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As a newly proposed secure transport protocol, QUIC aims to improve the transport performance of HTTPS traffic and enable rapid
deployment and evolution of transport mechanisms. QUIC is currently in the IETF standardization process and will potentially carry a
significant portion of Internet traffic in the emerging future. An important safety goal of QUICprotocol is to provide effective data service for
users. To aim this safety requirement, we propose a formal analysismethod to analyze the safety ofQUIChandshake protocol by usingmodel
checker SPIN and cryptographic protocol verifier ProVerif. Our analysis shows the counterexamples to safety properties, which reveal a
design flaw in the current protocol specification. To this end, we also propose and verify a possible fix that is able to mitigate these flaws.

1. Introduction

As a newly proposed secure transport protocol, QUIC aims to
improve the transport performance of HTTPS traffic and
enable rapid deployment and evolution of transport mecha-
nisms. In the OSI reference architecture, QUIC is above the
network layer and spans the transport layer, session layer,
presentation layer, and application layer. It uses UDP instead of
TCP in the transport layer. In the session layer and presentation
layer, QUIC abandons the TLS1.2 protocol and self-encap-
sulates the TLS stack for protocol encryption. In the application
layer, HTTP/2 is only responsible for HTTP protocol parsing,
andQUIC can fulfill the functions ofHTTP/2multiplexing and
link management. ,e position of QUIC in the HTTPS pro-
tocol stack is shown in Figure 1. Different from the traditional
HTTP/2+TLS+TCP scheme,QUIC can run completely in the
user space rather than the system kernel based on UDP
protocol. ,erefore, QUIC can be rapidly deployed like an
application program and continuously updated iteratively
according to the usage requirements.

Being a key part of QUIC protocol, the QUIC handshake
protocol is responsible for authenticating the identities of

participants and establishing secure connection for subse-
quent communications. QUIC handshake protocol per-
forms encryption in the transport layer, reducing the
number of round trips required for setting up a secure
connection. QUIC initial connections are common 1-RTT,
meaning that all initial connection data can be sent im-
mediately without waiting for a reply from the server, which
is more efficient compared to the 3 round trips required for
TCP/TLS before application data can be sent. QUIC
handshake protocol is functionally equivalent to TCP/TLS/
HTTP2, but implemented on top of UDP.

QUIC is still under review for standardization, which
usually takes the format of an RFC: a natural language
(normally English) document that offers implementation
advice to protocol engineers. However, a natural language
document is nonetheless ambiguous and open to various
interpretations, some of which are even contradicting. As for
the current QUIC handshake protocol, it is still unclear
whether or not it conforms to the properties claimed in the
IETF standardization documents. Safety and security are two
types of properties that shall be accommodated in the design
of cryptographic protocols. Safety refers to the capacity of
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accommodating expected functions for cryptographic pro-
tocols, while security refers to the capacity of avoiding
hostile attack in the public environment for cryptographic
protocols. In order to ensure correct implementation, the
cryptographic protocols shall have both safety and security
before deployment.

As reported in [1], a possible way to resolve the ambi-
guities and rigorously validate the protocol design is through
formal verification, where a formal model of the protocol is
first constructed and then analyzed with respect to the
specified properties. Symbolic model checking [2] has been a
popular method for the formal verification of cryptographic
protocols. Since the pioneering work in [3] that discovered
the Needham–Schroeder protocol’s design flaws, symbolic
model checking has been widely and actively used to for-
mally analyze cryptographic protocols [4–11].

However, most of the current works focus on security
verification, which still lack consideration for safety verification
of cryptographic protocols. Now, safety is mainly based on
typical model checking for modeling and verification, while
security mainly uses specific modeling and analysis technology
such as process calculation for verification. In our work, we
propose a new safety modeling and verification method for
cryptographic protocols which lazily combines a typical model
checker and a cryptographic protocol verifier. We also perform
the safety verification of QUIC handshake protocol based on
this method. ,e principle employed by our method is to be
tool-agnostic, that is, it can be instantiated through any generic
typical model checker and cryptographic protocol verifier. To
achieve our goal, however, we need to address the following
challenges. (C1) Modeling and verification cannot be imple-
mented directly for safety property of cryptographic protocols
with specific modeling and analysis technology such as process
calculus. (C2) Safety verification of cryptographic protocols
results from typical model checking may be not true or feasible
for practical cryptographic protocols, that is to say, verification
results may be fake counterexamples. (C3) ,e QUIC protocol
lacks a formal specification and hence is prone to ambiguity and
underspecification. To this end, we have made the following
contributions in the work:

(1) We propose a method to solve the problem of fake
counterexamples in safety verification.

(2) Based on the IETF standardized documents, we
construct the formal model of the QUIC handshake

protocol in applied pi calculus and give the transition
system model of the QUIC handshake protocol.
,rough the transition system model, we present a
enhance attacker model and construct the Promela
[12] model of QUIC handshake protocol, which is
used to verify the safety property of QUIC handshake
protocol.

(3) We use our method to verify the QUIC handshake
protocol and successfully find the real design flaw of
QUIC handshake protocol.

