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Abstract—Recent sensors give valuable data for remote sensing
applications. Among these, building and change detection are
important problems. Therefore, researchers worked on these
problems using both 2D and 3D data. Some previous studies
used only 2D data due to their availability. Yet others used either
3D data alone or 2D and 3D data in a joint manner. Besides,
some studies only focused on building detection. Yet others used
detected building information in change detection. In this study,
we focus on 3D change detection based on building information.
Therefore, we first detect buildings. At this step, we benefit from
both 2D and 3D data. Then, we locate changes based on these
detected buildings. We detect building pixels using panchromatic,
multispectral, and Digital Surface Model (DSM) data using a
decision tree classifier. Then, we refine the detected building
pixels using morphological and shape based operations. Finally,
we apply an object based hierarchical change detection method
on the refined pixels. We tested our method on 780 buildings and
obtained promising results.

I. INTRODUCTION

Automatic building and change detection are two important
problems in remote sensing. As the frequency and strength
of recent natural disasters increase, the need for automated
systems for building and change detection also increase.
Therefore, there are many studies on these either in a separate
or joint manner.

The work on building detection can be divided into two
different groups. In the first category, researchers used only 2D
data (panchromatic, multispectral, or both). The rationale here
is that, obtaining the 3D data is hard and expensive. Therefore,
the maximum information from 2D should be extracted in a
cheap and fast manner. In our previous study, we reviewed the
literature on 2D building detection [8]. In the second category,
researchers used either 3D data alone or 2D and 3D data
together [5], [9], [10]. Although 3D data is hard to obtain,
it provides valuable information for both building and change
detection problems. In this study, we benefit from both 2D and
3D data in the building detection part of our method. The 3D
data is obtained from the stereo 2D data pair obtained by the
semiglobal matching algorithm [1].

Change detection methods can be divided into two main
groups as in building detection. In the first category, there
are methods using only 2D data. In these, panchromatic and
multispectral data can be used separately or in a joint manner
[2]. In the second category, 3D information is taken into
account. Adding 3D information to change detection also

allows detecting depth changes. In this study, we benefit from
both 2D and 3D information in the change detection step of
our method.

Our systematic approach is composed of three steps. The
first one is building detection using classification. Here, we
benefit from panchormatic, multispectral, and DSM data from
the region to be analyzed. As we obtain the building pixels, we
apply a shape based refinement method to extract buildings.
Here, we benefit from the box fitting method introduced by
Sirmacek and Ünsalan [7]. Finally, we apply object based
change detection on the extracted building shapes on bitem-
poral images. In the following sections, we provide each step
in detail.

II. CLASSIFICATION BASED BUILDING DETECTION

In our system, the first step is building detection. We
approach this problem in a standard feature extraction and
classification framework. We extract both novel and known
eight features first. Then, we feed them to a decision tree
classifier. Next, we explain these steps in detail.

A. Features Extracted from Panchromatic Images

The first extracted feature is the gray value that is obtained
directly from the panchromatic image. This feature may seem
simple. However, its usage with other features improves the
classification performance. The second extracted feature is the
variance of the gray values. The variance value for a pixel is
calculated by taking a window around it. Our third extracted
feature is based on the highest change in a given window. To
calculate this feature, we take a window centered around the
pixel. Then, we search for the maximum disparity between
this pixel and the others in the window. Again, this feature is
valuable for detecting building and ground passings.

B. Features Extracted from Multispectral Data

We used the multispectral data to extract two features. The
first one is based on the shadow information. We extract the
shadow information using

shadow =
4

π
arctan

(
b− g

b+ g

)
(1)

where b and r represent the blue and red bands respectively.
Shadow information may be used to locate buildings [7].
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It also gives information for detecting building and ground
passings. Therefore, it provides a valuable information.

The second extracted feature using the multispectral data is
the angular vegetation index. This index was introduced by
us in an earlier work to linearize the NDVI [11]. It can be
formulated as

θ = arctan

(
nir − r

nir + r

)
(2)

where nir and r are the near infrared and red bands re-
spectively. By definition, this index gives information on the
vegetation density in a given pixel. Therefore, it can be used
to discriminate background and building pixels.

C. Features Extracted from DSM Data

We extract three features using DSM data. The first feature
is the local height of the pixel. For a selected pixel, (xm, ym),
we define its local height as

Ih = D(xm, ym)−min(W (x, y)) (3)

where, W (x, y) is the subwindow centered around (xm, ym).
This feature may be used to locate buildings based on their
height information. Unfortunately, it has a tendency to connect
closely located buildings.

The second feature extracted from DSM data is the variance
of the height information. Calculating this feature is similar
to the variance feature in panchromatic images. The only
difference is that, here we benefit from the height information
instead of the grayscale values.

The third feature extracted from DSM data is similar to
local thresholding. However, in this feature we calculate the
local height based on the perpendicular two lines crossing the
pixel. Besides, we take the line length as twice the window
size in the first feature. This feature is expected to be helpful
in locating large buildings on a nearly flat surface.

