi decoder design has been presented which
is able to run at a clock frequency of more than 300 MHz. It
consumes an area of 0.11 mm2 and has a power consumption
of approximately 40 mW.

Implementations of the BCJR-algorithm for 64-state
convolutional codes are not widely available in the literature.
Therefore, we chose the 180 nm technology decoder design
from [32]. We scaled the original implementation data down
to 65 nm technology yielding an area of 0.31 mm2 and a
power consumption of approximately 240 mW (area scaling
factor: 652/1802, power scaling factor: 651.5/1801.5).

6.3. Sphere Detector. The tree search for sphere detection
can be separated into five basic operations: computing the
interference reduced symbol, enumerating the most promis-
ing children nodes, computing the metrics, processing the
results of the leaf nodes and storing intermediate results and
choosing the next node. In the presented sphere decoder
architecture, each of these operations has been implemented
in a separate block, see Figure 5. The enumeration unit
performs the enumeration of children nodes either based
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Figure 5: Sphere detector architecture.

Table 2: Implementation results of the sphere detector architecture
after place & route for a clock frequency of 300 MHz.

At 300 MHz Sphere Detector

Modulation up to 64-QAM

Antennas up to 4× 4

Area 0.26 mm2

Throughput 38–58 Mbit/s

Power consumption 15 mW

on the interference reduced symbol or based on the a priori
information.

The presented architecture computes two nodes per
cycle in contrast to other depth-first sphere decoders (e.g.,
[3, 5]) which employ a one-node-per-cycle architecture.
This is a new approach which doubles the throughput
compared to state-of-the-art implementations. Its detailed
architecture will be presented in a future publication since
this paper deals with system analysis and the trade-off

between communications performance versus implementa-
tion performance. The sphere detector works with antenna
systems up to 4× 4 antennas and QAM modulation schemes
up to 64-QAM. During run-time, throughput can be traded
off against communications performance by adjusting the
radius. However, due to the nature of the depth-first search,
the throughput is dynamic and varies with the channel
conditions and the outer iterations. After place & route, the
design has an area of 0.26 mm2 and a power consumption
of only 15 mW. The implementation data is summarized in
Table 2.

6.4. Fixed Effort List Detector. The architecture of the fixed
effort list detector supports 16-QAM and 64-QAM modu-
lation. The list size is configurable to be 32 and 128 for 16-
QAM and 64-QAM, respectively. It consists of a list generator
(employing the fixed effort detection algorithm) and an

Table 3: Implementation results for the components of the fixed
effort list detector architecture after place & route for a clock
frequency of 300 MHz.

At 300 MHz Fixed effort detector LLR-unit

Modulation 16-QAM 64-QAM 16-QAM 64-QAM

List size 32 128 32 128

Area 0.36 mm2 0.14 mm2

Throughput 267 Mbit/s 109 Mbit/s 141 Mbit/s 55 Mbit/s

Power 103 mW 118 mW 21 mW 31 mW

individual LLR generator to generate soft-outputs, as shown
in Figure 6.

The list generator is implemented by an eight-nodes-per-
cycle parallel architecture, which processes 8 nodes in each
clock cycle concurrently as a group, with the breadth-first
tree search order. Eight identical units are employed for each
of the main arithmetic tasks, such as enumeration and metric
calculation. After the tree search, a candidate list is sent to the
LLR generator, which receives the a priori data from channel
decoder and computes the extrinsic data. The LLR generator
is also implemented with highly parallel architecture. The
throughput of both, the list generator and the LLR generator,
depends highly on the list size. Implementation results after
place & route are summarized in Table 3.

7. System Analysis

In this section we will investigate the cost for practical
applications with respect to throughput, area, and power.
Therefore, we first introduce a generic architecture frame-
work supporting different MIMO detectors and channel
decoders. After presenting each building block individually
in the last section, we will analyze different aspects of the
components regarding the complete iterative system. The
major problem of MIMO iterative systems with the overall
design decisions is the dynamic constraints for throughput
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and communications performance in different application
scenarios. Thus, we will compare the sphere detector and
fixed effort detector for different scenarios and SNR ranges.
Eventually, we analyze the difference in implementation costs
for open- and closed-loop systems.

