
5

A Systematic Approach for Structuring

Exception Handling in Robust

Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

Institute of Computing - State University of Campinas (UNICAMP)

P.O. Box 6176. CEP 13084-971, Campinas, SP, Brazil.

{fernando, asterio, cmrubira}@ic.unicamp.br, vinicius.pagano@eldorado.org.br

Abstract
Component-based development (CBD) is recog-

nized today as the standard paradigm for structuring large

software systems. However, the most popular component

models and component-based development processes pro-

vide little guidance on how to systematically incorporate

exception handling into component-based systems. The

problem of how to employ language-level exception han-

dling mechanisms to introduce redundancy in component-

based systems is recognized by CBD practitioners as very

difficult and often not adequately solved. As a conse-

quence, the implementation of the redundant exceptional

behaviour causes a negative impact, instead of a positive

one, on system and maintainability. In this paper, we pro-

pose an approach for the construction of dependable com-

ponent-based systems that integrates two complementary

strategies: (i) a global exception handling strategy for

inter-component composition and (ii) a local exception

handling strategy for dealing with errors in reusable com-

ponents. A case study illustrates the application of our

approach to a real software system.

Keywords: Exceptional behaviour, Fault-tolerant

component, Software fault tolerance, Component-based

development.

1 INTRODUCTION

Component-based development (CBD)[36] is em-

ployed today to build large software systems, such as

commercial and financial information systems with high

dependability requirements. The central tenet of CBD is

that software systems should be built by integrating pre-

existing reusable software components, which may be de-

veloped by different organizations. A direct implication of

this notion is the separation in time and space between

component development and system integration. On the

one hand, developers of reusable software components do

not have full knowledge of the different contexts in which

the components will be used. On the other hand, system

integrators usually have limited access to the internal de-

sign and source code of these components. The construc-

tion/integration dichotomy leads to mismatches[13] between

assumptions made by different components of an

assembled system. Techniques for dealing with mismatches

related to the functional properties of a system, such as

wrappers and mediators[13], are in widespread use. However,

mismatches related to conflicting assumptions regarding

the behaviour of components when they deviate from their

specifications (exceptional or abnormal behaviour) are not

well understood. Failure to take the exceptional behaviour

of components into account when building a component-

based system compromises the analysability of the

assembled system and its overall dependability.

Exception handling[8] is a well-known mechanism

for introducing forward error recovery[1] in software

systems. Many important object-oriented programming

languages, such as Java, C++, and C# have incorporated

this mechanism. In traditional software development, a large

part of the code of a reliable software system is dedicated to

detection and handling of exceptions[8]. However, this

redundant part of the code is usually the least understood,

tested, and documented. In component-based development,

a similar phenomenon can be observed. Developers of large

systems based on the J2EE platform[35], one of the de facto

6

standards in the industry for CBD, have habits concerning

the use of exception handling that make applications more

vulnerable to faults and harder to maintain[28].

The lack of systematic approaches for structuring

the exceptional behaviour of component-based applications

is an important factor that contributes to this situation. Ex-

isting component-based development processes, such as

Catalysis[10] and UML Components[6], focus almost ex-

clusively on the system’s normal behaviour. There are some

proposals in the literature for extending such processes

with activities for designing the exceptional behaviour of

component-based systems[2,29,40]. However, these

proposals do not address the translation of the obtained

design down to the implementation level of a component-

based system. Also, the most popular component models,

such as EJB (Enterprise Java Beans)[34] and .NET[24] rely

almost entirely on the exception handling system (EHS) of

the target programming language, providing little guidance

about how to better incorporate exception handling into

their component-based applications.

The proper use of an EHS requires a consistent strat-

egy for defining exception types and allocating respon-

sibilities to exception handlers. Structuring exception

handling is even more difficult for developers of compo-

nent-based systems, due to the construction/integration

dichotomy as discussed earlier.

When integrating software components to build de-

pendable systems, it is of critical importance to resolve

conflicts between the exceptional behaviour of the reusable

components and the intended exceptional behaviour of the

assembled system. When these conflicts are not solved,

they may result in undesirable situations, such as: (i) the

context and/or semantics of an exception raised by a

component are lost, making it difficult for other components

to handle it; or (ii) an exception may simply be ignored,

leading to the propagation of errors throughout the system.

Our practical experience in component-based mentoring for

various Brazilian companies has shown us that, in practice,

this is a recurring problem and motivated us to devise a

general exception handling approach for component-based

software systems.

In this paper, we propose a strategy for structuring

exception handling in dependable component-based soft-

ware systems. The proposed strategy is based on an abstract

exception type hierarchy and the definition of different kinds

of handlers with clearly pre-defined responsibilities.

Component developers use the abstract exception type

hierarchy to derive concrete exception types that preserve

the semantics of a small set of generic exception types.

These generic types are used by the system integrator to

define an exception handling strategy for the integrated

system that is not dependent of any particular

implementation of its components. The different kinds of

handlers promote separation of concerns between local

(component-specific) and global (architectural) exception

handling policies. The proposed strategy is based on two

different and complementary views on exception handling.

The first view is that presented by Flaviu Cristian in a classic

article formally describing the termination model of

exception handling in sequential programs[8]. The second

is Bertrand Meyer’s view, presented as part of the Design-

by-Contract[20] methodology.

Our approach could be integrated within a typical

component-based development process. The main re-

quirement for this integration is the a priori execution of

activities for defining the failure hypotheses of the system

and designing the exceptional behaviour to be implemented.

The execution of these tasks is not considered to be trivial

and, in the literature, there are several works that address

them[2,29,40]. We consider these works complementary to

ours.

Our ultimate goal is to provide component develop-

ers and system integrators with a set of design and

implementation guidelines that allows them to better

structure the exceptional behaviour of the systems they

build. In this manner, the impact of exceptional behaviour

on the overall system complexity is reduced and the resulting

system is both more reliable and easier to maintain.

Furthermore, these guidelines should be easy enough to be

applied to systems that do not have strict dependability

requirements, and flexible enough to be used in conjunction

with more sophisticated software fault tolerance

mechanisms, such as design diversity[1].

The rest of this paper is organized as follows. Sec-

tion 2 presents some related work, while Section 3 provides

some background on exception handling, software archi-

tecture[30], and component-based development processes.

Section 4 presents the strategy for exception handling from

the perspective of both system integrators and component

developers. In Section 5 we describe some of the lessons

learned from a real-world case study. Section 6 presents

concluding remarks and ideas for future work.