D. Classification with a Decision Tree

The extracted features using panchromatic, multispectral,
and DSM data provide different information. Although, one
may think that the height information is sufficient for build-
ing detection, this is not the case. Tree clusters or natural
hillocks may also be taken as building based on their height
information. Also closely located buildings is a problem. Here,
multispectral data may be of use. However, this may not be
sufficient on bare soil. Therefore, using all extracted features
is a good strategy for building detection.

In this study, we pick the decision tree structure as the
classifier. Decision tree is a supervised learning algorithm [3].
Among other classifiers, it is the simplest and easiest one
to interpret. This algorithm is robust to errors and can be
used even if the training data contains errors. Decision tree
algorithm is in fact a set of rules. From root to leaves, it
asks simple comparison questions. At each node, the algorithm
builds the tree in a greedy manner and chooses the most
informative feature. In this study, we used the ID3 algorithm

to select which feature to test at each node. At each step, the
entropy of the whole training set is measured if a particular
feature for the next step is chosen. In this study, we picked
4300 pixels to train the decision tree. After training, there
remains 40 nodes in our tree. In these, every feature is used
as a rule to classify pixels as either building or non-building.

III. SHAPE BASED REFINEMENT

Pixel based classification does not take the shape informa-
tion into account. Since we focus on building change detection
in this study, we should embed the shape information to our
method. In this section, we provide a way for this purpose.
First, we benefit from morphological operations. Then, we use
a box fitting algorithm to detect buildings in a more refined
manner.

A. Morphological Refinement

The first step in shape based refinement is using morpholog-
ical operations. Here, the aim is removing noisy terms before
feeding them to box fitting. To do so, we first cluster connected
building pixels into five groups based on their pixelwise area.
Then, we apply morphological erosion operation via different
structuring elements for each group. In other saying, we
apply a larger structuring element to larger building pixel
blocks. Similarly, we apply different levels of sized structuring
elements to each building block. Every step eliminates non
building shaped pixel blocks. The remaining pixel blocks are
kept as building centers. They will be used in the box fitting
algorithm next. As we localize center pixels, then we apply
morphological dilation operation to obtain the original sized
building pixel blocks.

B. Box Fitting based Refinement

The second step in shape based refinement is the box fitting
method. In the initial version of this method, the box was
fit to the target object in one orientation [7]. In the final
version of the method, this shortcoming is overcome. A small
rectangle is gradually grown starting from the center of the
building (seed point). When the rectangles hits the edges of
the building the growing stops. This operation is done at
different angles. For each angle an energy is calculated which
is the sum of minimum distance between virtual building edge
pixels and real building edge pixels in perpendicular direction.
Then the box with the smallest energy is picked. There are
some complex buildings that can not be represented with a
single rectangle. Sirmacek et al. also improved the method
for complex building shapes [6]. They extracted the skeleton
of the building, found junction points and divided building
into elongated segments. therefore, they can fit rectangles on
each segment of the building.

We also propose similar method for complex building
shapes. We represent the building with more than one rect-
angle. However, we don’t find junctions of the building for
this purpose. First, we fit a rectangle for the complex shape
building. If the ratio of the rectangle area to the building
area is less than 90%, then we subtract the rectangle pixels
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from detected building pixels and morphologically clean the
remaining small parts. Then, we select the biggest remaining
area and find another seed point for fitting another rectangle.
We do this iteration until the total area of the rectangles
exceeds at least 90% of the building area. Using this method,
complex building shapes can be represented with more than
one rectangle.

IV. CHANGE DETECTION

There are many studies in the literature using the error-prone
bitemporal DSMs in a subtraction process for detecting change
[4], [9], [10]. Unfortunately there are many unwanted results
of DSM subtraction. Viewing angle of the sensor, illumination,
outliers, tree(s) etc. cause unwanted results on the generated
DSM. There are also some cases that DSM subtraction would
give misleading results. Assume that there are two buildings.
Then they are demolished and one new building (different
sized in vertical and horizontal) is constructed at the same
area. Subtracting DSM will not give the correct result in this
case. Therefore, we consider object based change detection in
this study.

For object based change detection, we detected building
boundaries and represented them with rectangles in the pre-
vious section. Using these and related DSM information,
we detect changed buildings from bitemporal images. Our
systematic approach is as follows. First, we analyse bitemporal
images for finding missed buildings in the detection step.

If one building is detected in the first (or second) bitemporal
image and not detected in the second (or first) bitemporal
image, then we compare the height information for the same
area. If the height of the area is similar in both images, then we
accept it as a building and correct the building detection step.
If a building is not detected in both images, then it will also
be not used in change detection. After this correction method,
we proceed to building change detection.

We apply our building change detection method on separate
buildings. Here, there can be four different change detection
category. These are:

• Category 1: No building to building or building to no
building change.