7.1. Architecture Framework. We have mapped the iterative
receiver structure from Figure 1 onto a general architec-
ture framework which allows to plug in different MIMO
detectors and channel decoders. The framework—shown
in Figure 7—connects the main building blocks via several
system memories. The area for each memory is shown in
Figure 7. The total area of all system memories is 0.271 mm2.

The iterative receiver structure from Figure 1 is mapped
onto this generic framework. During the inner iterations
of the channel decoder the values in DEC IN might be
updated. Thus, the original information is not on hand
after decoding. The a posteriori LLR values λ have to be
stored in DET OUT in order to be able to extract the
extrinsic information La for the next iteration of the detector.
Interleaver and Deinterleaver tables are stored in INT and
DE INT and are read by interleaver unit Π and deinterleaver
unit Π−1, respectively. We assume that all complex values
require 12 bits for real and imaginary part, respectively, and
that all LLR values are quantized with 6 bits.

In the further analysis, we distinguish between the open-
loop system without feedback between channel decoder
and MIMO detector and the closed-loop with feedback. In
closed-loop systems, all memories are mandatorily required.
When the MIMO detector is processing a codeword, the
decoder has to wait until it is finished and vice versa. Thus,
MIMO detector and channel decoder are never active at the
same time.

For an open-loop system, the architecture framework can
be simplified. First of all, the memories related to the feed-
back loop—DET OUT, DET IN, and INT—are obviously
not needed. But in addition, the QR decomposition can
provide the data as needed for the MIMO detector so the
memories Y HAT and MAT R are not required. While the
channel decoder is working on one codeword the MIMO
detector can already start the next one. In this way, MIMO
detector and channel decoder can both be active at all times.

The only additional requirement to enable full activity is
the doubling of DEC IN. In summary, in open-loop systems
we need an area of 0.123 mm2 for system memories and in
closed-loop systems we need 0.271 mm2.

7.2. Components in the System. In Section 6 the VLSI build-
ing blocks were introduced without any system considera-
tions. In the following paragraphs, we will look at the depen-
dencies between throughput, communications performance,
and different system parameters for each component and
what are requirements on the components in open-loop
and closed-loop receivers. The observations from the next
paragraphs are also summarized in Table 4. The units are
shown in columns next to each other giving a good overview
of individual design problems, throughputs, and constraints.

QR Decomposition. The presented design for QR decom-
position processes matrices for 2 × 2 or 4 × 4 antennas
including the sorting of layers and MMSE preprocessing.
For 4 × 4 matrices, the unit processes 1.8 · 106 matrices per
second consuming 6.68 nJ per matrix. Under the assumption
of a truly ergodic channel, that is, the channel changes
independently after each use, this relates to 28.8 Mbit/s for
16-QAM, or 43.2 Mbit/s for 64-QAM. In contrast to the
MIMO detector, a higher constellation size is beneficial for
the bit throughput of the QR decomposition because the
processing time depends only on the size of the matrix.
In a realistic channel, it is expected that the channel will
stay constant for several channel uses. In this case, the
QR decomposition only has to be done once for several
MIMO vectors and the bit throughput increases. For the
QR decomposition there is no difference between open-loop
and closed-loop systems as the channel preprocessing is only
done once for every channel matrix.

Sphere Detector. The sphere detector architecture detects
MIMO vectors for systems with up to 4 × 4 antennas and
QAM modulation schemes up to 64-QAM. Throughput
and communications performance depend mainly on the
number of visited nodes during the tree search. The sphere
radius offers a good trade-off parameter which regulates the
number of nodes which can be visited. For a low radius, a
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Table 4: Design overview for individual components in open-loop and closed-loop systems. Showing them in columns next to each other
gives a good overview of individual design problems, throughputs, and constraints even if they are not put in a system yet.

