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One of the main requirements of tumor extraction is the annotation and segmentation of tumor boundaries correctly. For this
purpose, we present a threefold deep learning architecture. First, classifiers are implemented with a deep convolutional neural
network (CNN) and second a region-based convolutional neural network (R-CNN) is performed on the classified images to
localize the tumor regions of interest. As the third and final stage, the concentrated tumor boundary is contoured for the
segmentation process by using the Chan–Vese segmentation algorithm. As the typical edge detection algorithms based on
gradients of pixel intensity tend to fail in the medical image segmentation process, an active contour algorithm defined with the
level set function is proposed. Specifically, the Chan–Vese algorithm was applied to detect the tumor boundaries for the seg-
mentation process. To evaluate the performance of the overall system, Dice Score, Rand Index (RI), Variation of Information
(VOI), Global Consistency Error (GCE), Boundary Displacement Error (BDE), Mean Absolute Error (MAE), and Peak Signal to
Noise Ratio (PSNR) were calculated by comparing the segmented boundary area which is the final output of the proposed, against
the demarcations of the subject specialists which is the gold standard. Overall performance of the proposed architecture for both
glioma and meningioma segmentation is with an average Dice Score of 0.92 (also, with RI of 0.9936, VOI of 0.0301, GCE of 0.004,
BDE of 2.099, PSNR of 77.076, and MAE of 52.946), pointing to the high reliability of the proposed architecture.

1. Introduction

Medical image classification and segmentation is a field,
where deep learning canmake a huge impact with promising
results. It facilitates the automation of noninvasive imaging-
based diagnosis. Interestingly, computer-aided brain tumor
diagnosis has effectively utilized the advances in medical
image processing in the past and has opened up many
promising research activities in the domain of deep learning,
with the expectation of developing entirely computerized
automatic accurate diagnostic systems for physicians.

A brain tumor is a mass or growth of abnormal cells in
the brain which might be cancerous (malignant) or non-
cancerous (benign). +e early, comprehensive diagnosis and
proper treatments are essential for a patient’s survival in
brain tumor management. During the past decades, more

than 120 types of brain tumors were discovered by medical
scientists. +ese brain tumors can be broadly categorized
into two main groups, namely, primary brain tumors, which
originate in the brain itself and secondary deposits in the
brain, where the primary tumor is elsewhere in the body [1].
Typically, noninvasive medical imaging techniques such as
Computer Tomography (CT) and Magnetic Resonance
Imaging (MRI) are favoured as brain tumor identification
tools at the initial stages, over incursion invasive procedures
like tissue biopsies [2, 3]. +e authors in [4] found that CT,
MRI, and Positron Emission Tomography (PET) usage has
increased by 7.8%, 10%, and 57%, respectively, during the
period of 1996–2010. Furthermore, as of healthcare resource
statistics of the EU for 2020 [5], the EU Member States have
shown a widespread increase in the availability of medical
imaging technology and equipment for diagnosis in the
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recent decades. Moreover, according to [6], the overall
employment of radiologic and MRI technologists grows
faster than the average for all occupations in the USA. All
these findings confirm that medical image-based diagnosis is
favoured in the modern healthcare system.

Image classification and segmentation have shown rapid
growth during the past two decades with the introduction of
machine learning and computer vision techniques. Deep
learning has found applications in medical imaging as in
identifying local anatomical characters, detecting organs and
body parts, and identifying cells of different shapes and sizes
[2]. A review of the related works [4] shows that a con-
siderable portion of the latest research on image analysis uses
a deep convolutional neural network (DCNN) for both
image classification and segmentation [7]. Multimodal Brain
Tumor Segmentation (BRATS) challenge is the main
competition on brain tumor classification which is orga-
nized by the Perelman School of Medicine at the University
of Pennsylvania, Centre for Biomedical Image Computing
and Analytics (CBICA) from 2012 onwards. +e BRATS
challenge focuses on automating brain tumour detection
and the survival rate estimation techniques and algorithms.
Each year, the dataset is updated and the overall perfor-
mance of the proposed algorithms has shown a tremendous
improvement over time. On the whole, the accuracy of the
algorithms proposed using the BRATS dataset falls around
90% [8–10]. Some of these algorithms were developed using
classical CNN architecture whereas some are developed
using improved CNN algorithms like U-net [11] and
superpixel-based extremely randomized trees [12].

Another popular and publicly available brain tumour
dataset is the Figshare MRI dataset [13, 14] which is the
dataset employed in this paper. Due to the easy accessibility
and the ready availability, the Figshare MRI brain tumour
dataset also has been used in many brain tumor classification
and segmentation related research [15–18]. +e dataset,
which was initiated in 2015 and last updated in 2017 [13, 16],
carries an average classification accuracy in the range of
90–95% [14, 16, 19, 20]. +e authors in [16] achieved a
classification average of 95% accuracy by using a modified
CNN architecture while the authors in [15] achieved around
96% accuracy with an automatic content-based image re-
trieval (CBIR) system. A deep network was enhanced by
employing cross channel normalization (CCN) and para-
metric rectified linear unit (PRELU) in [18] for brain tumor
segmentation.