• Category 2: Same building with height change.
• Category 3: Two buildings to one building or one building

to two buildings change.
• Category 4: Different buildings with height and size

change.
Following are the examples for the above categories. If a

building is collapsed or a new building is constructed, then it
will be in the first category. If the size of a building is not
changed, but its height changes then it will be in the second
category. If there were two buildings (or one building) in the
first time and one building (or two buildings) in the second
time at the same area, then it would be in the third category. If
a building is collapsed and a new building is constructed with
different size, then it will be in the fourth category. Therefore,
for each category we use the detected building area and DSM
information to find building change category.

Our change detection approach is a hierarchical structure
where we detect every change category in an order. First we
detect the fourth category changes. If there are buildings in this
category, then we discard them in further processing. Then we
find the changed buildings in the first category. We discard
these also in further processing. Next, we check changed
buildings in the second category. Finally, we detect changed
buildings in the third category.

V. EXPERIMENTS

In this section, we test the strengths and weaknesses of
our building and change detection methods. First, we evaluate
the building detection performance of our method. Then,
we test the change detection performance. In both tests, we
benefit from WorldView-2 satellite images and the DSM data
extracted from them.

A. Building Detection Performance

Our bitemporal test images contain 381 buildings in time-
1 and 399 buildings in time-2 with different size and shape
properties. We provide the building detection performance on
these images (in terms of True Detection ’TD’ anf False Alarm
’FA’) in Tables I and II. As can be seen in these tables, the
overall true detection performance of our method is 91.3% and
90.4% for both times respectively.

TABLE I
BUILDING DETECTION PERFORMANCE ON BITEMPORAL IMAGES IN

TIME-1.

Image Name # Buildings TD FA
Istanbul1(t1) 141 130 2
Istanbul2(t1) 75 68 1
Istanbul3(t1) 81 72 2
Istanbul4(t1) 84 78 1
Total 381 348 6

TABLE II
BUILDING DETECTION PERFORMANCE ON BITEMPORAL IMAGES IN

TIME-2.

Image Name # Buildings TD FA
Istanbul1(t2) 146 135 3
Istanbul2(t2) 79 72 2
Istanbul3(t2) 85 73 2
Istanbul4(t2) 89 81 0
Total 399 361 7

We provide the detected buildings as well as the ground
truth for four Istanbul images in Fig. 1. We can analyze the
performance of our building detection method on these images
in detail. Unfortunately, some closely located buildings are
missed by our method. In some cases, DSM of the building
is not generated. This might be caused by matching errors,
interpolation technique or viewing angle of the sensor in the
DSM generation step. Therefore, our decision tree algorithm
can not detect the building. Some false alarms are mainly
because of closely located buildings such that the space
between them is detected as a building.
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Fig. 1. Detected buildings in time-1 and time-2. Each row corresponds to one
bitemporal Istanbul image set (from the first to the fourth). The first column
corresponds to time-1 and the second column to time-2.

B. Change Detection Performance

We analyze the change detection performance of our method
based on four categories given above. Based on this definition,
we provide the results for each bitemporal image set and
change category separately in Table III. In this table, we
provide the detected vs the actual number of changes in
fractional form. In all four categories, there are total of
31 changes and our system was able to detect 29 of them
correctly. There are two missed detections and one false alarm.
Missed change detections are because of missed building in
the bitemporal image set. The false alarm is caused by very
different DSM information of the same building in two images.
This may be because of the viewing angle of the sensor.

TABLE III
BUILDING CHANGE DETECTION PERFORMANCE OF OUR METHOD.

Image Set C1 C2 C3 C4
Istanbul1 6 / 6 - / - 1 / 1 - / -
Istanbul2 9 / 10 - / - - / - - / -
Istanbul3 5 / 6 1 / 1 - / - - / -
Istanbul4 5 / 5 - / - - / - 2 / 2
Total 25 / 27 1 / 1 1 / 1 2 / 2

In Fig. 2, we provide the detected changes for all our
bitemporal image set. In this figure, we apply following the
color code to discriminate change categories: Category one
is represented by yellow; category two is represented by
magenta; category three is represented by green; category
four is represented by red. The reader may check the change
detection performance of our method visually by looking at
this figure.

VI. FINAL COMMENTS

In this study, we proposed a method for building and
change detection using multi-source data and shape informa-
tion. Therefore, we benefit from panchromatic, multispectral,
and DSM data. First, we extract novel and known features
using these data. Then, we used them in a decision-tree to
eliminate non-building areas in pixel wise manner. We then

Fig. 2. Change detection results on four bitemporal Istanbul images. First
column corresponds to time-1, the second column corresponds to time-2, the
third column corresponds to the categorized changes.

refined building pixels by shape information. This was for
building detection. We tested this step on a large and diverse
data set and obtained promising results. Then, we used the
detected buildings on change detection. Our change detection
method is based on objects. It also has a hierarchical structure.
Test results on four bitemporal images show the effectiveness
of our method.
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