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A SYSTEMATIC APPROACH TO HIGHER-ORDER
NECESSARY CONDITIONS IN OPTIMIZATION THEORY*

DENNIS S. BERNSTEIN"

Abstract. Necessary conditions for an abstract optimization problem are derived under weak assump-
tions. The presence of a generalized critical direction in these conditions is the basis for deriving necessary
conditions of arbitrary order for various concrete problems. Two applications are considered in detail. The
first concerns first- and second-order necessary conditions for a constrained optimization problem in an
infinite-dimensional vector space where the cost, equality and inequality functions possess differentials of
a finite-dimensional one-sided character. The second application concerns first-, second- and third-order
necessary conditions for a constrained optimization problem in a Banach space with Fr6chet differentiability
hypotheses. In both applications normality conditions are not required. Several well-known results are
generalized.
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1. Introduction. We consider the following optimization problem (OP). Minimize
bo(e) subject to

(1.1)

(.2)

(1.3)

e E,

d(e)-< 0,

O(e)=0,

where" is a set, E , k {1, 2, ..}, & ’ Rk, o and are topological vector
spaces, do: ’ -o and " ’ e. Let Zo co and be closed convex cones with
nonempty interior such that Z0 o and Z . For z, z e-o, z < z means z- e
int Zo and z _<-z means z- Zo. Identical notation applies if z, e. The vector
spaces are defined over the real field. The element e is feasible if (1.1)-(1.3) are
satisfied and a feasible element solves OP if there is no feasible element e such
that bo(e) < b0(e).

The purpose of this paper is to present a systematic approach for deriving
higher-order necessary conditions for a solution of OP. By first deriving necessary
conditions for OP under weak assumptions, we obtain results for more specialized
problems by successively incorporating stronger hypotheses. New results are obtained
and several well-known results are generalized.

This work was motivated by two factors. The first of these was the appearance
in the literature of second-order necessary conditions with significantly different
assumptions. In particular, [35, Thm. 2.3] involves an infinite-dimensional constraint
space without a topology, a convex constraint set, directional differentials and a
full-range normality assumption. On the other hand, [28, Thm. 6] involves a
finite-dimensional Euclidean constraint space, a conical approximation to the con-
straint set, continuous ditterentiability and no normality assumption. The second
motivating factor was the series of papers [34], [35] and [36] which are based entirely
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on [35, Thm. 2.3]. Weak, strong and "hybrid" variations are systematically exploited
in these papers to derive a trio of second-order necessary conditions for optimal
control. Thus, the usefulness of [35, Thm. 2.3] for optimal control and the possibility
of its being generalized were evident.

The approach of the present paper follows in the spirit of [29]. [29, Thm. 3.1]
contains the essential features of a wide variety of optimization problems and yields
several well-known first-order necessary conditions as special cases. In the present
paper, the formulation of [29] is expanded in the Main Theorem ( 2) to include a
generalized critical direction. Although the Main Theorem itself involves no ditteren-
tiability hypotheses, this extra feature is the key ingredient for obtaining necessary
conditions of arbitrary order when differentiability assumptions are present.
Specifically, the generalized critical direction Y and accompanying convex set K
correspond respectively to the intermediate- and highest-order terms in a power series
expansion.

To illustrate the role of Y and K in deriving higher-order necessary conditions,
let 8’ be a subset of R,o R, 0 ,-, Zo - and Z R_, where

_
denotes the

nonpositive real numbers. Also, let E, yE- and define (b0, b, 4). Then
in the second-order expansion

2
2
X ._ T(+ay +a )(e)+a’()y + [2’()x +y "(e)y],

where x E- and a > 0, Y and K are given by

Y (,o, 6)’(e)y,

K {’()x +1/2yT"()y" X E-e}.