2 RELATED WORK

Software fault tolerance at the architectural level is a

young research area that has recently gained considerable

attention. Some approaches based on the idea of design

diversity[1] have been developed in the context of reliable

evolution of component-based distributed systems.

Hercules framework[7] and Multi-Versioning Connectors[27]

are approaches that maintain old and new versions of

components working concurrently, in order to guarantee

that the expected service is provided, even if there are faults

A Systematic Approach for Structuring Exception

Handling in Robust Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

7

in the new versions. The guidelines described in Section

4.3 for handling exceptions at the architectural level are

based on these two approaches.

Other possible approach for building fault-tolerant

component-based systems is to employ exception handling

at the architectural level, as suggested by some authors in

the literature[3,16,18]. The work by Issarny and Banâtre[18]

describes an extension to existing architecture description

languages[21] for specifying configuration exceptions,

which are exceptions raised due to violations of architectural

invariants. Guerra et al[16] have proposed an approach for

architecting fault-tolerant component-based systems based

on a specific architectural style. Castor et al[3] have pro-

posed an EHS addressing specific concerns of component-

based systems, at the architectural level, also focusing on a

specific architectural style. These works differ from our

present work in the sense that they do not attempt to inte-

grate architectural-level and implementation-level exception

handling. Architectural-level exception handling is not a

replacement for implementation-level exception

handling[3,18]. The two techniques are complementary and

should be employed synergistically in order to achieve best

results. To the best of our knowledge, however, no attempts

have previously been made to devise a general strategy for

structuring component-based systems taking into account

both architectural-level and implementation-level exception

handling.

There are some works in the literature describing

guidelines for structuring exception handling in object-

oriented software systems[9,32]. In general, these works do

not focus on CBD and do not try to bridge the gap between

architectural-level and implementation-level exception

handling. In spite of this, they do provide valuable advice,

which has been taken into account for the elaboration of

the approach proposed in this paper.

More closely related to DBC, is the work of

Shenoy[31] that discusses best practices in EJB exception

handling. The main goal of Shenoy’s work is faster problem

resolution and it is based on the backward error recovery

capabilities provided by EJB containers. In contrast, our

main goal is a basis for forward error recovery and fault-

tolerance that is not dependent on any specific component

framework.

Vecellio[38] motivates the creation of techniques to

assess the reliability of off-the-shelf (OTS) components.

The author argues that traditional techniques for assuring

the reliability of software systems are not effective for

component-based systems. Meyer[23] reinforces these ideas

and discusses the concept of trusted components. The

author states that the elaboration of extensive techniques

for demonstrating the quality of reusable components,

together with the construction of a large set of trusted

components, has the potential to change the way systems

are developed. This viewpoint is complementary to ours.

Also related to our work, in the area of dependabil-

ity benchmarking, it is possible to estimate the dependabil-

ity of certain types of OTS components[19]. However, it is

still difficult to predict how components built by different

organizations will behave together when integrated into a

new system.

3 BACKGROUND

3.1 EXCEPTION HANDLING

The complexity introduced by fault tolerance in soft-

ware systems motivated the development of a well-known

style of system structuring known as idealised fault-toler-

ant component (IFTC)[1]. An idealised fault-tolerant

component is a piece of software (a class, module, com-

ponent, or a whole system) where the parts responsible for

normal and exceptional activities are separated and well

defined. Figure 1 presents the structure and flow of control

of the IFTC. Upon receipt of a service request, an IFTC

produces three types of responses: normal responses in

case the request is successfully processed, interface

exceptions in case the request is not valid, and failure

exceptions, which are produced when a valid request is

received but cannot be successfully processed.

Exception handling is a very popular technique for
incorporating fault tolerance into software systems. It al-
lows developers to structure the redundant code that is
added to deal with the exceptional conditions that may
occur, separating it from the code responsible for the normal
operating flow. An exceptional condition is signalled by
means of an exception that is raised by the normal code.
When this occurs, the underlying EHS interrupts the normal
flow and transfers the control to an appropriate exception
handler, which can deal with the exceptional conditions

Figure 1. Idealised fault-tolerant component[1]

A Systematic Approach for Structuring Exception

Handling in Robust Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

8

associated with the type of the exception raised. Handling
contexts are regions of the code in which exceptions of the
same type are treated in the same way.

In [8], Flaviu Cristian presents a synthesis of the

termination exception-handling paradigm for sequential

programs. The exception handling systems of C++, Java,

and C# adhere to this model of exception handling. The

Design by Contract approach[22] provides a different view

of exception handling, which is supported by the Eiffel

language.

The main focus of Cristian’s approach is robustness,

which is a means to achieve fault tolerance. A robust pro-

gram should be prepared to handle all possible inputs, in

conformance to a specification. A program may terminate

normally, at its standard exit point, or exceptionally, at one

of its exceptional exit points. In the second case, an

exception should be signalled. A program specification

defines the standard exit point and zero or more declared

exceptional exit points. A declared exceptional exit point

corresponds to an abnormal condition that is anticipated

by the designers. There may also be undeclared excep-

tional exit points, which result from unanticipated abnormal

conditions (or design faults). An undeclared exceptional

exit point is signalled by an undeclared exception.

The main goal of the Design by Contract approach

is correctness, that is, it focuses on avoiding faults, not

tolerating them. A routine should not be prepared to handle

all possible inputs, but only those specified by the pre-

condition of its contract. A routine has a single contract

that specifies a single exit point. This exit point is taken

whenever the routine succeeds to fulfil its contract. Ex-

ceptions are only used to signal design faults, which are

detected by means of executable assertions that describe

the contracts.

3.2 SOFTWARE ARCHITECTURE

The architecture of a software system shows how

the system is realized by a collection of components and

the interactions among them[30]. The building blocks of an

architectural description are components, connectors, and

architectural configurations. A component is a unit of

computation or a data store. Therefore, components are

loci of computation and state. Connectors are architectural

building blocks used to model interactions among

components and rules that govern those interactions.

Architectural configurations, or topologies, are connected

graphs of components and connectors that describe

architectural structures[21].

The realization of abstract software architectures re-

quires concrete implementations, which raises the question

about conformance of an implementation to the intended

architecture. To be effective, solutions at the architectural

level must be correctly mapped to the implementation level.