Although the convolutional neural network (CNN) has
achieved a considerable performance gain in the medical
image classification [14] and segmentation tasks, it is as-
sociated with a significant increase in the computational
cost, especially when high-resolution images are analysed. In
general, an object detection algorithm draws a bounding box
around the object of interest in the image. In a classical
automated system, this can be achieved by using a typical
convolutional network, followed by a fully connected layer.
However, when the number of objects required to be de-
tected is not a fixed number, it is difficult to proceed with the
above approach as it requires defining the length of the fully
connected layer at the initial design stage.

In the previous work by the authors, a region proposal
algorithm is proposed to address the problem of selecting a
random number of objects in a single region [21, 22]. In the
proposed method, instead of searching the entire image for
the number of objects, the algorithm searches for objects in
several selective areas of the image, while treating each
subregion as an independent subimage. In [21], a fully
autonomous learning algorithm was constructed using
Region-based Faster Convolutional Neural Network (Faster
R-CNN) to localize the meningioma tumor regions in MRI.
Once the tumor is localized, Prewitt and Sobel edge de-
tection algorithms are applied to the localization output,
with the expectation of detecting the exact tumor boundary.
Both of these techniques compute an approximate tumor
boundary using the gradient intensity function of the image
[23]. As MRIs on the whole consist of Rician noise and edges
are not defined only by gradient, these algorithms under-
perform in this task. In practice, the effectiveness of the
developed deep learning models to make informed decisions
are evaluated through accuracy and system loss. Going
beyond simple accuracy, standard mathematical objective
parameters such as precision, recall, and Dice Score are
utilized to choose the best model for the given problem.
Furthermore, graphical representations such as confusion
matrix and receiver operation characteristic (ROC) too are
utilized to evaluate the performance of the deep learning
model. A confusion matrix is a two-dimensional matrix
which summarises the performance of the classification
algorithm. One dimension of the matrix represents the true
classes of an object while the other represents the class that
the classifier predicts [24, 25]. +e ROC curve is also a two-
dimensional plot which illustrates how well a classifier
system works as a discrimination cut-off value is changed
over the range of predictor variable [25].

In the research presented, we outline an automated
systematic approach to classify, segment, and extract the
exact tumour boundary from MRI images. +e key con-
tribution of this research can be summarised as follows:

(1) We present a simplified CNN architecture based on a
small number of layers and faster R-CNN, for the
classification of axial MRI into glioma and menin-
gioma brain tumors and produce a bounding box of
the tumor with a 94% of accuracy confidence level
[21, 22]. One of the key challenges in medical image
analysis is the scarcity of the labelled data. Hence, in
this research, we specifically focus on applying
R-CNN based tumor localization for a scenario with
a lower amount of annotated data. Specifically, we
have used a dataset with less than 500 axial MRI
images for our research. Furthermore, we kept our
network simple, to reduce the total number of
trainable parameters.

(2) +e exaction of the exact tumor boundary was
performed by means of an unsupervised active
contour detection method, developed by means of
Chan and Vese [26] algorithm. One of the inherent
drawbacks of using active contour algorithms for
segmentation is the requirement of the initial search
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area. Without a correct initial search area, the al-
gorithm is at the risk of segmenting unwanted re-
gions in the brain MRI, such as the orbital cavity and
lateral ventricles. In this research, we used tumor
bounding box coordinates obtained at faster R-CNN
based localization step as the initial search area for
the Chan–Vese algorithm to obtain a refined seg-
mentation of the tumor. +is in turn reduces the
search area of the Chan–Vese algorithm and helps
the algorithm to converge to an accurate boundary in
a shorter time frame. +e resultant segmented
boundary carries a high accuracy according to ob-
jective quality evaluation measures, compared to the
state of the art.

In this article, we were able to present an end to end
complete systematic approach for both meningioma and
glioma tumor detection and segmentation using MRI. +e
complete system comprises 3 main subsystems: brain tumor
classification using a simple CNN algorithm, Faster R-CNN
based network for tumor localization, and finally the
Chan–Vese algorithm for exact tumor segmentation. All
three algorithms were connected in a cascade manner, with
the final deliverable as the exact tumor boundary for seg-
mentation purpose for any given axial brain MRI.+e rest of
the paper is organized as follows: In Section 2, we present a
summarised overview of the proposed framework. Section 3
briefly outlines the theoretical background of the research.
+e methodology adopted for the dataset preparation,
classification, segmentation, and contouring is presented in
Section 4. Section 5 presents the performance analysis, using
objective matrices, whereas Section 6 discusses and com-
pares our proposed architecture against the existing works in
the literature. Finally, Section 7 concludes the paper.