(4) According to our verification results, we discuss the
possible causes of the defects and suggest potential
fixes of QUIC handshake protocol.

,e organization of this paper is as follows. Section 2
gives the related works on formal analysis of cryptography
protocols. Section 3 presents a thorough description and the
safety requirement of QUIC handshake protocol. Section 4
presents the formal verification of QUIC handshake pro-
tocol. Section 5 reports the verification results. Finally,
Section 6 concludes this paper.

2. Related Works

,e properties considered in model checking of crypto-
graphic protocols can be divided into 2 kinds: based on
temporal properties and based on cryptographic properties.
Previously, a lot of work focused on analyzing these
properties of cryptographic protocols. In this section, we
review the most relevant works.

Babenko et al. [13] used the formal verifier SPIN to
analyze the temporal properties of the cryptographic pro-
tocol for e-voting. ,ey found that the e-voting protocol
correctly handles the case of an active attack on the parties’
authentication.

Ninet et al. [14] performed a formal analysis of the IKEv2
specification using the SPIN. ,eir analysis showed that the
reflection attack is not possible, due to IKEv2’s Initiator and
Response flags. And, they confirmed that IKEv2-Sig does not
satisfy weak agreement.

In [15, 16], the authors used Tamarin [17] to model and
analyze the cryptographic properties of the 5G AKA pro-
tocol. ,ey found that the 5G AKA protocol lacks integrity
protection for the identity of the server network.
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Figure 1: QUIC in the traditional HTTPS stack.
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Zhang et al. [18] used ProVerif to model and analyze the
cryptographic properties of the 5G EAP-TLS protocol. ,eir
analysis revealed several design flaws of authentication
properties of 5G EAP-TLS protocol. ,ey also proposed
several strategies to repair these vulnerabilities.

Hussain et al. [19] proposed a systematic model-based
adversarial testing approach LTEInspector that leverages the
combined power of a symbolic model checker and a protocol
verifier for analyzing the critical procedures of the 4G LTE
network. ,ey exposed ten new attacks.

Hussain et al. [20] proposed a property-guided formal
verification of 5G control-plane protocols. ,eir evaluation
of the 5G protocol model against 187 properties revealed 11
new exploitable protocol design weaknesses. ,ey also
discovered 5 prior attacks which 5G inherits from 4G LTE.

,e security analysis for cryptographic protocols also in-
cludes some complexity-based formalmethods, such as [21–23].
In this paper, our main consideration is whether there are
defects in the design of cryptographic protocol. We conduct
formal verification of the cryptographic protocol based on the
symbolic model checking. ,is method relies on the symbolic
model of cryptography and the Dolev–Yao attacker model [24].
,e protocol messages are abstracted by terms, and the cryp-
tographic primitives are abstracted by function symbols and
assumed to be perfect (i.e., unbreakable). ,e algebraic prop-
erties of cryptographic primitives are described by equational
relations over function symbols. Compared with complexity-
based formal methods, the symbol model checking has the
characteristics of automation.

In our previous work [25, 26], we verified the security of the
QUIC handshake protocols with the cryptographic protocol
verifiers ProVerif and Verifpal. However, in addition to the
authentication and confidentiality of the QUIC handshake
protocol, researchers may pay more attention to whether a
certain function of the protocol can be realized. For example, in
the scene of streamingmedia content transmission, the purpose
of QUIC protocol is to handle more connections under the
premise of ensuring security, so as to meet the function of
providing content transmission quickly. ,erefore, it becomes
an important functional safety requirement ofQUIChandshake
protocol to ensure that the client can normally obtain the
content transmitted by the server. ,erefore, how to analyze
and verify the temporal property of cryptographic protocols has
become a significant research work.

3. The QUIC Handshake Protocol

In this section, we present a detailed review of the QUIC
handshake protocol described in the IETF document [27].

,e client of QUIC handshake protocol represents a
subscriber’s device (e.g., mobile phone or computer) that
intends to start a secure connection to the network. ,e
server of QUIC handshake protocol is where the client may
connect to obtain a service. We assume that the public
channel through which the client communicates with the
server is under the control of malicious attackers.

(1) ,e flow of the QUIC handshake process as defined
in the IETF document [27] is shown in Figure 2.

(2) Since the client does not cache the server configu-
ration information in the beginning, the client needs
to send a hello message (CHLO) to the server to get
the reject message (REJ) from the server.

(3) When the server receives a CHLO message, it sends
the REJ message to the client. ,e REJ message
contains the following parts: (1) the config infor-
mation including the server’s long-term Dif-
fie–Hellman public value, (2) a certificate chain
authenticating the server, (3) a signature of the server
config using the private key from the leaf certificate
of the chain, and (4) a source address token (as an
authenticated encryption block).

(4) If the handshake is successful, the server calculates
the initial keys using the client’s ephemeral Dif-
fie–Hellman public value and its long-term Dif-
fie–Hellman private value. Moreover, it calculates its
own ephemeral Diffie–Hellman public value using its
ephemeral Diffie–Hellman private value and calcu-
lates its final keys using the client’s ephemeral Dif-
fie–Hellman public value and its ephemeral
Diffie–Hellman private value. It sends its ephemeral
Diffie–Hellman public value encrypted with the
initial secret key as a server hello message (SHLO) to
the client. Finally, the server encrypts subsequent
communication data using its forward-secure key.