It is not trivial to guarantee this conformance, since there is

a semantic gap between the abstractions defined by software

architecture, namely, architectural components and

connectors, and the abstractions supported by mainstream

object-oriented programming languages, such as packages

and classes. In this work, we have used a component im-

plementation model, called COSMOS[33], to bridge the gap

between the software architecture of the system and its

implementation.

The COSMOS model integrates a set of design pat-

terns and guidelines into the implementation of a compo-

nent-based system. These guidelines include: materialization

of architectural elements at runtime; separation of non-

functional concerns; clear separation between component’s

specification and implementation; explicit declaration of com-

ponent’s specification dependencies; strong encapsulation

of implementation; separation of code inheritance from types

hierarchy and loose coupling of implementation classes[33].

When using COSMOS, each architectural compo-

nent is mapped, at the implementation level, to a package

containing two sub packages: (i) the specification package

contains the specification of the component’s provided and

required interfaces; and (ii) the implementation package

contains the definition of the concrete classes that

implement the component’s behaviour. Architectural

connectors are mapped to connector packages that

implement the connections between required and provided

interfaces of interacting components.

3.3 A TYPICAL COMPONENT-BASED DEVELOPMENT PROCESS

There are few CBD processes that have achieved

some acceptance in the industry[6,10], compared to the large

number of processes available for object-oriented

development. This is not something to be surprised by.

Although the first work proposing the use of “mass

produced software components”[20] dates back to more

than 30 years ago, most research on the subject has ap-

peared in the last ten years.

Figure 2 presents a typical component-based devel-

opment process divided into six workflows[6]: requirements,

specification, provisioning, assembly (or integration), test,

and deployment. The requirements workflow aims to identify

the system requirements. The specification workflow

structures the software architecture of the system as a set

of abstract components that have specific responsibilities

and interact to fulfil the system requirements.

The implementation of a component-based system

is achieved by provisioning and assembly workflows. This

is a consequence of the component development/system

A Systematic Approach for Structuring Exception

Handling in Robust Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

9

integration dichotomy described in Section 1. Components

are instantiated during the provisioning workflow. In this

workflow, the system integrator decides if an abstract

component can be instantiated by an existing OTS

component, or if it will require an implementation effort, in

which case it is called a newly developed component. The

selection of an OTS component often requires its adaptation

and, possibly, the refinement of the system’s software ar-

chitecture to fit the available OTS component. This

adaptation may include the development of wrappers[13]

to adapt the external interface of the OTS component to

that specified for the abstract component being instantiated.

In the assembly workflow, the system integrator as-

sembles OTS and newly developed components to build

the whole system. This integration effort includes the devel-

opment of glue code necessary to connect the various

components, and comprises the specification and implemen-

tation of connectors and wrappers.

During the test workflow, the integrated system is
tested and corrections may be made to ascertain that it
fulfils its requirements and conforms to its specification.
During the deployment workflow, the final system is in-
stalled in the environment of the user.

corresponding declared exception type. The semantics of

a declared exception is defined by the specification and it is

part of the component’s interface specification. Any cor-

rect implementation of a specification should include de-

tection of the anticipated exceptional conditions. However,

a more robust implementation may include the detection of

exceptional conditions that are not anticipated by the

specification. For these unanticipated exceptional

conditions, the component developer should define

undeclared exceptional exit points.

Undeclared exceptional exit points are problematic

because different correct implementations of the same

specification may define different undeclared exceptional

exit points. This may result in architectural mismatches[13]

when one tries to integrate such components in a system. It

is a current practice to associate undeclared exceptional

exit points with exceptions of arbitrary types that are defined

by the component developer or are propagated from lower

level components. This ad hoc scheme for signalling unan-

ticipated exceptional conditions may cause, during system

execution, the raising of undeclared exceptions without

proper contextual information and failure semantics. In these

4 THE PROPOSED EXCEPTION HANDLING STRATEGY

We assume that the specification of a component

includes its exceptional specification. The latter defines the

expected behaviour when some abnormal, but anticipated,

conditions occur. The exceptional specification associates

anticipated exceptional conditions with a number of declared

exceptional exit points (Section 3.1). A declared exceptional

exit point, when taken, is signalled by an exception of a

circumstances, the system integrator has little opportunity

for introducing fault tolerance in the integrated system.

Our approach to solve this problem comprises two

complementary strategies: a global (inter-component)

strategy and a local (intra-component) strategy. The inter-

component strategy is concerned with system integration

and is applied to configurations of components and

connectors. The intra-component strategy is concerned with

Figure 2. Workflows in the component-based development process[6]

A Systematic Approach for Structuring Exception

Handling in Robust Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

10

component development and is applied to individual

reusable software components. To allow these two strategies

to be applied in conjunction, they share a common abstract

exception type hierarchy for precisely expressing the failure

semantics of a component or connector.

4.1 ABSTRACT EXCEPTION TYPE HIERARCHY

Figure 3 shows the proposed abstract exception type
hierarchy. This hierarchy can be easily mapped to existing
object-oriented programming languages where exceptions
are defined by classes, such as C++, Java, and Delphi. On
the top of the hierarchy is Exception, the super class of
all exception classes. A component’s execution terminates
at a declared exceptional exit point by signalling an exception
of the abstract type DeclaredException. All the excep-
tions of type DeclaredException, as well as its
subtypes, should be explicitly declared in the signatures of
operations that may signal them. The failure semantics
associated with the abstract exception type hierarchy is
based on the exception types defined for the idealized fault-
tolerant component[1] and coordinated atomic actions[39].

The UndeclaredException hierarchy is used
by a component developer to attach failure semantics to
exceptions associated with exceptional conditions that are
not anticipated by the component’s specification. These
abstract exception types also allow system integrators to
incorporate handlers in a component-based system to deal
with these undeclared exceptions in a systematic way.
UndeclaredException has two direct subtypes:
RejectedRequestException and
FailureException . Exceptions of the
RejectedRequestException type are used to signal
that a request received from a client could not be processed,
due to a pre-condition violation, and that the system’s state
has not been affected.

Exceptions of the type FailureException indi-

cate that the implementation of the component failed to

process a valid request. FailureException has two

subtypes: RecoveredFailureException and

UnrecoveredFailureException. Exceptions of the

type RecoveredFailureException are used to

indicate that, in spite of the fact that an error occurred, the

component has been left in a consistent state. Instances of

UnrecoveredFailureException are used to indicate

that a failed operation may have caused undesirable effects

in the state of the component.