2. Architecture of the Proposed Algorithm

In this paper, we propose a threefold complete architecture
to classify and segment brain tumors using a T1 weighted
MRI sequence. +e proposed system architecture consists of
three cascaded algorithms, namely, in the order of appli-
cation, convolutional neural network for classification,
Faster R-CNN for tumor localization, and Chan–Vese al-
gorithm for precise tumor segmentation. +e flow diagram
of the complete architecture is illustrated in Figure 1. More
details of the proposed system can be found in Appendix.

Initially, a downsampled MR image is fed into a typical
CNN to be classified as Meningioma or Glioma. +en, at the
second stage, the classified image goes through a faster
RCNN for tumor localization. +e faster RCNN model
adopted uses the pretrained weights generated using COCO
net data for its feature extracting CNN, which is followed by
a Region Proposal Network (RPN) and a classifier. +e
output of this second step is a boundary box around the
tumor in 128∗128 downsampled image. As the third step,
these boundary box coordinates are mapped to 512∗512
image with the original resolution, and the Chan–Vese al-
gorithm is applied only for the boundary box area. +is
approach assures that the Chan–Vese algorithm converges

to an accurate boundary. Hence, we were able to obtain a
much precious boundary for tumor segmentation within a
low computational time.+e outputs obtained at steps 2 and
3 are presented in Figure 2.

3. Background Works

3.1. Basic Operation of CNN and R-CNN. CNN is a class of
layered deep neural network architecture built using con-
volution, activation, pooling, and fully connected layers to
analyse visual imagery. +e convolutional layer uses a set of
learnable filters with different sizes to extract various feature
maps to learn the correlation between neighbouring pixels,
while drastically reducing the number of weighted param-
eters. +e pooling layer introduces nonlinear downsampling
to the system architecture while the activation increases the
nonlinear properties of the decision function of the overall
network independent of the convolution layer. Followed by
several combinations of convolution, pooling, and activa-
tion, CNN has the fully connected layers, where high-level
decision-making takes place. At the final stage of the design,
the dense layer or loss layer maps the trained outcome with
the predefined output class. In a fully connected CNN ar-
chitecture, these operations are executed forward and
backward, through forward learning and backpropagation as
a designed architecture fine-tune, that is, training cycle, to
optimize the decision-making capacity of the CNN
architecture.

+e R-CNN is an object detection and localization
mechanism evolved from CNN architecture. It is a region-
based segmentation method which follows segmentation
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CNN network for classi�cation 
conv layer with 20 3 × 3 kernels + Relu activation 

+ maxpool 2 × 2 
conv layer with 10 3 × 3 kernels + Relu activation 

+ maxpool 2 × 2 

Preprocessing
(downsampled to 

128 × 128)

Tumor localization with faster 
R-CNN with RPN using coco net 

weights (transfer learning)

Postprocessing
(contrast adjustment and 
histogram equalization)

Apply Chan–Vese algorithm 
for segmentation 
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and tumor localization 
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Figure 1: Proposed algorithm.
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using a recognition approach. It first extracts the free-form
regions of interest from the input image and then conducts
region-based classification on the extracted region of interest
(ROI). +e faster R-CNN consists of two main subnetworks,
R-CNN and RPN [27]. RPN itself narrows down the number
of search regions in the image by generating anchors as in
Figure 3 and works as a classifier that trains CNNs to classify
these selected ROIs, called hereafter “region proposals,” into
object categories. At first, R-CNN takes an input image and
segments it into many subimages called regions with dif-
ferent dimensions. Next, each region is treated as an isolated
image, and this isolated image is classified into a predefined
set of object labels. Finally, a greedy algorithm is used to
recursively combine subimages with similar regions to
generate the region proposals with the predicted object
labels.

R-CNN uses selective search algorithms to select these
ROIs that lead to a huge computational cost and slow re-
sponse rate as it initially generates over 2000 regions for each
input image. Hence, RPN based bounding box detection
algorithm was introduced into Faster R-CNN as the cost of
generating region proposals is quite smaller in RPN com-
pared to the selective search algorithm [27]. +e significant
difference between the two techniques is that the R-CNN
uses the region proposals at the pixel level as input, whereas
Faster R-CNN uses the region proposals at feature map level
as its input. In general, RPN generates 9 anchors using the
input image as in Figure 4 and predicts the probability of an
anchor being in the background or foreground. Based on
two significant factors, positive or negative labels were
assigned to these anchors. It is observed that anchors which
have higher intersection-over-union (IOU), correspond
with the ground truth box. Hence, if an anchor and ground
truth’s IOU overlap is over 0.7, the anchor target gets a
positive label, and if it is less than 0.3, the area is given a
negative label [27]. +e anchors where IOU lies between 0.3
and 0.7 (0.3< IOU< 0.7) are not followed through for

learning. +e training phase of the RPN network is based on
the loss function in (1), which is defined using the values
assigned to the anchors:

L pi{ }, ti{ }( ) � 1

Ncls

∑
i

Lcls pi, p
∗
i( ) + λ

1

Nreg

∑
i

p
∗
i Lreg ti, t

∗
i( ),
(1)

where i is the index of an anchor in a minibatch, pi is the
predicted probability of an anchor i being an object, ti is
the vector representing the 4 parameterized coordinates of
the predicted bounding box, Lcls is the classification loss (log
loss over two classes), Lreg is the regression loss, Ncls is the
minibatch size, and Nreg is the number of the anchor
locations.