(5) When the client receives the SHLO message, it sends
the packet encrypted with its forward-secure key.

,e detailed steps of the QUIC handshake process are
depicted in Figure 3 and Table 1.

Client

Inchoate CHLO

Complete CHLO

Encrypted request

Encrypted response

REJ

Server

Figure 2: Initial handshake process of QUIC.
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As an important function of the QUIC protocol, we
consider whether the client of the protocol will eventually be
able to obtain the data provided by the server. Based on the
protocol state machine model, the functional requirements of
the QUIC handshake protocol can be expressed by temporal
property ϕ: the client will eventually reach the received data
state when it reached the waiting data state. ,e linear
temporal logic LTL formula of property ϕ is expressed as

(Client Init(Client Finish). (1)

4. Formal Verification of QUIC
Handshake Protocol

4.1. Overview of Our Approach. ,e design framework for
safety verification of QUIC handshake protocol is realized
based on typical model checker SPIN and cryptographic
protocol verifier ProVerif. Promela, as input to SPIN, is the
formal model describing the state transfer of QUIC hand-
shake protocol. Temporal properties φ are used to describe
the safety requirements of QUIC handshake protocol. We
give two strategies (Ref and Tran) to process ϕ to get the
security properties φ′. We use ProVerif to verify the applied
PI calculus [6] model and properties φ′ of QUIC handshake
protocol so as to judge the counterexamples π of SPIN. ,e
design framework of our method is shown in Figure 4.

4.2. Formal Models of QUIC Handshake Protocol. A. State
transfer models of the QUIC handshake protocol.

Firstly, according to the process of QUIC handshake
protocol, we present the state transfer models of the QUIC
handshake protocol, as shown in Figures 5 and 6.

Initially, the client is at the initial state, and when it re-
ceives Restart, it sends an initial Hello message CHLO to the
server. ,e client then enters the waiting configuration
message (REJ) state. In this state, when the client receives the
Restart or ICHLO rej message, the initial Hello message
CHLO is resent, and there is no state transition for the client.
,e ICHLO rej message indicates that the server rejected the
client’s handshake request. When the client receives the
configuration message REJ sent by the server, there are two
possibilities. One is that the client receives the configuration
message REJ from the server, and the server certificate
T CertS or the signature T SignConfig of the configuration
information is incorrect; then, the client will resend the initial
Hellomessage CHLO, and the client state will not change.,e
other is that the client receives the configuration message REJ
of the server, and the server certificate T CertS and the
signature T SignConfig of the configuration information are
correct; then, the client will send the completedHellomessage
CCHLO and the ciphertext Enc_ReqM of the request data to
the server, and the client transfers to the waiting data state. At
this point, if the client receives the CCHLO REJ message sent
by the server, it means that the server rejected the handshake
message of Hello completed by the client. ,en, the client will
resend the initial Hello message CHLO to the server and
transfer to the waiting REJ state. When the client receives the
server’s Hellomessage SHLO and the ciphertext Enc_ResM of
the server’s reply data, there are also two situations. One is
that the client cannot decrypt the ciphertext sent by the server
correctly; then, the client will send the initial Hello message
CHLO to the server again. In the other case, the client can
correctly decrypt the ciphertext sent by the server, indicating
that the client has correctly obtained the data provided by the
server.,en, the client sends the confirmationmessage Finish
to the server, and the client transfers to the state of receiving
the data.,e annotations of state transfer messages are shown
in Table 2.

Client
CEPri, pkS

Server
g, LPri, LPub, SEPri, skS

Inchoate CHLO

Con�g=(LPub, g), CertServer, sign
ature={Con�g}skS, Token

Client verify CertServer and
signature.

Derive CEPub by g and CEPri.
Derive InitKC by LPub and

CEPri.

CEPub, {Request message}InitKC

{SEPub}InitKS, 
{Response message}FSKS

Derive InitKS by CEPub and
LPri.

Derive SEPub by g and SEPri.
Derive FSKS by SEPri and CEPub.

Derive FSKC by SEPub and CEPri.

Figure 3: ,e detailed steps of the QUIC handshake process.

Table 1: Protocol messages and their annotations.

Message Annotation

CEPri Client’s ephemeral Diffie–Hellman private value
LPri Server’s long-term DH private value
SEPri Server’s ephemeral Diffie–Hellman private value
LPub Server’s long-term DH public value
g Primitive root
CEPub Client’s ephemeral Diffie–Hellman public value
SEPub Server’s ephemeral Diffie–Hellman public value
InitKC Initial key of client
InitKS Initial key of server
FSKC Forward-secure key of client
FSKS Forward-secure key of server
pkS Public signature key of the server
skS Private signature key of the server
{} skS {} is signed using the private signature key of the server
{} InitKC {} is encrypted using the initial key of client
{} InitKS {} is encrypted using the initial key of server
{} FSKS {} is encrypted using the forward-secure key of server
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4.3.QUICHandshakeProtocol inPromela. Based on the state
machines of the client and server, we use Promela to model
the state machines of the QUIC handshake protocol. Firstly,
we define and assign the type of data involved in the pro-
tocol. ,e data types are defined as byte and bool, and the
named set is represented as follows:

byte � Restart,CHLO,Rej,CCHLO, SHLO{ }),

byte � CHLO rej,CCHLO rej, Finish{ }),

bool � ClientInit, Server Init{ },

bool � Client Finish, Server Finish{ }.