4.2 INTRA-COMPONENT EXCEPTION HANDLING STRATEGY

The intra-component strategy is applied during the
provisioning workflow of a CBD process (Section 3.3). At
this stage, concrete components are selected in order to
materialize the abstract components specified in the software
architecture of the system being developed. As discussed
earlier, these components may be either existing or newly
developed components. Our intra-component strategy

described applies to both situations: the adaptation of
existing components and the development of new
components.

When a component is built from scratch, its imple-

mentation is under control of the software developer. Fig-

ure 4 depicts the proposed internal structure of a component

with one provided interface and one required interface. The

employed notation is UML 2.0[25]. The implementation

classes implement the operations specified by the

component’s provided interface. Furthermore, these classes

may have dependencies that are explicitly represented by

means of the required interface of the component. In the

proposed strategy, implementation classes are responsible

for: (i) detecting exceptional conditions anticipated by the

specification of the component and signalling exceptions

of types declared in the provided interface of the component;

(ii) signalling internal exceptions related to other exceptional

conditions which are specific to the implementation of the

component; and (iii) executing clean-up actions, when neces-

sary. The types of exceptions raised by the implementation

classes should be subtypes of DeclaredException

Figure 3. Abstract exception type hierarchy

Figure 4. Internal structure of a component built from scratch.

A Systematic Approach for Structuring Exception

Handling in Robust Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

11

and UndeclaredException, depending on whether

the exceptional condition that was anticipated or unantici-

pated.

A façade class[12] is associated to a provided inter-
face and defines an access point to its implementation. When
necessary, façade classes could be also responsible for
serializing incoming requests, in order to transform the com-
ponent in a damage confinement region[1]. A façade class
may also detect the violation of pre- and post-conditions
for operations defined by its corresponding provided
interface.

The intra-component strategy is based on applica-
tion-level exception (ALE) handlers and boundary-level ex-
ception (BLE) handlers. ALE handlers are associated to
implementation classes. They are responsible for handling
three kinds of exceptions: (i) external exceptions of types
declared in the required interfaces of the components; (ii)
internal exceptions signalled by implementation classes;
and (iii) internal exceptions signalled by the underlying
infrastructure.

BLE handlers are responsible for dealing with ex-

ceptions that reach façade classes. Exceptions of types

declared in the provided interface of the component, which

are anticipated by its specification, are simply propagated

by BLE handlers. These handlers also propagate exceptions

of type RejectedRequestException, which signal

an error in the request issued by the client. For other ex-

ception types, backward error recovery may be performed,

in case it is available. If the component is left in a consistent

state, an exception of type RecoveredFailure

Exception is signalled, indicating that the state of the

component is consistent. Otherwise, an exception of type

UnrecoveredFailureException is signalled.

architectural component is instantiated by a composite
component wrapping the OTS component, as depicted in
Figure 5. The OTS component may include its own exception
handlers. All responsibilities that are associated to façade
classes and BLE handlers in a component built from scratch,
are associated, respectively, to provided interface
interceptors and BLE handlers of the composite component.
Moreover, a provided interface interceptor is responsible
for adapting the OTS external interface to the provided
interface specified for the abstract architectural component.
Provided interface interceptors, together with the BLE
handlers, are also responsible for mapping exceptions raised
by the component’s implementation to the abstract
exception type hierarchy. The main responsibility of the
OTS component is the implementation of its external
interface.

4.3 INTER-COMPONENT EXCEPTION HANDLING STRATEGY

The inter-component strategy is applied during the
assembly workflow of a CBD process (Section 3.3). This
strategy deals with the integration of pre-existing
components into a new configuration. It is based on
connector-level exception (CLE) handlers that are associated
to architectural connectors in a specific software
configuration. Figure 6 shows the internal structure of an
architectural connector with a CLE handler and how it
connects a client component to a server component.

When an existing OTS component is reused, a
wrapper should be created in order to avoid architectural
mismatches (Section 3.3). In this case, the abstract

CLE handlers are responsible for: (i) providing error
recovery and masking at the architectural level exceptions
that cannot be handled within the context of a specific
component; and (ii) resolving failure semantics mismatches
between server components and their clients, for instance,
when a server component signals an exception that is not
expected by its client. A CLE handler should be capable of
dealing with all exceptions signalled by server components.
A possible scenario of exception handling at the architec-
tural level is a configuration that includes two or more re-
dundant server components. In this scenario, a fault-tolerant

Figure 5. Internal structure of a wrapped OTS component.

Figure 6. Connector-level exception handler.

A Systematic Approach for Structuring Exception

Handling in Robust Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

12

client/server connector could be used as a mediator between
client components and the redundant servers. Upon receipt
of an exception from a server component, the associated
CLE handler can try to mask the exception by re-invoking
the same service on an alternate (replicated or diversely
designed[1]) server component. Moreover, if a server
component successively fails, generating too many
exceptions, the connector may choose to isolate it and
forward all subsequent requests to an alternate server
component[7,27].

CLE handlers are also responsible for translating the

types of unmasked exceptions from the domain of the server

component to the domain of the client component, before

propagating them. Exceptions that require no further

adaptation are automatically propagated. When automatic

propagation is not possible, CLE handler can create a new

exception that encapsulates the unmasked exception raised

by the server component. The type of the propagated

exception should be: (i) one of the exception types declared

for the operation requested by the client component, as

defined by its required interface, or (ii) a subtype of

UndeclaredException. (Figure 3).

Table 1 provides guidelines for exception transla-

tion followed by architectural connectors. These guidelines

are based on the configuration depicted in Figure 6 and on

the premise that the Server component signalled an

exception E1 in response of a service request received from

the Client component.

CLE handlers are the best candidates for coordi-

nating the exceptional behaviour specified for the integrated

system. This way, the implementation of the exceptional

behaviour of the integrated system is less dependent of

any particular version of a component’s implementation.

Moreover, connectors are developed during the assembly

workflow, when knowledge about the integrated system’s

requirements, the exceptional behaviour specified for its

components, and the way they should interact, is available.

Being so, CLE handlers can take reasonable recovery actions

based on the abstract types of the undeclared exceptions

they may receive (Section 4.1). As these recovery actions

are system-dependent, this separation of concerns also

improves component reuse.