Since we seek directions y which have inferior cost and which approximately satisfy
(1.2), we require that Y _’2 +1. Also, because of (1.3) the term $’(g)y is required
to be zero and thus does not appear in the definition of Y. As will be seen, Y leads
to the generalized complementary slackness condition l,(Y)= 0, where (l,, l,) is
the Lagrange multiplier, and K yields the Lagrangian condition l(h)>= O, h K. Note
that first-order necessary conditions are obtained by setting y 0 (and hence Y 0).
Third- and higher-order conditions can be obtained in a straightforward manner. For
example, we can consider a pair of directions y and 7 inE -g to obtain the third-order
expansion

2
3x -(+ay+a2;+a ()+a’(e)y+ [2’(e)37+y (e)y]

3

+-[6’(g)x + 6y w"(g))$ + ’"(g)(y)].

Now Y and K are given by

Y (60, )’()Y + (60, )’(): + 1/2Yr (60, )"()Y,

K {’(e)x + y"(,): + 6a-’"(e)(y)3" x E-g,}.
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In the Main Theorem b0, b and are assumed to possess weak approximation-like
properties (see the Main Condition in 2). As in [10, Thm. 13.1], these properties
are stated solely in terms of the elements of the image spaces of bo, 4; and , and
hence the set E requires neither topological nor algebraic structure. Because of this
fundamental setting, the proof of the Main Theorem given in 3 is quite simple and
succinct. Further simplification is obtained by utilizing a refined separation theorem
from 19].

By imposing additional structure (but still no differentiability hypotheses), our
next result, Theorem 4.1, follows from the Main Theorem. In the hypotheses for
Theorem 4.1 (Condition 4.1), an auxiliary vector space is introduced and the cost and
constraint functions are assumedo possess nth-order polynomial expansions. Because
Condition 4.1 retains much of the generality of the Main Condition, results from the
literature involving conical approximations (see, e.g., [7], [28]) can be obtained as
corollaries. In our development, Theorem 4.1 serves as a convenient intermediate
step to the results of 5 and 6. For example, the polynomial expansions of Condition
4.1 are given concrete realizations in terms of directional differentials in 5 and in
terms of Frechet derivatives in 6.

Section 5 begins with a generalization of the Fr6chet derivative (the F-derivative)
due to Warga (Definition 5.1). This definition allows us to work with one-sided
directional differentials when several directions appear simultaneously. Theorems 5.1
and 5.2 contain first- and second-order necessary conditions, respectively. The
relationship between these results can be rather complex. Examples are given to
illustrate the following points: 1) the first-order conditions of Theorem 5.1 may not
follow from the second-order conditions of Theorem 5.2, and 2) Theorem 5.2 may
yield necessary conditions that have the appearance of first-order necessary conditions
but which are unobtainable from Theorem 5.1. The discussion generalizes and clarifies
some remarks made in [28]. Further specialization leads to Theorem 5.4 which
generalizes [35, Thm. 2.3]. It is shown that for each critical direction y there exists
a multiplier satisfying both the first-order necessary conditions and an additional
second-order condition.

In 6, E is a subset of Banach space and bo, b and are assumed to be Fr6chet
differentiable. OP now closely resembles a nonlinear programming problem (NP).
First-, second- and third-order necessary conditions for this problem are given in
Theorem 6.1. The third-order conditions are derived directly from Theorem 4.1 to
illustrate the usefulness of the Main Theorem in obtaining higher-order necessary
conditions. The relationship between Theorem 6.1 and various higher-order necessary
conditions in the literature is discussed.

The appendix contains notation and results pertaining to Fr6chet and F-deriva-
tives. We state a version of Taylor’s theorem for F-derivatives and a result on
converting a multivariable expansion into a one-parameter expansion with remainder
satisfying a uniform convergence condition. These results allow nth-order generaliz-
ations of the results of 5 and 6.

It is important to point out that neither normality assumptions nor constraint
qualifications appear in the statements of the necessary conditions. The absence of
these hypotheses leads to nonuniqueness of the multiplier and hence dependence
of on the critical direction y (or critical directions y, , for third- and higher-order
conditions). This idea seems to have first appeared (without proof) in [27] and was
apparently rediscovered (in a more general version) in [28]. Subsequent related results
can be found in [3], [4], [5], [14], [16], [18], [22], [23], [24], [32].