(2)

Promela
modle

Temproal
properties

Security
properties

Applied PI
calulus model

SPIN Ref and
Tran

ProVerif

Figure 4: ,e design framework of the proposed method.
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Figure 5: Client state transfer model of QUIC handshake protocol.
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Figure 6: Server state transfer model of QUIC handshake protocol.
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We preassign a fixed value to each byte type message,
which is used by the client, server, and attacker to identify
the message. We initially assign false to all bool variables.
Client Finish and Server Finish assign true when the client
and server successfully reach the final state, respectively. ,e
assignment of the message is defined as follows:

byte Restart � 0,

CHLO � 1,

Rej � 2,

CCHLO � 3,

SHLO � 4,

byte CHLO rej � 5,

CCHLO rej � 6,

Finish � 7,

bool Client Init � false,

Server Init � false,

bool Client Finish � false,

Server Finish � false.

(3)

For the communication between the client and server,
we define two channels to carry the message transmission
between the client and server. In the model, messages are
sent and received synchronously. ,e message types in the
channel are byte and bit. Variables of type byte, which have
values ranging from 0 to 255, represent the data for protocol
interactions. Variables of type bit have values ranging from 0
to 1. ,is type represents the correct value of protocol in-
teraction data, where 1 means correct and 0 means incorrect:

chanC to S �[0]of byte, bit{ },

chan S toC �[0] of byte, bit{ }.
(4)

According to the client state machine model shown in
Figure 5, we used Promela to model the state transition of
client, as shown in Figure 7.

In the client model, we define two temporary variables,
Cmg and Ccond, to receive messages from the channel for
the client. ,e value of Cmg represents the message sent by

the server, and the value of Ccond indicates whether the
message of Cmg is correct. For example, if the client expects
to receive the configuration message REJ sent by the server,
the client will determine whether the currently received Cmg
value is 2 and whether the Ccond value is 1. ,e client
chooses the next state transition based on the result of the
judgment.

According to the server state machine model shown in
Figure 6, we used Promela to model the state transition of
the server, as shown in Figure 8.

In the server model, we also defined two temporary
variables, Smg and Scond, to receive messages from the
channel.,e value of Smg represents the message sent by the
client, and the value of Scond indicates whether the message
Smg is correct. For example, when the server receives a
message in its initial state, it determines the value of the
message Smg. If the message Smg value is 1, the server thinks
it received a CHLO message. At the same temporal, if the
value of Scond is 0, then the server thinks the initial Hello
message sent by the client is incorrect and sends the rejection
message CHLO rej and 0 to the channel. If the value of
Scond is 1, then the server thinks it received a correct initial
Hello message from the client. ,e server then sends the
configuration information Rej and 1 into the channel and
changes its state to the waiting data state. In addition, we
output a message (0, 1) at the beginning of the server model
to simulate the environment sending the Restart message to
the client.

Table 2: State transfer messages and their annotations.

Message Annotation

CHLO Client’s initial Hello message
ICHLO rej It is the server’s rejection message to CHLO
CCHLO rej It is the server’s rejection message to CCHLO
T_CertS It indicates that the server’s certificate is true

T_SignConfig
It indicates that the server’s configuration message

is true
SHLO Server’s Hello message
Enc_ResM Ciphertext of the server’s data
Enc_ResM Ciphertext of the client’s data

T_Res
It indicates that the server’s response message is

true
T_Req It indicates that the client’s request message is true

proctype Client(chan in, out)

{

byte Cmg;

bit Ccond;

S0: in?Cmg, Ccond;

if

:: (Cmg == 0 && Ccond == 1) -> out!ICHLO, 1; goto S1

fi;

S1: in?Cmg, Ccond;

ClientInit = true;

if
:: (Cmg == 0 && Ccond == 0) -> out!ICHLO, 1; goto S1

:: (Cmg == 2 && Ccond == 1) -> out!CCHLO, 1; goto S2

:: (Cmg == 2 && Ccond == 0) -> out!ICHLO, 1; goto S1

:: (Cmg == 5 && Ccond == 0) -> out!ICHLO, 1; goto S1

:: (Cmg == 6 && Ccond == 0) -> out!ICHLO, 1; goto S1
fi;

S2: in?Cmg, Ccond;

if
:: (Cmg == 4 && Ccond == 1) -> out!Finish, 1; goto S3

:: (Cmg == 6 && Ccond == 0) -> out!ICHLO, 1; goto S1

:: (Cmg == 4 && Ccond == 0) -> out!ICHLO, 1; goto S1
fi;