4.4 A METHOD FOR OUR EXCEPTION HANDLING STRATEGY

This section describes a basic method for applying

our exception handling strategy. This method was devised

as an extension of a typical component-based process and

is based on our previous experience in the use of exception

handling for building fault-tolerant component-based

systems[17,26,29].

Figure 7 shows the main artifacts added by our

method and how they integrate in the development process

shown in Figure 2. The method starts with the specification

of the failure hypotheses and the exceptional behaviour

expected for the system. During the requirements workflow,

use case descriptions are analysed, in order to extract

exceptional scenarios. Next, during the component

specification workflow, these scenarios are used to specify

the exceptional conditions that should be anticipated by

Table 1: Guidelines for exception translation by a connector.

A Systematic Approach for Structuring Exception

Handling in Robust Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

13

the system and the types of the exceptions that might be

signalled. Based on this, the various kinds of handlers (ALE,

BLE and CLE) are specified, assigning to them

responsibilities for dealing with exception types defined in

the previous step. Finally, exceptions types and handlers

are implemented and incorporated in the system, during the

provisioning and assembly workflows.

Activity 4: Implementation of ALE and BLE handlers.

In Java and C#, this activity is performed by using try-

catch blocks. We suggest that the actual handlers be

implemented as methods in separate classes responsible

exclusively for exception handling. In this manner, normal

and exceptional behaviour are more explicitly decoupled

and exception handlers can be reused. This activity is

performed during the component provisioning workflow.

Activity 5: Implementation of CLE handlers. This

activity is performed during the assembly workflow.

5 CASE STUDY

In this section, we describe a case study that has

been conducted to assess the feasibility and benefits

obtained from applying our approach to part of a real system.

The main goal of this case study was to analyse the impact

of the proposed approach when applied to an existing sys-

tem, in terms of both separation of normal and exceptional

activities and reuse of the implementation of existing

components. The target system, called Telestrada, is a large

traveller information system being developed for a Brazilian

national highway administrator. It comprises five sub-

systems: Central Database Subsystem, GIS (Geographic

Information System) Subsystem, Call-Centre Operations

Subsystem, Roadside Operations Subsystem, and Complaint

Management Subsystem.

The case study consisted in applying our exception

handling strategy presented in Section 4 to the Complaint

Management Subsystem (CMS), in order to model its

exceptional behaviour. This subsystem is a web-based

application implemented in Java using the COSMOS model

(Section 3.2). The implementation of the CMS comprises

12175 lines of source code (1598 automatically generated),

as measured by the Unix wc (word count) command, and

more than 300 classes. It is based on popular technologies,

such as Enterprise Java Beans, Java Server Pages and

Servlets, and the Struts framework.

The case study covered two iterations of the imple-

mentation of the CMS. During the first iteration, it was

produced an initial implementation of the CMS in which

exception handling was introduced in an ad hoc manner.

The development of the proposed approach occurred after

the conclusion of this initial implementation. Hence, the

first iteration was not influenced by the proposed approach.

During the second iteration, our approach was applied to

obtain a robust implementation with a structured exceptional

behaviour of the CMS. Another developer that was familiar

with the proposed approach but had no previous contact

with the CMS conducted this second iteration. Hence, the

conditions under which the second iteration was conducted

were similar to those of a real software development effort.

The activities of the proposed method are described

next with more details.

Activity 1: Specification of the failure hypotheses

for the design of the system’s exceptional behaviour. This

includes the specification of exceptional conditions to be

detected and the exception types that will signal these

conditions. Although these two activities are not subject of

the present work, they are essential for the development

process. Activity 1 should be performed during the

requirements workflow.

Activity 2: Design of the exceptional behaviour, allo-

cating responsibilities to the various architectural elements

and their exception handlers (ALE, BLE or CLE) and covering

the failure hypothesis defined in Activity 1. Furthermore,

generic handlers that deal with unanticipated exceptional

conditions may be defined, for instance, to trigger backward

error recovery in case an undeclared exception is signalled.

This activity should be performed during the specification

workflow.

Activity 3: Implementation of the subtypes of the

exceptions specified by the abstract exception type hi-

erarchy (Section 4.1), if necessary. These exceptions are

dependent on the application and on the types of errors

expected. This activity is performed during the provisioning

workflow.

Figure 7. A component-based process extended

with our exception handling strategy.

A Systematic Approach for Structuring Exception

Handling in Robust Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

14

5.1 SYSTEM DESCRIPTION

The CMS manages the complaints of the users about

a section of a road. Information about roads and their sec-

tions are stored in a centralized database by the GIS Sub-

system. Users register complaints through a form at the

website of the project, selecting the desired road section. In

this process, the system presents any information about

existing complaints for the selected road section. If a

complaint is successfully registered, it is recorded in the

database and the user receives a complaint id that can later

be used to inquire about the complaint status. If the

complaint cannot be registered by the system, an error

message is presented to the user.

Part of the layered architecture of the CMS is pre-

sented in Figure 8.

The component’s stereotype indicates the architec-

tural layer to which it belongs. The presentation layer

component RegisterComplaint uses the

IComplaintRegistration interface, provided by the

ComplaintRegistration component of the system

layer. The ComplaintRegistration component, on

its turn, requires services provided by the ComplaintMgr,

RoadMgr, SectionMgr and UserMgr components of

the business layer. The ComplaintMgrConn and

UserMgrConn connectors mediate the interaction

between the ComplaintRegistration component and

those components of the business layer. Components of

the business layer use a database management system to

store and retrieve persistent information.

The case study was conducted by following the sys-

tematic approach described in Section 4.4. For clarity’s sake,

in this section we focus on the Register Complaint use case.

Figure 8. Partial layered architecture of the Complaint Management Subsystem (CMS)

Figure 9. Use case Register Complaint.

Figure 10. Exceptional scenario 7.

A Systematic Approach for Structuring Exception

Handling in Robust Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

15

5.2 SPECIFICATION OF THE FAILURE HYPOTHESES

The main success scenario for the Register Com-

plaint use case is shown in Figure 9. For each exceptional

condition in this scenario, an exceptional scenario was

defined. In total, 11 exceptional scenarios were defined for

the Register Complaint use case. The exceptional scenario

7 is described in Figure 10.

5.3 DESIGN OF THE EXCEPTIONAL BEHAVIOUR

The UML Components process[6] suggests that,

for each step in the main scenario of a use case, an opera-

tion in a system layer interface should be defined. We

performed this activity during the first iteration of the case

study. In the second iteration, the operations were specified

in terms of pre- and post-conditions, and the exceptions

they might signal.

