
A Systematic and Lightweight Method to 
Identify Dependencies Between User Stories 

Arturo Gomez1, Gema Rueda1 and Pedro P. Alarc´on2 

1 Blekinge Institute of Technology 
Sweden 

{argo09,geru09}@student.bth.se 

2 E.U. Inform´atica 
Technical University of Madrid (UPM), Madrid, Spain 

pedrop.alarcon@eui.upm.es 

Abstract . The order in which user stories are implemented can have a 
significant influence on the overall development cost. The total cost of de­
veloping a system is non commutative because of dependencies between 
user stories. This paper presents a systematic and lightweight method 
to identify dependencies between user stories, aiding in the reduction of 
their impact on the overall project cost. Initial architecture models of 
the software product are suggested to identify dependencies. Using the 
method proposed does not add extra load to the project and reinforces 
the value of the architecture, facilitates the planning and improves the 
response to changes. 

Key words: User Stories Dependencies, Agile Development, Dependen­
cies Identification Method, Non Commutative Implementation Cost 

1 Introduction 

The elements that comprise the system under construction interact with each 
other, establishing dependencies among them [1]. In Figure 1, element A re­
quires element B, generating a dependency between them. Such dependencies 
are naturally inherited by the user stories (US i cannot be implemented until 
US j is implemented). Therefore, the natural dependencies between User Sto­
ries (US from now on) should be accepted as inevitable. In fact, only a fifth of 
the requirements can be considered with no dependencies [2]. The existence of 
dependencies between USs makes necessary to have some implemented before 
others [2] [3] [1] [4]. If the order of user stories implementation does not take into 
account these dependencies it may have a large number of preventable refactor-
ing, increasing the total cost of the project needlessly. Identifying beforehand 
the dependencies increases the ability to effectively deal with changes. Therefore 
light systematic mechanisms, as shown in this paper, are needed to help identify 
dependencies between USs. 

The rest of the paper is structured as follows. The second section describes the 
problem of dependencies. The third section defines the concept of dependency 

mailto:pedrop.alarcon@eui.upm.es


Implemented 

by 
Implemented 
by 

Fig. 1. Inherited dependencies by user stories 

between user stories. The fourth section describes the method to identify depen­
dencies. The fifth section presents an example applying the method proposed. 
The sixth section presents related work. Finally, the conclusions are listed. 

2 Problem Description 

The existence of dependencies between USs hampers planning [5] [4]. Not con­
sidering them increases the chances of not complying with the release plans [6]. 
Therefore, the sequencing of USs is seen as a challenge [7]. Depending on the 
established implementation order of USs the number of refactoring may increase. 
For example, suppose that at time t, once the user story US¿ has been imple­
mented, there is a database (DB) in production with the entity T\ and primary 
key k\. At time t+1 , after implementing US¿, the data model shown in Figure 2 
is obtained, in which the primary key of the entity T2 is &2. Given the cardinality, 
the primary key attributes from T2 become part of the table generated for entity 
T\. This will require a refactoring of the DB and all components that access 
T\ and an update of all rows of table T\. If USj had been implemented before 
USj there would be no need to refactor, so the refactoring cost would be zero. 
Hence, due to the existing dependencies, the total cost of developing a system 

N 

Fig. 2. DB in time = t+1 

depends on the order in which the USs are implemented. Therefore, the total 
cost of developing a system is non commutative. Generalizing, if USj depends 
on USj and being C the cost function of implementing a user story in a given 
time t, considering RC as the cost of carrying out a determined refactoring j , 
then: C(USj)t + C(US¿)Í+1 = C(US¿)t + C(USj) í + 1 + RG,-. Note that refac­
toring can become a complex process with a very high cost [8], which is directly 
proportional to the number of implemented user stories [9]. 



3 User Stories Dependency Concept 

This section defines the concepts: Dependency on key (Definition 1) and depen­
dency on service (Definition 2). 

Definition 1. Considering an agile project P, and E as the data model of P. 
Given that US¿ and US¿ are user stories from P that respectively require data 
represented in the entities E¿ and E¿ belonging to E. If after E is transformed 
into the target model (usually relational model) the data structure generated for 
the entity E¿ adds the primary key attributes of the entity E¿, then US¿ has a 
dependency on key with US¿, and it is expressed as: US¿ —> US¿. In Figure 3, 
the following dependencies on key are found: K={US2 —> USi}. 