S3: ClientFinish = true;

}

Figure 7: Promela model of the client.
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,e attacker’s behavior based on the Dolev–Yaomodel is
modeled, as shown in Figure 9. ,e attacker model receives
messages from the channel through variables Img and Icond.
When the attacker receives the messages, it determines the
value of Img. If it is a rejected message, the attacker will
resend the message to the channel. If the value of Img is a
data message, the attacker will change the value of the
message Icond from 1 to 0 and then sends Img and Icond to
the channel. For example, when the value of Img is 3 and the
value of Icond is 1, it means that the attacker intercepted the
correct CCHLO message. ,en, the attacker will send the
messages Img and 0 to the channel. If the server receives
these messages from the attacker, it means that the server
cannot decrypt the ciphertext of CCHLO. ,erefore, the
server will send a rejection message CHLO rej to the client.

4.4. QUIC Handshake Protocol in Applied PI Calculus.
Client process is shown in Figure 10. First, the client sends a
CHLOmessage on the channel c. We remark that an attacker
can access this public channel. ,en, it waits for the message
including five variables bounded to variables x1, x2, x3, x4,
and pkX, respectively. After that, the client checks if the
variables x3 and pkX are, respectively, certificate and public
key pkS of the server.,en, the client checks the signature of
x2 using variable pkX, which is the public key belonging to
the server. If the result of the signature check is equivalent to
x1, then the client calculates its initial key InitKC using x1
and its ephemeral private value CEPri. Subsequently, it sends
the ephemeral public value CEPub (exp(g,CEPri)) and the

ciphertext of the request message (enc(ReqM, InitKC)) on
the channel. ,en, it waits for a message of form (x5, x6).
When the client captures the message, it decrypts the var-
iable x5 using its initial key InitKC and then bounds the
return to variable x7. Normally, the variable x7 should be
the server’s ephemeral public value. Finally, the client cal-
culates its forward-secure key FSKC using variable x7 and its
ephemeral private value CEPri and decrypts the ciphertext
x6 using the forward-secure key FSKC.

,e server process is shown in Figure 11. First, the server
bounds the message of its input to variable x1. It checks
whether x1 is the legal inchoate client hello CHLO.,en, the
server sends its certificate Cert Server, the long-term public
value LPub (exp(g, LPri)), the signature of LPub and Token,
and its public key Token on the channel c. Next, the server
waits for the message including two parts which are, re-
spectively, bounded to x2 and x3. It obtains its initial key
InitKS using x2 and the long-term private value LPri. ,e
server checks if the ciphertext x3 is the request message
using InitKS. ,en, the server calculates SEPub with SEPri
and obtains its forward-secure key FSKS with x2 and SEPri.
Finally, it sends the ciphertext of SEPub and response
message ResM on the channel c.

4.5. OurVerificationApproach. In this section, we propose a
verification approach to verify the safety property of QUIC
handshake protocol. In this approach, we consider the ex-
istence of an attacker who has complete control over the
message on the public channel. In other words, the attacker
can intercept, tamper, and replay the information on the
public channel. However, the attacker cannot decrypt the
ciphertext without knowing the correct secret key. ,is
attacker model is called the Dolev–Yao model and denoted
by I. In addition, we define a stronger attacker model called
I+, which does not consider cryptographic operations.

,e algorithm of the QUIC handshake protocol safety
verification method is shown in Table 3.

According to Table 2, the inputM andM′ are, respectively,
the Promela model and the applied PI calculus model of the
QUIC handshake protocol. π is the counterexamples of the
verification of M and temporal properties φ by the model
checker SPIN. In the process of verification for the Promela
model, attacker’s capacity follows attacker model I+. ,e at-
tacker can capture and changemessage in the public channel or
privately falsify the encrypted message without the secret key
and without influence from the encryption mechanism.
,erefore, verification counterexample π created by the at-
tacker cannot be realized in the process of implementing
specific protocol. For example, the attacker falsifies an
encrypted message which is sent by an honest participant so
that the receiver cannot decode encrypted message or obtain
correct instruction for decryption, leading to a counterexample
from model verification. However, the attacker cannot falsify
encrypted message in practice due to lack of the secret key.

For the above uncertainty in verification counterexample
of the Promela model, this paper classifies counterexamples
based on involvement of attacker behavior in cryptogram-
mic operation. ,e counterexample π from temporal

proctype Server(chan in, out)

{

byte Smg;

bit Scond;

out!0, 1;

S0: in?Smg, Scond;

if

::(Smg == 1 && Scond == 1) -> out!Rej, 1; ServerInit = true;

goto S1

::(Smg == 1 && Scond == 0) -> out!ICHLO_rej, 0; goto S0

fi;

S1: in?Smg, Scond;

if

::(Smg == 3 && Scond == 1) -> out!SHLO, 1; goto S2

::(Smg == 3 && Scond == 0) -> out!CCHLO_rej, 0; goto S0

::(Smg == 1 && Scond == 1) -> out!Rej, 1; goto S1

::(Smg == 1 && Scond == 0) -> out!CCHLO_rej, 0; goto S0

fi;