214 DENNIS S. BERNSTEIN

Before continuing, it is convenient to collect here general notation and definitions
and some results concerning vector spaces and topological vector spaces. The empty
set is denoted by . If $1 and $2 are sets, then $1/$2A {s $1" s : $2}. If A and B are
sets, AICA, B1CB and f:AB then f(A1)-a{f(a)’aA1} and f-l(B1)___a
{aA’f(a)B1}. Let -a{1,2,...}, RAreal field, I/-a{al:c>0},
{a : a < 0},/ A/ U {0} and

_
___a R_ U {0}. The results obtained here do not depend

on the choice of norm for ,n; for convenience, the norm of at-3-(a 1,""’, a,n) t is
taken to be For /3>0, and

I ,1 Define A A{lx--a (/Xl,...,/z,,+l) I)’+1’ I l= a. When not implied
by context, the origin of" is denoted by 0,.

Let 7/" be a vector space ind V, V = T’. Define co V a__ convex hull of V, cone
VA{ov’a>O,vV} and cocoVa-coconeV. V is a cone if V=coneV and a
convex cone if V coco V. If v V and V cone {v} then V is a ray. Let cV =.a
{av" v V}, where a , V + Q a__ {v + t" v V, t3 I7"} and V I9 A V + (- 1) I7". For
v 7/’, cone v ____a cone {v }, V + v A V + {v } and V-v A V + (-v). If V is a cone then
aV V, a > 0; if V is a convex cone then aV + flV V, a > 0, fl > 0. If V is convex
the dimension of V is dim V.

Let and/4/" be vector spaces, V 7/" and f: V /4/. The vectors v 1,’ , v,,
are linearly independent if at R" and Yi-- aivi 0 imply that at 0; they are atfinely
independent if at ",i av 0 and Y7’= ai 0 imply that at 0. V is an m-simplex
if m{0,1,2,...} and V=co{vl,...,v,,+l}, where vl,"’,v,,/l are affinely
independent. The points vl,’", v,/l are the (unique) vertices of V and, for v -a--
__+11 [d,iVi E W where IE A", the numbers/xl,""",/x,+l are the (unique) barycentric
coordinates of v. f is positively homogeneous if V is a cone and f(av)= af(v), a > O,
v V; f is affine if V is convex and for every rn N, It A"-I and Vl,’’’, v,, V it
follows that f(Y."i=l ’il)i) Eim= txif(v). Let W be a cone and for w 1, w2 W’ let w <-- W2
denote wl- w2 W. f is W-convex if V is convex and for every m N, tt A"-I and
vl,’", Vm V it follows that f(Yn= 1/XgVg) <_-- Yi=l If(vi).

Suppose that 7/’, V’I,..., 7/’, and are topological vector spaces and V c 7/’.
The closure of V is cl V, the interior of V is int V and the boundary of V is
bd V a___ (cl V)/(int V). V is solid if int V #. Yd (1, , 7/’,; /’) denotes the vector
space of all continuous multilinear mappings from 7/’1 x.. x T’, into/4/’. If 7/’1
T’, then we write @, (7/’;/4/’) for @ (1, ,/r, ///.). Recall (see, e.g., [11, p. 318])
that if T’I,." ", 7/’, and ///’ are Banach spaces with norms 1. I,,’" ", 1" I. and].
respectively, then @(7/’1,’", 7/,;/3 is a Banach space with norm IFI
sup {IF(v1,..., 13n)1"14"" i [/’i, I/)il T’, 1, 1,..., n}. Define the dual space *
Yd (7/’; [) and the conjugate cone Ve a-- {l 7/’*" (v <= O, v V}.

If 7/’1 and //’2 are topological vector spaces, then //" X 0//2 is assumed to be the
topological vector space possessing the product topology. (7/’1 x 0//2)* and 7/’1" x V’2*
are in one-to-one correspondence in the sense that (1 x 7/’2)* if and_ only if there
exist 117/’* and 12s7/’2" such that l(v)=ll(vl)+12(v2),
Specifically, ll(vl) a-l(v, 0), vls 1rl, and 12(v2) a--l(O, v2), v2s 7/’2. We denote this
correspondence by (ll, 12). If fl (7/’1 x T’)* and fl 7/’* x 7/’* then the relations
fl c h, fl l, etc., can be interpreted in this sense. Analogous remarks apply to
(7/’1 x.. x 7/’,)* and 7/’* x... x T’*, where 7/’1, , 7/’, are topological vector spaces.