Component QR decomposition MIMO sphere MIMO fixed effort Convolutional decoder

Flexibility 2× 2 or 4× 4 matrices
up to 4× 4 antennas, up to
64-QAM

4× 4 antennas, 16-QAM or
64-QAM

code rates 0.5–1

Throughput depends
on

Number of antennas,
sorting, MMSE or
zero-forcing

Modulation, number of
antennas, radius

Modulation, number of
antennas, list size

Constant

Communications
performance depends
on

MMSE/zero-forcing,
sorted/unsorted

radius list size —

Throughput range
(4× 4, 64-QAM)

≥43 Mbit/s (ergodic) 38–58 Mbit/s
109 Mbit/s (fixed effort
det.), 55 Mbit/s (LLR)

300 Mbit/s

Open loop
Best communications
performance

Good communications
performance

Low complexity Viterbi
algorithm with hard
output

Dynamic throughput over SNR List storage not required

Area 0.14 mm2 (P&R) 0.26 mm2 (P&R) 0.36 + 0.14 mm2 (P&R) 0.11 mm2 [31]

+0.06 mm2 memories +0.032 mm2 memories +0.032 mm2 memories +0.032 mm2 memories

Closed loop
No further processing
necessary

Best communications
performance

Gets stuck after 2nd
iteration

BCJR algorithm with
soft-output of the
parity information

Dynamic throughput over
iterations

For one feedback loop good
throughput

Area 0.14 mm2 (P&R) 0.26 mm2 (P&R) 0.36 + 0.14 mm2 (P&R) 0.31 mm2 [32]

+0.11 mm2 memories +0.146 mm2 memories +0.146 mm2 memories +0.016 mm2 memories

+0.32 mm2 list storage

high throughput is obtained at the cost of a reduced com-
munications performance and vice versa for a high radius.

Particularly for iterative receivers, the sphere detector
offers the best communications performance possible. Due
to the depth-first search strategy, the processing time for one
MIMO vector is not constant. In fact, it depends on the SNR
of the current channel realization. So even for one SNR value,
the throughput varies for different MIMO vectors. Generally,
the number of nodes will decrease for higher SNR values.

The throughput also changes over the outer iterations. This is
problematic when a worst case throughput has to be ensured.
Otherwise, there are no changes within the architecture for
open- or closed-loop systems.

Fixed Effort List Detector. The fixed effort detector architec-
ture is optimized for 4 × 4 antenna systems with two node
distributions for 16-QAM and 64-QAM, respectively. This
results in list sizes of 32 or 128 entries. The following LLR
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generator is able to work with list sizes up to 128 entries. The
node distributions determine the number of nodes which
will be visited for one MIMO vector. The choice of the
node distribution, however, varies according to the number
of antennas, the modulation scheme, and the required list
size. The communications performance of the fixed effort
detector is directly influenced by the list size. For small list
sizes, iterative detection and decoding obtain no more gain
after the first iteration. Furthermore, it is mandatory to use
a sorted QR decomposition which moves the least reliable
layers to the top of the tree. Otherwise, the communications
performance drops by several dB. In open-loop processing,
the list which is generated in the FSD can be directly used as
input for the LLR generator. List storage is not required. Like
for the sphere detector, the memories DET OUT, DET IN,
and INT are not needed. When moving to closed-loop
receivers, the lists of all MIMO vectors have to be stored
to be reused in the next iterations. The required memory
is determined by the 64-QAM case with a list size of 128.
For the whole block consisting of 2304 bits, 12288 list entries
with 36 bits are needed. The resulting memory consumes
approximately 0.32 mm2. This shows already why bigger lists
will not be feasible because already for a list size of 128 the
list storage consumes almost the same area as the fixed effort
detector core itself.

Convolutional Decoder. The chosen architecture for con-
volutional decoding processes all code rates ≥0.5. The
throughput is fixed to 300 Mbit/s by the choice of the
architecture independent of the code rate. In the open-
loop system, no feedback information is required, thus
hard-output bits of the information word are sufficient.
In this case, the low-complexity Viterbi algorithm can be
chosen which finds the optimal maximum likelihood (ML)
solution. In the closed loop, however, soft-output LLR values
of the complete codeword are needed as feedback for the
MIMO detector. This requires an extended version of the
BCJR algorithm which also produces LLR values of the
parity information. The introduction of the BCJR algorithm
increases the decoder area from approximately 0.11 mm2 to
0.31 mm2.