S2: in?Smg, Scond;

if 

::(Smg == 1 && Scond == 1) -> out!Rej, 1; goto S1

::(Smg == 1 && Scond == 0) -> out!ICHLO_rej, 0; goto S0

::(Smg == 7 && Scond == 1) -> ServerFinish = true; goto S2

fi;

}

Figure 8: Promela model of the server.
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property verification based on the Promela model can be
classified into

(1) Counterexample π where attacker creation cannot be
determined

(2) True counterexample π where creation can be made
by the attacker

(3) False counterexample π where creation cannot be
made by the attacker

First, for counterexample classification, this paper
proposes a refining strategy Ref with the temporal property
based on the counterexample:

Ref 1: if counterexample π with temporal property φ is
classified into Class 1, then it is impossible to create
counterexample π for attacker behavior which shall be
determined in formal verification for cryptographic proto-
cols accommodating attacker model I. ,erefore, temporal
property φ is simplified into security constraint ω to be

proctype I(chan inC, outC, inS, outS) 

{

byte Img;

bit Icond;

do

::inC?Img, Icond ->

atomic{

if

:: (Img == 1 && Icond == 1) -> outS!ICHLO, 0

:: (Img == 1 && Icond == 1) -> outC!Restart, 0

:: (Img == 3 && Icond == 1) -> outS!CCHLO, 0

:: (Img == 7 && Icond == 1) -> outS!Finish, 1

:: (Img == 0 && Icond == 0) -> outC!Restart, 0

:: (Img == 1 && Icond == 0) -> outS!ICHLO, 0

:: (Img == 3 && Icond == 0) -> outS!CCHLO, 0

:: (Img == 7 && Icond == 1) -> outS!Finish, 1

fi;

}

::inS?Img, Icond ->

atomic{

if

:: (Img == 2 && Icond == 1) -> outC!Rej, 0

:: (Img == 4 && Icond == 1) -> outC!SHLO, 0

:: (Img == 5 && Icond == 0) -> outC!ICHLO_rej, 0

:: (Img == 6 && Icond == 0) -> outC!CCHLO_rej, 0

:: (Img == 0 && Icond == 0) -> outC!Restart, 0

:: (Img == 2 && Icond == 0) -> outC!Rej, 0

:: (Img == 4 && Icond == 0) -> outC!SHLO, 0

fi;

}

od

}

Figure 9: Promela model of the attacker.
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verified under which the attacker cannot create the existing
counterexample.

Ref 2: if counterexample π with temporal property φ is
classified into Class 2 or Class 3, then the counterexample π
is a true or false counterexample which is created by the

attacker and not consistent with the temporal property of
cryptographic protocols. In order to find other true coun-
terexamples in protocol, it is necessary to simplify current
temporal property φ and eliminate attacker’s behavior of
creating the current counterexample based on existing
temporal property φ to obtain new temporal property φ1.

When analyzing functional safety of cryptographic
protocols, this section considers whether the attacker can
falsify message sent by the honest participant in protocol. If
the attacker can falsify such message, then the attacker also
can send false message to protocol as an honest participant;
as a result, cryptographic protocols cannot be executed
normally in accordance with standards. ,erefore, security
constraint ω in refining strategy Ref 1 can be described as
message m that cannot be falsified and captured by the
attacker. Based on standard Dolev–Yao model I, security
constraint ω can be classified into 1. message falsification not
related to cryptogrammic operation; 2. message falsification
related to cryptogrammic operation. According to classifi-
cation for ω, the security constraint can be transformed into
security strategy Tran:

Tran 1: Class 1 security constraint ω is transformed into
confidentiality φ′ based on ProVerif:

query attacker(m), (5)

where m is the plaintext message sent by the honest par-
ticipant. If an attacker can obtain message m, then this
attacker can falsify the plaintext message m. ,erefore, it is
necessary to determine whether the attacker can obtain
message m, i.e., whether message m is confidential.

Tran 2: Class 2 security constraint ω is transformed into
confidentiality and consistency φ′ based on ProVerif:

query attacker(key),

inj − event(e(key)) �� >inj − event(e(key)),
(6)

where key is the secret key for creating message m. When
capturing key, the attacker can falsify messagem so that it is
necessary to determine whether key is confidential. In ad-
dition, in key exchange protocol, the attacker may exchange
key with other honest participants and then send falsified
and false encrypted message to other honest participants as
an honest participant so that cryptographic protocols cannot
be implemented normally. ,erefore, it is necessary to verify
consistency of key for the Class 2 security constraint.

Based on the above property refining strategy and
constraint transformation strategy, this paper proposes a
temporal property verification method based on
counterexamples:

(1) If φ is a temporal property of protocol to be verified,
then Promela model and property φ are verified by
SPIN to obtain counterexample π1, and property φ is
transformed into security constraint ω for analyzing
attacker behavior with property refining strategy Ref
1.