JUSl) 

El 

{US2} 

E2 

i »si) 

CI 

{U5Z1 

C2 

Fig. 3. Example of simplified conceptual data and component diagram 

Definition 2. Considering an agile project P which has been represented by 
a component diagram C. Given that US¿ and US¿ are user stories from P, which 
are implemented respectively in the components C¿ and C¿ included in C. The 
user history US¿ has a dependency on service with respect to US¿, if and only if 
Cj implements at least one service used by US¿ in Q , expressed as: US¿ —> US¿. 
In Figure 3, the following dependencies on service are found: S={US2 —> USi}. 

Based on the above definitions, the complete set of depencencies is defined 
as: D={K U S}. Note that D can vary because of changes in user stories. 

4 User Stories Dependencies Identification Method 

The dependencies cannot be clearly inferred from the definition of USs. Building 
an initial architecture (data and component models) helps to identify them. Both 
models are transversal to the USs, see architectural models boxes at Figure 4. 
The evaluation of the interaction of each user story with both models allows 
the identification of possible dependencies. The proposed method identifies USs 
dependencies. Its duration depends on the size of the project and the presence of 
the whole team is recommended during its application to gain a project overview. 
It is lightweight in the sense that it does not add load to the project, since the 
activities or products needed are carried out in initial stages. If the USs or models 
change, the identification method should be executed before starting the next 
iteration (see Figure 4). 

To identify dependencies between USs: First, a quick study of user stories de­
fined so far is suggested, generating a simplified data model (without attributes). 
The use of the entity-relationship model is recommended since it helps to gen­
erate an overall view of the system. It is usualy generated in software projects 
and therefore it does not add additional load. Notice that this diagram is not an 



Fig. 4. Proposed method in iterative life cycle 

objective in itself. Its purpose is to identify the elements from the data model 
that each user story requires to be implemented, writing its identifier next to the 
data element required. For example, brackets can be used as shown in Figure 
3. Second, establish the set of dependencies on key from the diagram, according 
to Section 3. To do so, for example, the transformation rules from an entity-
relationship model to relational model can be used. Thus, given two elements A 
and B of a model M, if element A migrates the primary key attributes to element 
B, then the user stories related to B will have dependency on key of the user 
stories related to A. 

To identify dependencies on service it is proposed: First, use a simplified 
component model which will represent the list of user stories identified so far. 
This diagram will include the components identified as well as the service rela­
tionship between them. It has a high level of abstraction that allows to easily 
identify the dependencies on service. Its creation provides a global perspective of 
the system to the team, which is important for understanding the dependencies. 
As in the previous case, this diagram is not a goal in itself. It can be replaced 
by any other that allows identification of such dependencies. The USs involved 
in the implementation of each component should be written within brackets (see 
Figure 3). Second, identify the set of dependencies on service from the diagram, 
according to Section 3. Thus, given two elements A and B of a model M, if the 
element A implements a service required by B, then the user stories related to 
B will depend on the user stories related to A. 

The mechanism to register dependencies is to record them using a directed 
graph like the one shown in Figure 5. Initially, all the USs are represented as 
disconnected vertices. As soon as US¿ —> US¿ is identified, an edge pointing 
USj is drawn between vertices USj and US¿. This representation informs quickly 
about the dependencies among USs. Additionally, it helps to quickly identify 
dependency chains between USs. The graph generated can be used as basis to 
support planning or as an input for well known algorithms [1] [3] to generate an 
implementation sequence that reduces the impact of dependencies. 



When interpreting the results, a vertex without incoming edges means that 
this user story has no dependencies. If a vertex (US¿) has incoming edges but 
these edges come from vertices representing USs already developed, it is also 
considered that US¿ has no dependencies. From the technical perspective, a 
user story without dependencies can be implemented at any time or assigned at 
any release and business value would be the main factor when prioritizing and 
planning it. When planning, the development team must be aware that if a user 
story (USj) is developed and it depends on other USs not developed yet, there 
could be additional costs associated with refactoring and other technical risks. 
The customer should be warned with this information before prioritizing the 
user story. When a user story changes or a new one is introduced, the directed 
graph must be checked to identify the USs that depend on the changed or new 
user story. The architectural elements associated to these dependent user stories 
are more likely to be impacted by this change. Therefore, the set of architectural 
elements that are likely to change is reduced, facilitating the response to change. 