7.3. Scenario Analysis. In most publications, MIMO detec-
tors are analyzed as an individual building block. However,
the major problem of iterative MIMO systems are the
dynamics of different system scenarios, for example, differ-
ent throughput and communications performance require-
ments. The argumentation for one specific architecture is
often misleading if it is only based on one specific scenario.
Depending on quality of service or throughput require-
ments, different detection strategies will have advantages.
Arguments for a specific realization can be reversed when
changing the required flexibility or the multiplexing scheme.

In this section, we will analyze and compare sphere
detector and fixed effort list detector in different scenarios.
One part of the scenarios will be communication centric,
that is, what is the cost to reach a certain frame error
rate at a certain signal-to-noise ratio. Other scenarios
concentrate on throughput exploring hardware units and

power consumption in order to reach a certain throughput.
The scenarios combined with the summarized result data are
shown in Table 5. Typically, worst case constraints in systems
are for the highest antenna/modulation system. Thus only
in the 4 × 4 antennas, 64-QAM case is shown within the
presented system examples. For the fixed effort list detector
architecture two LLR units are employed to balance the
throughput between list generation and LLR generation.

For all scenarios, it is assumed that the channel decoder
processes one bit per clock cycle resulting in a throughput of
300 Mbit/s. This is a typical assumption for state-of-the-art
convolutional decoder architectures. While the throughput
of the channel decoder is fixed, the throughputs of the
MIMO detectors vary depending on the chosen scenario
leading to an unbalanced processing time for MIMO detec-
tion and channel decoding. In open-loop systems, MIMO
detector and channel decoder work as a pipeline. The system
throughput is determined by the component with the lowest
throughput only, typically the MIMO detector.

For closed-loop systems, there are two alternatives. Either
two code words are processed in parallel—one in the MIMO
detector and one in the channel decoder—or only one
codeword is processed at a time. Working on the same
codeword in parallel is prevented by the channel interleaver
because detector and decoder always have to wait until the
other one has finished processing the whole codeword. In
the first case all system memories have to be doubled to store
the data of the two code words. Furthermore, for unbalanced
processing the throughput is still determined by the slower
component whereas the faster component is idle for the rest
of the time. On the other hand, if only one code word is
handled by the iterative receiver, every component has to wait
until the other one has finished the current code word but
the memories are not impacted. The system throughput Tsys

in this case depends on the throughputs of MIMO detector
Tmimo and channel decoder Tdec and the number of outer
iterations iter (starting at 0) in the following nonlinear way:

1

Tsys · (iter + 1)
= 1

Tmimo
+

1

Tdec
. (23)

The system throughput decreases linearly with the number of
iterations. As the throughputs of the MIMO detectors largely
vary for the different scenarios we chose the second case for
our analysis; that is, only one codeword is processed at a time.

The scenarios in Table 5 either target a system frame-
error rate of 10−3 at different signal-to-noise ratios or
specific system throughputs ranging from 30 Mbit/s up
to 300 Mbit/s. In the communication centric scenarios, the
current architecture of the fixed effort list detector is able to
achieve the target frame-error rate for the two highest SNR
values at a good system throughput of 110 Mbit/s for open
loop and 40 Mbit/s for closed loop. The average power con-
sumption decreases for closed-loop systems because the list
generator only runs in iteration 0. In the following iterations,
only list storage and LLR unit are active. Theoretically, the
fixed effort list detector can reach the frame-error rate of
10−3 at 18 dB with a list of size 4096 as shown in Figure 4. In
that case, the list storage would increase by a factor of 128 to
approximately 10.2 mm2. The processing units would scale
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Table 5: System perspective constraints for different scenarios for 4 × 4 antenna, 64-QAM systems. The resulting throughput, area, power,
and communications performance are very dynamic. Two different types of scenarios are analyzed: communications centric and throughput
centric. The fixed effort list detector consists of one fixed effort detector and two LLR units.