For instance, step 4 of Register Complaint use case

was mapped to the listRoadSections operation of

the IComplaintRegistration interface (Figure 8).

The specification of this operation, as well as the excep-

tions that it may signal, are described in Figure 11.

of the new ComplaintMgr component resembles Figure

5. In our implementation, ALE, BLE, and CLE handlers were

developed as classes where methods correspond to the

actual handlers.

Façade classes of components were modified to in-

troduce explicit checks for pre- and post-conditions. In the

initial implementation, pre- and post-conditions of opera-

tions were checked at the presentation layer, or not at all. In

the robust implementation, façade classes raise an exception

of type RejectedRequestException, if a service re-

quest violates a pre-condition. When a response violates a

post-condition, the façade class invokes the appropriate

BLE handler. In most cases, the BLE handler signals an

exception of a subtype of

RecoveredFailureException or

UnrecoveredFailureException (Section 4.1).

The use of BLE handlers guarantees that compo-

nents always produce meaningful responses, when errors

occur. For instance, during the execution of the

listRoadSections operation, if the implementation

classes of the SectionMgr component signal an exception

of type SectionDatabaseQueryException, this ex-

ception is automatically propagated, since it denotes an

anticipated exceptional condition. However, if an exception

of type NullPointerException reaches the

component boundary, it is treated as signalling an unantici-

pated exceptional condition. Hence, the handler

encapsulates this exception as an instance of

RecoveredFailureException and raises it. The

component’s state is guaranteed to be consistent, since it

is not modified by the implementation of

listRoadSections. If support for backward error

recovery is available and the failed operation modifies the

system’s state, the BLE handlers may try to restore it to a

previous state free of errors.

The code snippet in Figure 12 illustrates how the

provided interface interceptor of the robust implementation

of the ComplaintMgr interceptor works.

The IManager interface defines methods for man-

aging the dependencies of the component. Each component

in the system provides its own implementation. In the ex-

ample, the interceptor uses an object of type IManager to

obtain a reference to the original ComplaintMgr com-

ponent.

The class ComplaintMgtIntercep-

tor_Exceptional implements the exceptional behaviour

of the component. This class implements a polymorphic

handle method responsible for handling the exceptions

that may be raised by the operations of the original compo-

nent. In this example, handling consists of transforming

instances of SQLException in instances of

ComplaintRegistrationException.

After specifying the exceptional failure hypotheses

for all the exceptional scenarios, we defined the exceptional

behaviour of the system for each of them. For the

listRoadSections operation, the exceptional

behaviour consists of preparing an error message and

displaying it to the user. In fact, this exceptional behaviour

is adopted by almost all the operations in the system. In

some cases, rollback is also performed, in order to guarantee

the consistence of the system’s state.

5.4 IMPLEMENTATION OF THE EXCEPTIONAL BEHAVIOUR

For most architectural components of the CMS the

initial implementation was modified to adhere to the internal

structure shown in Figure 4 (Section 4.2). However, the initial

implementation of the ComplaintMgr component was

reused as an OTS component. Hence, the internal structure

Figure 11. Operation listRoadSection

A Systematic Approach for Structuring Exception

Handling in Robust Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

16

We have also modified the initial implementation of
the connectors ComplaintMgrConn and
UserMgrConn. In both cases, very small modifications
were made to their interface adaptor classes (Section 5).
For each of them, a new class responsible for the exceptional
behaviour was implemented, much like the
ComplaintMgrInterceptor_Exceptional in the
example above. These CLE handlers were responsible for
dealing with unanticipated exceptional conditions. If a server
component raises an unexpected exception, the connector
is responsible for transforming it into some declared
exception defined by the exceptional contract of the client
component or, if this is not possible, an appropriate subclass
of FailureException.

5.5 DISCUSSION

The most important benefit of applying our approach

to the CMS was enhanced system structure. The

implementation of the system bore a greater resemblance to

its design and the code responsible for the exceptional

behaviour was more clearly separated. The main

consequence of this fact is decreased complexity. Moreover,

exceptions are confined to where they are semantically

meaningful. For instance, in our case study, the system

layer did not have to handle any exception directly related

to the database. Hence, components are more reusable,

because they only have to deal with exceptions that are

directly related to their conceptual domains.

1 package business.complaintMgr.impl;

2 // imports all the required types

3 public class ComplaintMgrInterceptor implements IComplaintMgt {

4 private IManager manager;

5 public ComplaintMgtInterceptor(IManager manager){

6 this.manager = manager;

7 }

8 public String registerComplaint(...) throws ComplaintRegistrationException

9 {

10 IComplaintMgt iComplaintMgt = (IComplaintMgt)manager.

11 getRequiredInterface(“business.complaintMgr.spec.prov.IComplaintMgt”);

12 String complaintId = new String();

13 try {

14 complaintId = iComplaintMgt.registerComplaint(...);

15 } catch (SQLException e) {

16 ComplaintMgtInterceptor_Exceptional handler =

17 new ComplaintMgtInterceptor_Exceptional();

18 handler.handle(e);

19 }

20 return complaintId;

21 }

22 (...)

23 }

Component-based systems built according to our

proposed approach are also more robust, for two main reasons:

1. The specific exception handlers share responsibilities

for exception handling at different levels of semantics

abstraction. The most concrete and implementation-

dependent level is assigned to ALE handlers, while

the most abstract and system-dependent level is as-

signed to CLE handlers. Thus, specific exception

handling strategies can be employed at each

semantic level, preserving the system’s

independence of its component’s implementations.

This improves the substitutability of the system’s

components and, hence, also improves its

robustness.

2. Our exception handling strategy includes concrete

guidelines about how a component should react to

unanticipated exceptional conditions. This kind of

design decision is not left open to the component

developer. This avoids the situation where, in

absence of a specification, the developers adopt bad

practices such as: swallowing an exception,

including an empty catch block, and propagating

an exception that is meaningless to the component’s

client.

CLE handlers guarantee that exceptions a compo-

nent receives are compatible with the abstract exception

Figure 12. Implementation of the registerComplaint method of class ComplaintMgrInterceptor

A Systematic Approach for Structuring Exception

Handling in Robust Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

17

type hierarchy, as discussed in Section 5.2. Hence, there is

always some semantic information regarding the error that

can be taken into account by handlers. Furthermore, the

exceptions in the abstract exception type hierarchy provide

some information regarding the state in which the

component that signalled the exception was left. This is

important for error diagnosis and recovery.