5 Example of Use 

\vSz\ ^U&t<f 

Fig. 5. Original scanned data model from selected US 

This section focuses on a subset of USs extracted from a real project in which 
the authors of this paper participated. This project included the development 
of a software tool called Agile Management Tool (AMT). The subset of user 
stories selected from AMT project is: USi (Create User Stories); US2 (Create 
Iterations); US3 (Create Projects). Due to the paper's size restrictions this sec­
tion focuses only on the data model (see Figure 5). Following the identification 
method proposed, references to USs related to each model element have been 
included. Notice that when the simplified data model is transformed into rela­
tional tables, the primary key attributes from the entity Project (related to US3) 
will migrate into the entity User Story (related to USi), which implies that USi 
depends on US3, therefore an edge from US3 vertex pointing to USi vertex must 
be drawn. This way the team will continue identifying dependencies, generating 
at the end a graph like the one showed on Figure 5. Based on it, the dependency 
set is: D={US3 ->• USi; US3 ->• US2; US2 ->• USi}. Then, from the technical 
point of view, since every user story depends on US3, the recommendation to 
the customer would be implementing US3 first. Otherwise, the cost of refactoring 
should be added to the cost of developing USi, US2 and US3. 



6 Related Work 

Some well known methods consider dependencies such as IFM [1] and Evolve 
[4] [3]. Nevertheless none of them provide a systematic mechanism for identifying 
dependencies between user stories as the method proposed in this paper. In [2] is 
proposed a method to identify dependencies but it relies on pairwise assessment 
among the requirements. This is applicable for a small number of requirements 
but requires too much effort facing a large number of requirements. Mike Cohn 
states tha t if two user stories are dependent they must merge [5]. However, in 
practice it has been seen tha t large user stories tha t cannot be completed in one 
iteration, hinder the feeling of progress and therefore team motivation [7]. 

7 Conclusions 

The implementation cost is non commutative due to the existence of dependen­
cies between user stories. If this fact is obviated, it could generate overrun in 
the development of a product. This overrun comes from unnecessary refactoring 
that could have been avoided with a different implementation order. Two defini­
tions of dependencies have been provided: dependency on key and dependency 
on service. This paper contributes with a very lightweight method tha t identifies 
dependencies between user stories, helping the planning and reducing the tech­
nical risks of the project, while reinforcing the architectural value as a lateral 
effect. Furthermore, if this method is applied at the beginning of the project, 
it helps to create a common perspective of the system. This method has been 
designed to fit in an agile environment, following the agile values and principles. 

References 

1. Denne, M., Cleland-Huang, J.: The incremental funding method: Data-driven soft­
ware development. IEEE Software 21(3) (2004) 39-47 

2. Carlshamre, P., Sandah, K., et al: An industrial survey of requirements interdepen-
dencies in software product release planning. In: RE'01. (2001) 84-91 

3. Greer, D., Ruhe, G.: Software release planning: an evolutionary and iterative ap­
proach. Information and Software Technology 46 (2004) 243-253 

4. Logue, K., McDaid, K.: Handling uncertainty in agile requirement prioritization 
and scheduling using statistical simulation. In: Agile 2008, IEEE CS (2008) 73-82 

5. Cohn, M.: User Stories Applied: For Agile Software Development (The Addison-
Wesley Signature Series). Addison-Wesley Professional (March 2004) 

6. Babinet, E., Ramanathan, R.: Dependency management in a large agile environ­
ment. AGILE Conference (2008) 401-406 

7. Ton, H.: A strategy for balancing business value and story size. In: Proceedings of 
the AGILE 2007, Washington, DC, USA, IEEE Computer Society (2007) 279-284 

8. Ambler, S.W., Sadalage, P.J.: Refactoring Databases: Evolutionary Database De­
sign. Addison-Wesley Professional (March 2006) 

9. Boehm, B., Turner, R.: Balancing Agility and Discipline: A Guide for the Perplexed. 
Addison-Wesley Professional (August 2003) 