(2) ,e type of security constraint ω is determined based
on constraint transformation strategy Tran to give
security property φ1

′.

let Client (sspuk:pkey) =

out (c, CHLO);

in(c, (x1:G, x2:bitstring, x3:bitstring, x4:bitstring));

let (=x1) = checksign (x2, sspuk) in

new CEPri: exponent;

let InitCK = exp (x1, CEPri) in

out (c, (exp (g, CEPri), enc (ReqM, InitCK)));

in (c, (x5:G, x6:bitstring));

let x7 = decP (x5, InitCK) in

let FSKC = exp (x7, CEPri) in

let ResMx = dec (x6, FSKC) in.

Figure 10: ,e client process in applied PI calculus.

let Server(sspuk:pkey, ssprk:skey) =
in(c, x1:bitstring);
if x1 = CHLO then
new LPri: exponent;
new Token: bitstring;
out(c, (exp(g, LPri), sign(exp(g, LPri), ssprk), CertServer, Token));
in(c, (x2:G, x3:bitstring));
let InitSK = exp(x2, LPri) in
let ReqMx = dec(x3, InitSK) in
new SEPri: exponent;
let SEPub = exp(g, SEPri) in
let FSKS = exp(x2, SEPri) in
out(c, (encP(SEPub, InitSK), enc(ResM, FSKS))).

Figure 11: ,e server process in applied PI calculus.

Table 3: Safety verification algorithm for QUIC handshake
protocol.

Algorithm: safety verification method

Input: M, M′, φ
Output: π
(1) result � 0
(2) Input M and φ into SPIN to verify and obtain π
(3) if π! � null
(4) Refines φ to get ω by refining strategy Ref 1.
(5) Transforms ω to the properties φ′ by the transformation
strategy Tran.
(6) if verification result of φ′ is false
(7) result + +
(8) Refines φ to get new φ by refining strategy Ref 2.
(9) goto line 3
(10) else
(11) Refines φ to get new φ by refining strategy Ref 2.
(12) goto line 3
(13) if result � 0
(14) Model M satisfies the property φ.
(15) else
(16) Model M dose not satisfy the property φ.
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(3) ,e applied PI calculus model M′ is added with
declaration of confidentiality and event of the con-
sistency relationship based on security property φ1

′.
,en, property φ1

′ is verified with the cryptographic
protocol verifier ProVerif based on model M′.

(4) If verification results of ProVerif are false, then the
attacker can create counterexample π1, and π1 is
classified into Class 2, i.e., π1 is a true counterex-
ample. If verification results are true, then the at-
tacker cannot create counterexample π1, and π1 is
classified into Class 3, i.e., π1 is a false counterex-
ample. ,en, the Promela model is modified with
property refining strategy Ref 2, and attacker be-
havior of creating existing counterexample is elim-
inated to obtain simplified temporal property φ1.
Besides, Promela model and property φ1 are verified
again with SPIN. If new counterexample π2 exists in
verification results of property φ1, then property φ1 is
simplified with property refining strategy Ref 1, and
Step 2 is jumped to. If there is no new counterex-
ample in verification results, then verification is
ended.

5. Verification Results and Analysis

We use the model checker SPIN to verify the property φ, and
the verification results are shown in Table 4.

We have listed counterexamples of violations of property
φ in Table 3. Next, we need to determine whether the at-
tacker is able to construct these counterexamples. ,e se-
curity constraints that we will need to further verify are
denoted by ω1 ∼ ω4 in Table 2.

ω1 is the Class 1 security constraint, so confidentiality
verification is required for the CHLO messages sent by the
client. ,rough the security constraint transformation
strategy Tran 1, ω1 transforms to the confidentiality φ1

′ based
on Proverif:

qurry attacker(CHLO). (7)

ω2 is the Class 2 security constraint, so confidentiality
and consistency verification is required for the server’s
private key skS. ,rough the security constraint transfor-
mation strategy Tran 1 and Tran 2, ω2 transforms to the
confidentiality and consistency φ2

′ based on Proverif:

qurry attacker(skS),

inj − event(accptskS(skS)) �� >inj − event(sendskS(skS)).

(8)
ω3 is the Class 1 and Class 2 security constraint, so

confidentiality and consistency verification is required for
the client’s initial session key InitKC, and confidentiality is
required for the client’s temporary Diffie–Hellman public

key CEPub. ,rough the security constraint transformation
strategy Tran 1 and Tran 2, ω3 transforms to the confi-
dentiality and consistency φ3

′ based on Proverif:

qurry attacker(CEPub),

qurry attacker(InitKC),

inj − event(accpt InitKC(InitKC))

�� >inj − event(send InitKC(InitKC)).

(9)

ω4 is the Class 2 security constraint, so confidentiality
and consistency verification is required for the server’s initial
session key InitKC and final session key FSKS. ,rough the
security constraint transformation strategyTran 2, ω4

transforms to the confidentiality and consistency φ4
′ based

on Proverif:

qurry attacker(FSKS),

qurry attacker(InitKS),

inj − event(accptFSKS(FSKS))

�� >inj − event(send FSKS(FSKS)),

inj − event(accpt InitKS(InitKS))

�� >inj − event(send InitKS(InitKS)).

(10)

We use ProVerif to verify the above properties based on
the applied PI calculus model of QUIC handshake protocol.
,e results for these properties are shown in Table 5.