For the following results let T and be vector spaces,M T and f:M --> /4/’.
PROPOSITION 1.1. Assume M is a convex cone, f is positively homogeneous and

affine and x 1, ", x,, M. Iff(x 1), ", f(x, are linearly independent then x 1," ",

are linearly independent.
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PROPOSITION 1.2. Assume M is convex, f is affine and xl,"’,x, M. If
f(x 1)," ", f(xm are affinely independent then x, ., x,, are anely independent.

Now let, and2 be topological vector spaces, V, V = , V1 = and V2 = 2.
PROPOSITION 1.3. ff V is an m-simplex with vertices Vl," ", v+x, then the map
i= iOi V is a homeomorphism
PROPOSITION 1.4. If V is solid and convex, then cl int V cl V and int cl V

int V.
PROPOSITION 1.5. V= (cl V)= (co V)= (cone V).
PROPOSITION 1.6. If V is solid and convex, then V= (int V).
PROPOSITION 1.7. If V is a solid closed convex cone, then V + int V int V.
PROPOSITIO 1.8. I[ V is open, V and 0 V), then O.
PROPOSITION 1.9. V Q= (V + cone Q).
PROPOSITION 1.10. V xV (V x cone V2).
Proofs. Propositions 1.1 and 1.2 follow from the definitions of linear and ane

independence. Propositions 1.3 and 1.4 can be found in [30, pp. 25, 27] and [17, p.
59], respectively. Proposition 1.5 follows from the linearity and continuity of the
elements of V. Using Propositions 1.4 and 1.5 we have V= (cl V)= (cl int V)=
(int V), which proves Proposition 1.6. Proposition 1.7 is a consequence of [30, p.
28], and Proposition 1.4. Proposition 1.8 follows from [30, p. 34], Proposition 1.5
and the fact that cone V is open. To prove Proposition 1.9, let (V + cone Q) and
suppose l V, i.e., there exists v V such that l(v)> 0. For each Q there exists
a > 0 (suciently small) such that l(Vl +a) > 0, which is a contradiction. Now suppose
l Q, i.e., there exists v: Q such that l(v:)> 0. Then, for each v V there exists
a >0 (suciently large) such that l(v +av2)>0, which is also a contradiction. The
reverse inclusion follows from Proposition 1.5 and the obvious fact VQ
(V + ). Identical arguments can be used to prove Proposition 1.10.

We conclude this section with some comments about the orderings and < on
0 (similar remarks apply to). Clearly, is reflexive and both orderings are transitive.
The ordering is antisymmetric only when Z0 (-Z0)= {0}, i.e., when Z0 contains
no lines. Because int Z0 does not contain any lines, the relations z < and < z are
never both satisfied.

Note that both orderings are compatible with the linear structure on 0 in the
sense that if z then az a, a 0, and if z and z’’ then z +z’+’
(and similarly for < with a 0 excluded). Finally, Proposition 1.7 leads to the fact
that z 0 and z < 0 imply z + < 0.

2. The Main Theorem. First, we introduce some notation and conventions for
OP which simplify the statement of the necessary conditions in this and subsequent
sections. Without loss of generality we assume in this section and in 4 and 5 that
the solution of OP satisfies qo()= 0. This convention, which simplifies the notation
considerably, can be removed by replacing b0 by bo-b0() wherever it appears. In
order to deal efficiently with various special cases of OP we adopt the convention that
Lr and k =0 denote the absence of, respectively, (1.2) and (1.3). For the case
e (i.e., (1.2) is present) define ’ALro, ZAZo and b a--(bo,); when

letLr a__ fo,Z A Zo and b a__ bo. For k 0 (i.e., (1.3) is present) define’ A
and for k 0 let ’ __a. For h k let 7r,h A component of h in
component of k. If H c Lr k then 7rt-/and 7r,/-/are defined in the obvious way.