It should be noted that when defining the loss
function of the RPN for training purposes, a binary class
label was assigned to each anchor. If the desired object is
inside the anchor, the algorithm assigns 1 for p∗i to in-
dicate a positive anchor, whereas 0 is assigned to indicate
a negative anchor. t∗i is that of the ground truth box
associated with a positive anchor. +e regression loss,
Lreg, of the loss function, adopted in faster R-CNN is
defined as

Lreg ti, t
∗
i( ) � R ti − t

∗
i( ), (2)

where R represents robust loss function. It should be noted
that the regression loss is activated only for positive anchors
(p∗i �1) and is disabled otherwise (p∗i � 0), due to p∗i Lreg
term in (1).

A trained RPN generates different sizes of feature maps
as its output. As it is not easy to work with different sizes of
feature maps, ROI pooling splits the input feature map into
equal size regions and applies max pooling to every region. It
is worth noting that, the output of the ROI pooling is always
independent of the input size.

(a) (b)

Figure 2: (a) Brain tumor localization bounding box obtained at step 2 (after Faster RCNN). (b) Tumor segmentation output obtained at
step 3 (after Chan–Vese).
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3.2. Chan–Vese Segmentation. In image processing, many
edge detection techniques based on the gradient of intensity,
such as Sobel, Prewitt, and Roberts, are used for object
boundary detection and segmentation [23]. In MRI, it is
challenging to get accurate boundary detection using these
operators as MRI itself contains Rician noise, which causes
irregularities in the edge estimation. As both Rician noise
and the edges of the image contain high-frequency com-
ponents, it is challenging to get accurate results with these
edge detection operators which depend on the gradient of
the intensities. In [28], although Gaussian smoothing filters
were used to reduce the Rician noise, it resulted in blurred
and distorted MRI, which may lead to erroneous diagnosis.
+erefore it is worthwhile to exploit the edge detection
algorithms which are not defined based on the gradient of
the intensity for MRIs.

As an alternative to the edge-based segmentation, active
contour or Snake models [29] were developed for image

segmentation which is governed by the gradient variation of
the pixels. It starts with an initial estimation of the boundary
curve plotted around the object of interest. With iterations,
the estimated boundary moves towards its interior and stops
on the true boundary of the object based on an energy
minimizing model [30]. Even though active contouring
performs better than the operators that depend on the
gradient of intensity, the final output is sensitive to the initial
condition of the algorithm. Hence, it is critical to set the
correct boundary box at the beginning of the algorithm.
Furthermore, the difficulties associated with topological
changes, like merging and splitting of the evaluation curve,
contribute to the active contour algorithm being a less
popular choice for the segmentation problem.

Although there exist many algorithms with improved
segmentation methodologies based on active contour al-
gorithm, the level set method performs better with the noisy
images [31, 32]. A level set method is a powerful tool for

Figure 4: 9 anchors used by RPN at (320, 320).
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Figure 3: Region Proposal Network.
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contour evaluation which easily reins the topological
changes like merging and splitting, which is difficult to tackle
with classical active contour models [30]. In literature, the
level set function is denoted as ∅(i, j, t), where i, j are
coordinates of the image and t is the artificial time. Seg-
mentation is defined as two regions where {∅< 0} belongs to
region 1 and {∅≥ 0} belongs to region 2. +e output of the
level set function, edge contour, is defined in the literature
using i, j;∅(i, j, t) � 0{ }. +is approach is used in Chan–
Vese algorithm to form the level set function [30].