Scenario description MIMO detector components
Detector

throughput
Detector

area

Power
consumption

detector

System
throughput

Fixed Effort List Detector—Communication Centric

FER = 10−3 at SNR = 22 dB 1 × Fixed Effort List Det., 0 iterations 110 Mbit/s 0.64 mm2 180 mW 110 Mbit/s

FER = 10−3 at SNR = 20 dB 1 × Fixed Effort List Det. + list storage, 1 iteration 110 Mbit/s 0.96 mm2 153 mW 40 Mbit/s

FER = 10−3 at SNR = 18 dB theoretically with list size 4096, not adequate

FER = 10−3 at SNR = 16 dB not possible — — — —

Sphere Detector—Communication Centric

FER = 10−3 at SNR = 22 dB 1 × Sphere Detector, 0 iterations 38 Mbit/s 0.26 mm2 15 mW 38 Mbit/s

FER = 10−3 at SNR = 20 dB 1 × Sphere Detector, 1 iteration 58 Mbit/s 0.26 mm2 15 mW 24 Mbit/s

FER = 10−3 at SNR = 18 dB 1 × Sphere Detector, 1 iteration 0.26 mm2 15 mW

FER = 10−3 at SNR = 16 dB 1 × Sphere Detector, 2 iterations Achievable but T very low (not adequate)

Fixed Effort List Detector—Throughput Centric

T = 300 Mbit/s, 0 iterations 3 × Fixed Effort List Det. 330 Mbit/s 1.92 mm2 540 mW 300 Mbit/s

T = 100 Mbit/s, 0 iterations 1 × Fixed Effort List Det. 110 Mbit/s 0.64 mm2 180 mW 110 Mbit/s

T = 100 Mbit/s, 1 iteration 6 × Fixed Effort List Det. + list storage 660 Mbit/s 4.16 mm2 918 mW 103 Mbit/s

T = 30 Mbit/s, 1 iteration 1 × Fixed Effort List Det. + list storage 110 Mbit/s 0.96 mm2 153 mW 40 Mbit/s

Sphere Detector—Throughput Centric

T = 300 Mbit/s, 0 iterations 8 × Sphere Detector 304 Mbit/s 2.08 mm2 120 mW 300 Mbit/s

T = 100 Mbit/s, 0 iterations 3 × Sphere Detector 114 Mbit/s 0.78 mm2 45 mW 114 Mbit/s

T = 30 Mbit/s, 0 iterations 1 × Sphere Detector 38 Mbit/s 0.26 mm2 15 mW 38 Mbit/s

T = 30 Mbit/s, 1 iteration 2 × Sphere Detector 76 Mbit/s 0.52 mm2 30 mW 30 Mbit/s

by a similar factor depending on the targeted throughput.
Therefore, a list size of 4096 is not feasible.

The sphere detector is able to reach the target communi-
cations performance for all given signal-to-noise ratios with
up to two iterations. However, the throughput is much lower
than for the fixed effort detector. At 20 dB the radius can
be lowered to increase the throughput as a frame-error rate
of 10−3 is achieved easily. At 16 dB, 2 outer iterations are
necessary heavily reducing the throughput to where it is not
adequate anymore.

In the throughput centric scenarios, we analyze which
parallelism is needed for the MIMO detector to reach
a certain system throughput. For open-loop systems, the
system throughput linearly increases with the number of
detector instantiations. For an open-loop throughput of
300 Mbit/s, three fixed effort list detector instances or eight
sphere detector instances are needed. Even though the
MIMO detectors have a throughput higher than 300 Mbit/s,
the system throughput is in this case limited by the channel
decoder running at a constant throughput of 300 Mbit/s.
For most throughput centric scenarios, the resulting area
for both detectors are similar. The power consumption,
however, for the sphere detector is much lower. This can be
explained by the additional power needed for the list storage
and the LLR units on one hand. Furthermore, the fixed

effort detector architecture processes eight different nodes in
parallel whereas the sphere detector is only working on two
nodes in parallel which are siblings in the tree.