,e results show that the properties φ1
′, φ3
′, and φ4

′ are not
valid and the attacker can forge the messages CHLO and
CEPub because these two messages are transmitted in
plaintext, so φ1

′ and φ3
′ are not satisfied. ,e attacker can

impersonate the client to send the forged CEPub to the
server and can complete the establishment of the initial
session key and the final session key with the server.
,erefore, the server’s initial session key InitKS and the final
session key FSKS do not satisfy the confidentiality and
consistency, so φ4

′ is not satisfied.
According to the above results, it can be found that the

attacker has the conditions to attack the temporal property
φ. ,at is to say, when the client is in a malicious envi-
ronment, there is a possibility that the client cannot finally
obtain the data provided by the server.

As a possible fix, we propose a revised QUIC handshake
protocol and the newly added elements are marked in red.
We use the client’s private key to sign CEPub and CHLO,
and it can be guaranteed that the attacker cannot forge the
client’s CEPub and CHLO message. We have verified the
newly revised QUIC handshake protocol shown in Fig-
ure 12. Our analysis shows that this revised protocol satisfies
the liveness property we have considered.
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6. Conclusions

,is paper proposes a new modeling and verification
method for functional safety of cryptographic protocol to
solve the problem of false counterexamples existing in
verification for functional safety with typical model checking
technology and that formal verification tool cannot directly
conduct modeling for time property describing functional
safety. ,is paper verifies functional safety of cryptographic
protocol with the collaborative modeling method which
realizes modeling for cryptographic protocol with Promela
and PI calculation. In addition, this paper provides a time
property refining strategy and a constraint transformation
strategy based on counterexamples, as well as a functional
safety verification method for cryptographic protocol based
on typical model checker SPIN and formal verification tool
ProVerif. With these methods, this paper conducts formal
modeling and verification for safety, finds a defect of vio-
lating functional safety in design, and provides improvement
actions for the design defect.

Regarding the disadvantages of the current work, we would
like to remark that the analysis results by typical model checker
and cryptographic protocol verifier are based on the symbolic
protocol model, where we assume that the cryptography is
perfect, and we do not take into account the computational
strengths of the primitives. ,ough, this assumption is of
theoretical research interest, it is too strong to be practical.
,us, if the underlying cryptographic primitives are broken, the
protocol would also be faulty, even though it is proven correct
and secure on the symbolic model.

In the future, we would like to go one step further to
investigate the correctness of the protocol implementations,
with respect to the specification. ,e idea is that ensuring the
security of the protocol design is not enough, and we also need
to ensure that the implementation of the protocol state ma-
chine is secure. We will also extend the current work to the
computational cryptography model, where the probability of
breaking cryptographic primitives is taken into account.

Table 5: Verification results of ProVerif.

Security properties Results

φ1
′ qurry attacker(CHLO) False False

φ2
′

qurry attacker(skS)
True Trueinj − event(accptskS(skS))

�� > inj − event(sendskS(skS))

φ3
′

qurry attacker(CEPub) False

False
qurry attacker(InitKC)

Trueinj − event(accpt InitKC(InitKC))
�� > inj − event(send InitKC(InitKC))

φ4
′

qurry attacker(FSKS) False

False

qurry attacker(InitKS)

False
inj − event(accptFSKS(FSKS))

�� > inj − event(sendFSKS(FSKS))
inj − event(accpt InitKS(InitKS))

�� > inj − event(send InitKS(InitKS))

{CHLO}skC

LPub, g, CertServer, {LPub, g}skS

{SEPub}InitKS, {Response message}FSKS

Client Server

{CEPub, R}skC, {Request message}InitKC

Figure 12: A possible fix for QUIC handshake protocol.

Table 4: Verification results of SPIN.

Model checker properties Counterexamples Security constraints

φ
After the client reaches the waiting
data state, it will finally reach the
receiving data state

π
Received the message Restart,0; the client

stays in waiting configuration state

φ1

,e client does not receive the
message Restart,0 when it reached the
waiting data state

π1
Received the message CHLO_rej,0; the

client stays in waiting configuration state
ω1

,e attacker cannot forge the CHLO
message sent by the client

φ2

,e client did not receive the message
CHL0_rej,0 when it reached the
waiting data state

π2
Received the message Rej,0; the client stays

in waiting configuration state
ω2

,e attacker cannot forge the
certification of server and cannot forge

the signature of message REJ

φ3

,e client did not receive the message
Rej,0 when it reached the waiting data
state

π3

Received the message CCHLO_rej,0; the
client transfers to waiting configuration state

from waiting data state
ω3

,e attacker cannot forge CEPub and
ciphertext EncReqM sent by the client

φ4

,e client did not receive the message
CCHLO_rej,0 when it reached the
waiting data state

π4

Received the message SHLO,0; the client
transfers to waiting configuration state from

waiting data state
ω4

,e attacker cannot forge the
ciphertext EncResM and EncSEPub

sent by the server
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,e data used to support the findings of this study have been
deposited in the GitHub repository: https://github.com/
bxk2008/Data-for-Hindawi.
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