+e Chan–Vese model, which is based on the Mum-
ford–Shah functional for segmentation [14] is used to detect
objects whose boundaries are not necessarily detected by the
gradient [30, 33]. Mumford–Shah model is based on energy
function and it finds a pair of (u, C) for a given input image
u0. Here, C denotes a smooth and closed segmentation curve
of the object and u represents a nearly piecewise smooth
approximation of the given image. +e Chan–Vese algo-
rithm presents an alternative solution to the Mumford–Shah
model. It refers to the fitting energy function and achieves
minimization through solving the following equation:

E
CV
(c1, c2, C) � μ · Length(C) + λ1

· ∫
inside(C)

u0(x, y) − c1
∣∣∣∣ ∣∣∣∣2dxdy

+ λ2.∫
outside(C)

u0(x, y) − c2
∣∣∣∣ ∣∣∣∣2dx,

(3)

where μ, λ1, and λ2 are positive constants. Typically,
λ1 � λ2 � 1, c1 and c2 are intensity average of the given image
μ0 inside C and outside C, respectively. +is minimization
problem can be solved by replacing the curveCwith the level
set function ϕ(x, y). If ϕ(x, y)> 0, the point (x, y) is inside
the C, and if ϕ(x, y)< 0, the point (x, y) is outsideC. In
addition, (x, y) is on the curve if ϕ(x, y) � 0. For further
details on the Chan–Vese model, the reader is directed to
[30, 33–35]. +e advantage of this method is that even if the
image is very noisy and initial conditions are not well de-
fined, still the locations of the boundaries are accurately
estimated by the model.

4. Materials and Methods

4.1. Preparation of the Dataset. T1-weighed MRI brain tu-
mor dataset presented at [13, 36] is used in this research. It is
a collection of MRI data from Nanfang Hospital, Guangz-
hou, China, and General Hospital, Tianjing Medical Uni-
versity, China from 2005 to 2010. It was first published
online in 2015, and the last updated version was released in
2017. It has been extensively used in MRI tumor analysis
research recently [16, 18, 37]. We have employed the
updated version (in 2017) of the dataset for training, testing,
and validating of the proposed system. +is dataset presents
MRIs of coronal, sagittal, and axial plan, of 233 patients with
3 types of brain tumors, namely, meningioma (708 slices),
glioma (1426 slices), and pituitary tumor (930 slices). +e
total images in the dataset are 3064 MRIs. Since this research
only addressed the classification between meningioma and
glioma, the pituitary tumor images were discarded at the

preprocessing stage. +en, the authors use only the axial
MRI of meningioma (119 slices) and glioma (138 slices)
tumors for the segmentation task. Hence, this research
evaluates the performance of faster R-CNN under a smaller
annotated dataset environment.

4.2. Preprocessing and the Parameter Setting. At the pre-
processing stage, the input images were resized into
128×128 as it was not feasible to train the neural network
with the original size of 512∗512. Yet, some finer features of
the input, present at original resolution, could be lost during
the downsampling process, reducing the sensitivity of the
output by a small fraction. Nevertheless, we have down-
sampled the input image to 128×128 to reduce the com-
plexity of the network with the objective of reducing the
training of the network. Initially, the dataset is randomly
split into 3 sets as training, testing, and validation with the
ratio of 0.70 : 0.15 : 0.15, and 5-fold cross-validation is ap-
plied to the training set with the scikit-learn library of
python. Batch normalization was applied to input image to
rearrange the input intensities to the scale 0-1.

4.3. Applying Chan–Vese Segmentation. After extracting the
bounding box through the proposed Faster R-CNN based
model, a segmentation algorithm is applied to obtain a
precise tumor boundary definition. As the first step of the
segmentation process, the bounding box obtained at faster
R-CNN from the downsampled 128∗128 image was mapped
to the original image size 512∗512. +en, general image
preprocessing techniques such as contrast adjustment and
histogram equalization were applied to adjust the contrast
levels, brightness level, and sharpness of the images, to
reduce the noise levels while enhancing the details of the
image. After applying the preprocessing techniques, the
Morphological Active Contours (Morphological Chan–
Vese) technique was applied to identify the precise tumor
region. In this research, the Chan–Vese algorithm uses a
square-level set function, instead of general circle-level set
functions, because the input boundary boxes are defined as
squares at the faster R-CNN. Furthermore, parameters λ1
and λ2 in (3) were set to 1 following [30]. During the
simulations, 100 iterations were followed to obtain the best
convergence of the contour lines, and at each iteration,
smoothing operators are applied 8 times. +e values for this
number of iterations and smoothing operators were selected
by adopting the trial and error method. After the seg-
mentation, the output of the Chan–Vese algorithm is
compared against segmentation output of Prewitt edge
detection technique and ground truth demarcations pro-
vided by neurologists, to justify the performance of our
proposed system.

4.4. Statistical Performance Analysis. For the performance
evaluation of the overall cascaded MRI tumor segmentation
system proposed, the ground truth demarcations provided
by experts in the field (neurologists) were compared against
the mask obtained from the prediction process of the
designed system. Dice Score, Rand Index (RI), Variation of
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Information (VOI), Global Consistency Error (GCE),
Boundary Displacement Error (BDE), Peak Signal to Noise
Ratio (PSNR), and Mean Absolute Error (MAE) were cal-
culated as the objective performance measure parameters
[38].