The intra-component strategy for reusing OTS com-

ponents proved to be useful. To reuse the initial imple-

mentation of the ComplaintMgr component, no

modifications were required to other elements of the system.

All we had to do was to deploy the robust implementation

(reused ComplaintMgr plus provided interface interceptor

and BLE handlers) as if it were the initial implementation.

This is an important benefit of applying the proposed

approach.

The implementation overhead of applying our strat-

egy in an existing system is not negligible. In our case study,

the robust implementation of the CMS had 9.54% more lines

of code than the initial implementation (9747 loc of the

original version against 10677 loc of the new one, ignoring

automatically generated code). Although the robust

implementation is larger, it is also better structured.

Our strategy also imposed a development time

overhead, due to specification and implementation

activities. The time it took for the developer to perform the

three activities described in Section 4.4 throughout

requirements, specification, provisioning, and assembly

workflows accounted for more than 30% of the time re-

quired for the development of the initial implementation.

6 CONCLUSIONS

The main contribution of this paper is a general strat-

egy for exception handling in component-based systems,

addressing the problem of how to develop robust and re-

usable software components that can be easily integrated

in dependable component-based systems. We have drawn

ideas from different views on exception handling[8,22] and

combined them in a set of guidelines for structuring

exception handling at both architectural and implementa-

tion levels.

An initial assessment of the approach described in

this paper has been presented elsewhere[15]. Our present

work improves this initial assessment adding a new type of

exception handler. Pagano[26] describes an extended

version of the case study presented in Section 5. Guerra[17]

presents a case study describing the application of the

proposed exception handling strategy to a real-world

banking application.

Although the workflow described in Section 4.4 may

be used in isolation, it is more effective if fully integrated

with a CBD process. In this manner, it can be refined and the

specification of the exceptional behaviour of a system can

be taken into account since early stages of development.

We are currently extending the UML components process[2]

with the method described in Section 4.4. This effort builds

upon previous work on the definition of a CBD process that

takes the exceptional behaviour of a system into considera-

tion[29].

Our most immediate future work consists of devel-

oping tools for partially automating the implementation of

handlers at both inter-component and intra-component

levels. This is an ongoing work that is being conducted in

the context of a larger project[37].

Other important issues to be addressed in future

works are: (i) to measure quantitatively the impact of the

proposed approach in the reliability of the final system; and

(ii) to investigate how the proposed approach can be

extended to include guidelines for structuring concurrent

exception handling. For the reliability analysis, our intent is

to apply fault-injection techniques on both implementations

of the Complaint Management Subsystem to obtain

statistical data about the frequency of failures before and

after the application of the proposed approach. The

structuring of concurrent exception handling, at the

architectural level, is currently being addressed by our

research.

Furthermore, we intend to evaluate the applicability

of aspect-oriented programming[11] techniques to increase

separation of concerns in two complementary levels. First,

to specify architectural level exception handlers. In this case,

aspects would complement existing architecture description

languages, instead of programming languages. The result

of weaving such aspects would be an extended architecture

description that expresses certain properties regarding

dependability. Second, to help in decoupling the

implementation of the normal and exceptional behaviours

of systems built according to the proposed guidelines.

These are both ongoing works that are described in more

detail elsewhere[4,5].

Acknowledgements

F. Castor Filho is supported by FAPESP/Brazil, grant

number 02/13996-2. C. M. F. Rubira is partially supported by

CNPq/Brazil, grant number 351592/97-0. We would like to

thank Rodrigo Tomita for reading a draft of the paper and

providing several interesting comments. We are also grateful

to the anonymous reviewers for their valuable remarks that

contributed to many improvements in this final version of

the paper.

A Systematic Approach for Structuring Exception

Handling in Robust Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

18

References
[1] T. Anderson and P A. Lee. Fault Tolerance: Principles

and Practice. Springer-Verlag, Wine, Austria, 2nd

Edition, 1990.

[2] P. H. S. Brito, F. C. Filho and C. M. F. Rubira. A method

for modeling exceptions in component-based

development (in portuguese). In Proc. IV Brazilian

Workshop on Component-Based Development

(WDBC’2004), pp. 29-34, João Pessoa, PB, Brazil,

Sep. 2004.

[3] F. Castor Filho, P. A. de C. Guerra and C. M. F. Rubira.

An Architectural-level Exception Handling System

for Component-based Applications. In: Proc. First

Latin-American Symposium on Dependable

Computing, LNCS 2847, pp. 321-340, Springer-Verlag,

2003.

[4] F. Castor Filho and C. M. F. Rubira. Implementing

Coordinated Error Recovery for Distributed

Object-Oriented Systems in AspectJ. Journal of

Universal Computer Science, 10(7):843-858, Jul.

2004.

[5] F. Castor Filho, P. H. S. Brito, and C. M. F. Rubira. A

Framework for Analyzing Exception Flow in

Software Architectures. Submitted to IV ICSE

Workshop on Architecting Dependable Systems

(WADS’2005).

[6] J. Cheesman and J. Daniels. UML Components: A

Simple Process for Specifying Component-Based

Software. Addison-Wesley, Reading, MA., USA,

Oct. 2000.

[7] J. E. Cook and J. A. Dage. Highly reliable upgrading

of components. In Proc. 21st International

Conference on Software Engineering (ICSE’1999),

pp. 203-212, Los Angeles, CA, ACM Press, May

1999.

[8] F. Cristian. Exception Handling. In: T. Anderson (Ed.)

Dependability of Resilient Computers. BSP

Professional Books, UK, pp. 68-97, 1989.

[9] G. Doshi. Best practices for exception handling.

ONJava Website. November 2003. http://

www.oreillynet.com/pub/a/onjava/2003/11/19/

exceptions.html

[10] D. D’Souza and A. C. Wills. Objects, Components

and Frameworks with UML: The Catalysis Approach.

Addison-Wesley, 2nd edition, 1999.

[11] T. Elrad, R. E. Filman and A. Bader. Aspect-oriented

programming. Communications of the ACM,

44(10):28-32, 2001.

[12] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design

Patterns: Elements of Reusable Software Systems.

Addison-Wesley, 1995.