In summary, the fixed effort list detector is advantageous
if a high throughput has to be guaranteed at a reasonable
communications performance. However, best communica-
tions performance cannot be achieved because the required
higher list sizes would imply infeasibly huge list storage
memories. The depth-first sphere detector achieves best
communications performance. With multiple instances, the
sphere detector achieves a high throughput at a decent area
and very good energy efficiency.

7.4. Open-Loop versus Closed-Loop Considerations. After
comparing sphere detector and fixed effort detector for
different application scenarios, we will now look at the
effect on the whole system when moving from an open-
loop implementation to a closed-loop implementation. For
this analysis, we set the detector throughput to 300 Mbit/s
balancing the throughput between MIMO detector and
channel decoder.

The power consumption of the system memories does
not depend on a specific detector architecture but only on
the MIMO detector throughput. Based on the number of
accesses (e.g., 4 read accesses on Y HAT per detection),
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Table 6: Difference in implementation cost between an open-loop and a closed-loop system. Area and energy efficiency drop by more than
a factor of 2 for the iterative system.

Open-loop system, 0 iterations Closed-loop system, 1 iteration

Employed MIMO detector Sphere detector
Fixed effort

detector
Sphere detector

Fixed effort
detector

System throughput 300 Mbit/s 300 Mbit/s 75 Mbit/s 75 Mbit/s

Total system area 2.5 mm2 2.3 mm2 2.8 mm2 3.6 mm2

Total system power 180 mW 520 mW 195 mW 365 mW

System area efficiency 120 (Mbit/s)/mm2 130 (Mbit/s)/mm2 27 (Mbit/s)/mm2 21 (Mbit/s)/mm2

System energy efficiency 1.7 bit/nJ 0.6 bit/nJ 0.4 bit/nJ 0.2 bit/nJ
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Figure 8: Power consumption of system memories depending on
the MIMO detector throughput.

we determined the average power for each memory (see
Figure 8). The power consumption of the memories for
closed-loop decoding is approximately twice as high as in
open-loop decoding. This stems from the fact that certain
system memories are not needed in open-loop decoding
(see Section 7.1). The implementation data of channel
preprocessing and channel decoder have been summarized
in Table 4.

Table 6 shows the main characteristics of the resulting
open- and closed-loop systems employing sphere detector
or fixed effort detector, respectively. We determine area
and energy efficiency according to [31]. Higher numbers
represent a higher efficiency. The throughput of the closed-
loop system drops by a factor of 4 because only one codeword
is processed at a time. This scheduling has a positive effect
on the power consumption as each component is only active
50% of the time. The gain in communications performance
by the outer iteration is between 3 and 4 dB. However, it can
be observed that area and energy efficiency do not decrease
by a factor of 2 as might be expected. In fact, the efficiency

of the closed loop-system drops by factors between 3 and 6
compared to the open-loop system.

8. Conclusions

Multiple-antenna systems offer an increased bandwidth
efficiency compared to single-antenna systems. Iterative
receivers which exchange reliability information between
MIMO detector and channel decoder will become manda-
tory in the near future. Choosing the MIMO detector
algorithm and architecture from one of the various existing
approaches has big effects on the complete system. In this
paper, we have compared the depth-first variable throughput
sphere detector to the breadth-first fixed effort detector in
communication centric and throughput centric application
scenarios. The fixed effort detector is advantageous if a high
throughput has to be ensured at moderate communications
performance. However, it has been observed that the sphere
detector shows excellent behaviour for one outer iteration.
Even with multiple instances, it obtains a decent area and
very good energy efficiency.

Furthermore, we have presented an analysis of all
components of the iterative receiver including channel pre-
processing, MIMO detection, channel decoding, and system
memories. We have shown that area and power efficiency
decrease by more than a factor of 2 when changing from an
open-loop decoder implementation to a closed-loop decoder
employing 1 iteration independent of the choice of the
MIMO detector.
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