Dice Score (F1 score) is a statistical parameter used to
evaluate the similarity of two samples. Dice Score lies be-
tween 0 and 1, with 1 signifying the highest similarity be-
tween predicted and truth. F1 score is calculated using

Dice score(F1 score) �
2TP

2TP + FP + FN
, (4)

where TP is true positive, FP is false positive, FN is false
negative, and TN is true negatives.

Rand Index (RI) counts the fraction of pairs of pixels
whose labelling is consistent between the computed seg-
mentation and the ground truth image. RI lies between 0 and
1 and if the two images are identical, the RI should be equal
to 1. +e RI value is calculated using

RI �
TP + TN

TP + FP + FN + TN
. (5)

VOI computes the measure of information content in
each of the segmentations and how much information one
segmentation gives about the other; that is, it measures the
information distance between the two segmentation. VOI is
defined using the entropy and mutual information as

VOI Sg, St( ) � H Sg( ) +H St( ) − 2MI Sg, St( ), (6)

where Sg and St are the fuzzy segmentations of the image,
H(S) is the marginal entropy, H(Sg, St) is the joint entropy
between two images, and MI(Sg, St) is the mutual infor-
mation between two images [39].

+e GCE measures the extent to which a particular
segmentation can be viewed as a refinement of the other.
Segmentations that are related are considered to be con-
sistent since they could represent the same image segmented
at a different scale. +e mathematical expression for GCE
can be written as

GCE S1, S2( ) � 1

n
min ∑

i

E S1, S2, pi( ), ∑
i

E S2, S1, pi( ) ,
(7)

where S1 and S2 are two segmentations and pi is a pixel
position.

+e Boundary Displacement Error measures the average
displacement error between the boundary pixels in the
predicted segmentation and the corresponding closes
boundary pixels in the ground truth segmentation as follows:

μLA(u, v) �
u − v

L − 1
; 0< u − v.{ (8)

Mean Absolute Error (MAE) is the average of the difference
between the predicted and the actual values in all test cases; that
is, it is the average prediction error. It is a quantity used to
measure how close forecasts or predictions are to the eventual
outcomes and the mathematical representation is given as

MAE �
1

N
∑
i

∑
j

Eij − Oij

∣∣∣∣∣ ∣∣∣∣∣, (9)

whereN is the size of the image, E is the edge image, andO is
the original image.

5. Experimental Results

+e experimental outcome of the implemented architecture
presented in Figure 1 is analysed at two stages, namely, first
after the classification stage and second after the segmen-
tation stage. Both the training and validation accuracies of
the classifier are presented using the confusion matrices in
Figure 5. +e ROC curves of the training and validation
stages of the classification model are presented in Figure 6.
Also, the performance of the segmentation algorithm is
illustrated visually in Figure 7. Table 1 summarises the
statistical performance evaluations of the complete model
for selected MRIs, whereas Table 2 presents the overall
performance summary of the segmentation performance at
the final stage of the proposed architecture.

5.1. Results of the Classification Model. We present a con-
fusion matrix to illustrate the performance of the clas-
sification model against the ground truth. +e confusion
matrices for the training dataset and the test samples are
shown in Figure 5. In each confusion matrix, green
squares represent TP and TN values, light orange squares
represent FP and FN values, and blue squares were used to
represents positive predictive value (PPV), negative
predictive values (NPV), specificity (Sp), and sensitivity
(Sn), respectively, in clockwise, from the top right to
bottom left. Overall correct classification rate (accuracy)
was given in the purple square. +e classification error for
the training and testing set is equal to 7.69% and 6.42%.
Overall summery of the classification process is tabulated
in Table 3.

As the dataset is more biased towards glioma, we have
used Cohen’s kappa statistic [40] as it is a very good
measure of the performance of a classifier against the
imbalanced class problem. It estimates the designed clas-
sifier performance against a random guessing classifier
based on the frequency of the class occurrence. In general,
Cohen’s kappa value above 0.81 is an indication of a perfect
classifier while a value less than 0 indicates a nonper-
forming classification outcome. Cohen’s kappa statistics
value for the proposed model is 0.843 in training and 0.872
in testing which indicates a good agreement in the clas-
sification process.

Area Under the Curve-Receiver Operating Character-
istic (AUC-ROC) is another powerful metric used to eval-
uate the performance of machine learning algorithms with
an imbalance dataset. ROC curve illustrates TP rate versus
FP rate at various threshold values and is commonly used in
medical statistics.+e ROC curve for the training model and
testing are shown in Figure 6 and AUC values are at 0.93 and
0.94, respectively.
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5.2. Results of the Segmentation Model. In our proposed
model, the Faster R-CNN extracts the bounding box of the
tumor and it is followed by the Chan–Vese algorithm to
obtain a precise tumor boundary for an accurate segmen-
tation of the tumors. +e Faster R-CNN model was able to

generate the boundary boxes with 93.6% confidence interval
and 99.81% accuracy. Figure 7 illustrates random sample
outputs of the faster R-CNN. As in Figure 7(a), the tumor is
localized correctly with 99% confidence interval. +ere are
two possible outcomes predicted in Figure 7(b). Once closely
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Figure 7: Random sample of tumor localization of the faster RCNN.
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examined, it is evident that the false positive area, which
comprises brain matter, is predicted as tumour only with a
50% confidence interval. +e correct tumor area in
Figure 7(b) is identified with a 99% confidence interval.