[13] D. Garlan, R. Allen and J. Ockerbloom. Architectural

Mismatch: Why Reuse Is So Hard. IEEE Software.

12(6):17-26, 1995.

[14] D. Garlan, R. T. Monroe and D. Wile. Acme:

Architectural Description of Component-Based

Systems. In: G. T. Leavens and M. Sitamaran (Eds.)

Foundations of Component Based Systems, chapter

3, pp. 47-67. Cambridge University Press, Cambridge,

UK. 2000.

[15] P. A. de C. Guerra, F. Castor Filho V. A. Pagano and C.

M. F. Rubira. Structuring exception handling for

dependable component-based software systems. In

Proc. 30th Euromicro Conference, Rennes, France,

IEEE Computer Society Press. Sep. 2004.

[16] P. A. de C. Guerra, C. M. F. Rubira and R. de Lemos. A

Fault-Tolerant Software Architecture for

Component-Based Software Systems. In Ar-

chitecting Dependable Systems. LNCS 2677.

Springer-Verlag. 2003.

[17] P. A. de C. Guerra. An Architectural Approach for

Fault Tolerance in Component-Based Software

Systems (in portuguese). PhD thesis, Universidade

Estadual de Campinas, 2004.

[18] V. Issarny and J. P. Banatre. Architecture-Based

Exception Handling. In Proc. 34th Annual Hawaii

International Conference on System Sciences

(HICSS’34). IEEE Computer Society Press, 2001.

[19] A. Kalakech et al. Benchmarcing operating system

dependability: Windows 2000 as a case study. In

Proc. 10th IEEE Pacific Rim International Symposium

on Dependable Computing (PRDC’2004), pp. 261-

270, Papeete, Tahiti, IEEE Computer Society Press,

Mar. 2004.

[20] M. D. McIlroy. Mass-Produced Software Com-

ponents. In P. Naur and B. Randell (Eds) Software

Engineering. Petrocelli/Charter, Brussels, Belgium,

pp. 88-98. 1976.

[21] N. Medvidovic and R. N. Taylor. A framework for

classifying and comparing architecture description

languages. In Proc. 6th Joint ACM/Sigsoft

Symposium on Foundations of Software Engineering

and European Software Engineering Conference

(FSE/ESEC’97), Sep. 1997.

[22] B. Meyer. Object-Oriented Software Construction.

Prentice-Hall, New Jersey, 1988.

[23] B. Meyer. The grand challenge of trusted components.

In Proc. 25th International Conference on Software

Engineering, pp. 660-667. IEEE Computer Society

Press, May 2003.

[24] Microsoft Corporation. Microsoft .Net Information.

Available at http://www.microsoft.com/net/

[25] Object Management Group. Unified Modeling

Language: Superstructure, version 2.0. Jul. 2003.

[26] V. A. Pagano. An architectural approach based on

exception handling for the design of component-

based software systems (in portuguese). Master’s

thesis, Universidade Estadual de Campinas, 2004.

A Systematic Approach for Structuring Exception

Handling in Robust Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

19

[27] M. Rakic and N. Medvidovic. Increasing the

confidence in off-the-shelf components: A software

connector-based approach. In Proc. 2001 Symposium

on Software Reusability, pp. 11-18. ACM/SIGSOFT,

May 2001.

[28] D. Reimer and H. Srinivasan. Analyzing exception

usage in large java applications. In Proc.

ECOOP’2003 -Workshop on Exception Handling for

Object-Oriented Systems, pp. 10-19, Darmstadt,

Germany, Jul. 2003.

[29] C. M. F. Rubira, R. de Lemos, G. Ferreira and F. Castor

Filho. Exception handling in the development of

dependable component-based systems. Software -

Practice and Experience, 2005.

[30] M. Shaw and D. Garlan. Software Architecture:

Perspectives on an Emerging Discipline. Morgan

Kaufmann Publishers, 1996.

[31] S. Shenoy. Best practices in EJB exception handling.

In IBM developerWorks website. Available at http:/

/www-106.ibm.com/developerworks/library/j-

ejbexcept. 2002.

[32] J. Siedersleben. Errors and exceptions - rights and

responsibilities. In Proc. ECOOP’2003 -Workshop on

Exception Handling for Object-Oriented Systems, pp.

2-9, Darmstadt, Germany, Jul. 2003.

[33] M. Silva Jr., P. A. de C. Guerra and C. M. F. Rubira. A

Java Component Model for Evolving Software

Systems. In Proc. 18th IEEE International Symposium

on Automated Software Engineering, pp. 327-330,

Oct. 2003.

[34] Sun Microsystems. Enterprise javabeans specifi-

cation v2.1 - proposed final draft, 2002. Available at

http://java.sun.com/products/ejb/

[35] Sun Microsystem. Java 2 Platform, Enterprise Edition

(J2EE). Available at http://java.sun.com/j2ee/

index.jsp

[36] C. Szyperski. Component Software: Beyond Object-

Oriented Programming. ACM Press and Addison-

Wesley, New York, NY, second edition, November

2002.

[37] R. T. Tomita, F. Castor Filho, P. A. de C. Guerra and C.

M. F. Rubira. Bellatrix: An environment with

architectural support for component-based

development (in portuguese). In Proc. IV Brazilian

Workshop on Component-Based Development

(WDBC’2004), pp. 43-48, João Pessoa, PB, Brazil,

Sep. 2004.

[38] G. Veccellio and W. M. Thomas. Issues in the

assurance of component-based software. In Proc.

2000 International Workshop on Component-Based

Software, Carnegie Mellon Software Engineering

Institute, 2000.

[39] J. Xu, B. Randell, A. Romanovsky, C. Rubira, R. Stroud

and Z. Wu. Fault Tolerance in Concurrent Object-

Oriented Software through Coordinated Error

Recovery. In Proc. IEEE 25th Int. Symp. on Fault-

Tolerant Computing, pp. 499-508, Pasadena, 1995.

[40] J. Xu, B. Randell, A. Romanovsky, R. J. Stroud, A. F.

Zorzo, E. Canver and F. von Henke. Rigorous

development of an embedded fault-tolerant system

based on coordinated atomic actions. IEEE

Transactions on Computers, 51(2):164-179, Feb. 2002.

A Systematic Approach for Structuring Exception

Handling in Robust Component-Based Software

Fernando Castor Filho, Paulo Asterio de C. Guerra,

Vinicius Asta Pagano and Cecília Mary F. Rubira