However, in certain slices of axial MRIs where the image
consists of complex anatomical structures such as skull and
the eye socket, a false detection could happen with a high
confidence interval (example: tumor 5 of Table 1). In such
scenarios, the system fails to completely recover from the
erroneous detection. Yet, a close examination of the results
presented in Table 1 yields that the most accurate detections
have a confidence level greater than 90%, compared to the
false detections less than 80%. Another false detection is
presented in Figure 7(c), where the false detection carries
80% of confidence level, while all the other positive detec-
tions carry a confidence level of 98%.

To determine the overall performance of the proposed
Chan–Vese algorithm-based system, we compare the output
of Chan–Vese algorithm against the ground truth, gold
standard, as well as against the output of a simple gradient-
based edge detection technique. Prewitt is adopted in the
experiment as the gradient-based edge detection method.
+e statistical quality measures obtained for the segmented
output of both the Chan–Vese algorithm and the Prewitt
edge detection are tabulated in Table 1. Columns with
Tumors 1–4 present positive detections, while column with
Tumor 5 presents a false detection. +e value of GCE, VOI,
and BDE must be low, whereas the RI should be high for a
good segmented image. It is observed from the results that
the Chan–Vese algorithm exhibits a superior performance
than the gradient-based edge detection algorithm, Prewitt.
+is is also evident from the visual inspections shown in
Figure 8. Although the RI for both Chan–Vese and Prewitt
algorithms have a significantly higher score for all the test
images, the RI values of the Chan–Vese algorithm have a
relatively higher value than the Prewitt. Also, theMAE value,
which should be low for better prediction, is the lowest for
Chan–Vese according to Table 1. Hence, we can conclude

that the tumor boundary detected by Chan–Vese is superior
to that of Prewitt.

However, in some critical cases, as illustrated in
Figure 7(c), the system may not perform as desired. Fur-
thermore, the performance measurements for such a sce-
nario are presented in the last column of Table 1, Tumor 5. It
is evident that some of the performance measures for false
detection, specifically GCE, VOI, and BDE, show a deviation
from that of the positive detection.

+e main reason behind false detection is the miss-
prediction and classification of brain matters as tumors.
+ese inaccuracies in the model can be easily rectified by
further tuning the proposed model using a larger dataset.

+e objective of the system presented in this manuscript
is to obtain a finer segmentation of brain tumors. To achieve
this objective, we firstly employed Faster R-CNN to obtain
the initial boundary region and secondly used the Chan–
Vese active contour to refine the initial boundary assessment
to obtain an exact boundary extraction. Table 2 summarises
the overall performance of the proposed architecture.
According to the objective measurements, the overall system
achieved a Dice Score of 0.92, accuracy of 0.946, RI of 0.99,
and PSNR of 77.1, against the gold standard, pointing to
excellent precision of the proposed segmentation method.

6. Discussion

+is study presents an automated MRI tumor classification
and segmentation algorithm based on deep learning tech-
niques and active contours. Results obtained from the ex-
periments demonstrate remarkable performance at brain
tumor segmentation with a Dice Score of 0.92, accuracy of
0.9457, RI of 0.9936, VOI of 0.0301, GCE of 0.004, BDE of
2.099, PSNR of 77.076, and MAE of 52.946.

+e model presented in this manuscript provides a 0.915
Dice Score for glioma segmentation with the Figshare data
set [11, 13], with the faster R-CNN and Chan–Vese algo-
rithms. In comparison, the authors in [41] have developed a

Table 2: Overall performance of the system.

Boundary estimation method Chan–Vese Prewitt

Dice Score 0.92 0.90
Accuracy 0.9457 0.9125
RI 0.9936 0.9642
VOI 0.0301 0.1542
GCE 0.004 0.083
BDE 2.099 3.581
PSNR 77.076 13.43
MAE 52.946 126.47

Table 3: Performance of the classification network.

Brain tumor class Glioma Meningioma

No if images taken for transfer learning 114 104
Training accuracy (%) 88.5 100
Testing accuracy (%) 87.5 100
No if images taken for testing 24 15
No if correctly predicted images 21 15
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CNN based glioma segmentation algorithm and achieved a
0.87 Dice Score on BRATS 2013 and 2015 datasets. Ex-
perimental results were presented in [20] for an accurate
glioma segmentation algorithm which obtained 0.897 Dice
Score. An automatic semantic segmentation model was
developed on the BRATS 2013 dataset by the authors in [42]
and the Dice Score was around 0.80.

In our study, 0.926 Dice Score was obtained only for the
meningioma segmentation which is comparably high among
similar research works. +e authors in [43] obtained dice
coefficient of around 0.81 for 56 meningioma cases by using
deep learning on a routine multiparametric model. One
recent study [44] achieved dice coefficients ranging between
0.82 and 0.91 by employing an algorithm based on a 3D deep
convolutional neural network.

Furthermore, the authors in [45] proposed a CNN-based
algorithm on the same Figshare dataset [13] and achieved a
Dice Score of 0.71 for both meningioma and glioma together
with axial MR images. +e authors in [37] were able to
increase the segmentation accuracy using Cascaded Deep
Neural Networks and obtained around 0.8 in Dice Score in
both Meningioma and Glioma segmentation. In our study,
we achieved an average Dice Score of 0.92 for both me-
ningioma and glioma segmentation using the same dataset.

Hence, a comparison with the comparable state-of-the-art
methods shows that the proposed methodology exhibits a
remarkable improvement in brain tumor segmentation.
Nevertheless, all these researchers proved that deep neural
networks are capable of performing significantly accurate
brain tumor segmentation in MR images. We show that the
segmentation output can be further improved by using active
contour algorithms along with deep learning architectures.

7. Conclusions

In the research presented, we have proposed R-CNN and
Chan–Vese algorithms based model for meningioma and
glioma brain tumor classification and segmentation. +e
proposed model is validated using Figshare dataset with 5-
fold cross-validation and objective quality metrics Dice
Score, RI, VOI, GCE, BDE, PSNR, and MAE are calculated
to analyse the performance of the proposed architecture. We

have used R-CNN to obtain the initial tumor boundary box
which is followed by active contouring to obtain the exact
tumor outline. We adopt level set functions based Chan–
Vese algorithm which is independent of Rician noise, for
both meningioma and glioma brain tumor segmentation
and we compare the performance of the proposed seg-
mentation method against that of the typical-gradient based
edge detection algorithm Prewitt. We were able to achieve a
much more accurate segmentation result through the
Chan–Vese algorithm with an average Dice Score of 0.92 for
both tumor types. In addition, experts in the field have cross-
checked our segmentation output and have validated it with
a high confidence interval. In the research presented, we
have shown with evidence that active contour algorithms
along with localized outputs of deep learning architectures
such as R-CNN, are capable of improving the segmentation
accuracy and the precision in MRI tumor segmentation
applications. Hence, we can conclude that the model present
can be used as a reliable aid for brain tumor classification
and segmentation in low human resource, expertise,
environments.

Appendix

Proposed Algorithm

+e first stage of the proposed system is the classification,
where input MRI images are analysed to detect the presence
and absence of the tumours. To achieve this objective, a
simple CNN architecture with a total of 5 layers was
designed. +e CNN designed consists of two 2D convolu-
tional (2DConv) layers with 20-3x3 kernels and 10-3x3
kernels, respectively. Both of the 2DConv layers adopt
nonlinearity through Relu activation function and each layer
is followed by maxpooling layers with 2x2 window size. +e
2D feature map generated through convolution and max-
pooling is converted into 1D feature vectors by flattening
and these 1D feature vectors are fed into the fully connected
layer for the classification task.+e output layer classifies the
inputs as a meningioma or glioma using the softmax
function. Adam optimizer was used as the optimization
function of the convolution layers and the learning rate was

(a) (b) (c)

Figure 8: Segmented images versus ground truth. (a) Ground truth. (b) Prewitt. (c) Chan–Vese.
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set to 0.02 in the training process. +e proposed classifi-
cation architecture was trained and validated, before testing
for classification accuracy. +e validation process was car-
ried out by using 5-fold cross-validation with 500 epochs at
each validation fold. At the end of the first stage, the system
is capable of classifying the input MRI according to the
tumor type.

Next, the classified images were fed into the second stage
of the proposed architecture, which is the Region Proposal
Network (RPN) based faster R-CNN for tumor localization.
Due to the limitation of annotated images in the dataset, the
transfer learning method with pretrained faster R-CNN
weights [46] was utilized in our architecture. +e faster
R-CNN was able to localize the tumor with a bounding box
and produce a confidence interval for each decision.

As the last part of the proposed architecture, the
Chan–Vese active contour algorithm was used to segment
the tumor in the Axial MRI. In general, active contour al-
gorithms are utilized to obtain finer and precise object
boundaries, given a user-defined initial guessed boundary.
+us, in MRI brain tumor segmentation using Chan–Vese
algorithm, it is essential to provide a reasonably accurate
initial region of interest search area for successful seg-
mentation. We have used the bounding box obtained after
faster R-CNN as the initial boundary for the Chan–Vese
algorithm to automate the entire brain tumor segmentation
process.
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