The assumptions required for the Main Theorem are contained in the Main
Condition (MC) which follows. Roughly speaking, this condition involves: a rep-
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resentation of E (through a set K and a map 19) "near" the feasible point ?, a
generalized "critical direction" Y, which is the basis for higher-order nece.ssary
conditions, and some differentiability-like conditions ((2.4) and (2.6)) on 40, 4 and. It is shown in later sections that MC includes as special cases conditions commonly
satisfied in optimization problems. The paper [29] contains closely related assumptions
and considerable comment about them.

MAIN CONDITION (MC). There exist a feasible element & Y Z and a nonempty
convex setK c" such that the following property is satisfied. (Let cr and r/be positive
real numbers, y be a nonzero real number, S be a k-simplex in K,N be a neighborhood
of the origin in, A" ’ and 19" S - E.) For allN and r/and for all S and tr satisfying

0 int r,S’ (omit if k 0),

(2.2) r(b () + Y) + rrS intZ

there exist 3’, A and 19 satisfying

(2.3) A-l(int Z) cint Z,

(2.4) A ob o(R)(h) o-(b(() + Y)+rt6S +Z +N, h S,

(2.5) o19: S Rk is continuous (omit if k -0),

(2.6) lyo(R)(h)-rthl<q, hS (omit if k =0).

MAIN THEOREM (MT). Suppose MC is satisfied. If solves OP then there exists
a__ (14, l,)* Rk when k > 0 and A 16 * when k 0 such that

(2.7) # 0,

(2.8) 16 Z,
(2.9) 16 (& (e) + Y) O,

(2.10) l(h)>=O,hK.

Remark 2.1. When k 0 the simplex $ in MC consists of a single element h. In
this case the role of 19 and S can be handled by a single element e A O(h)E and
(2.4) can be replaced by

(2.4)’ A ob(e) tr(&(e) + Y)+h +Z +N.

The distinction between (2.4) and (2.4)’ accounts for the pair of conditions [29, 3.1
and 3.2].

Remark 2.2. The focus in [29] is on first-order necessary conditions for a very
general extremal problem which includes OP as a special case. MC and MT can be
reformulated to apply to this problem although this is not pursued here. In the context
of OP, MC both weakens and generalizes [29, conditions 3.1 and 3.2]. These conditions
involve the introduction of an auxiliary vector space , a convex set M and a
map f:M ’. Necessary conditions are then stated in terms of the elements of M.
MC is weaker since does not appear. Instead MC involves elements of the set K
which corresponds to the image of M under f. A similar idea appears in [10, Thm.
13.1], p. 46, which follows from MT with0 [, , Y 0 and K a cone. The
term Y, which leads to higher-order necessary conditions, has no counterpart in either
[10] or [29].
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Remark 2.3. Because b (g) Z, Y Z and 16 Ze, it follows that (2.9) is
equivalent to the pair of conditions

(2.) t(e,(e)) =0,

(2.12) /(Y) 0.

Note that (2.11) is a complementary slackness condition in that it yields additional
information concerning 16. By virtue of the additional condition (2.12), (2.9) may be
viewed as a generalized complementary slackness condition.

Sometimes MC is verified with a qualification of $ which is weaker than (2.1)
and (2.2). Although this results in a stronger version of MC it may be more suitable
for applications. For example, either or both of the conditions (2.1) and (2.2) may be
omitted. A common situation is the subject of the following easily proved result.

PROPOSITION 2.1. Suppose MC is satisfied and

(2.13) 4(g)+ Y bdZ.

Then (2.1) and (2.2) imply

(2.14) The vertices ofS are linearly independent.

Remark 2.4. Because 40()=0, (2.13) is satisfied when Y=0. This is the
situation in [10, Thm. 13.1]. There (2.1) and (2.2) are omitted and the (weaker) linear
independence condition (2.14) appears.

Remark 2.5. The set g plays no role in the Main Theorem or its proof. In 5
and 6, is used to define differentiability properties which cannot be stated solely in
terms of the elements of E.

3. Proof of the Main Theorem. The following notation and definitions are
needed. Let 7# be a vector space and V 7/’. If V + v is a subspace of 7/" for some
v 7/" then V is an affine subset of 7/’. The codimension of an affine subset V, codim V,
is the dimension of a subspace I7" such that the direct sum of I7" andthe subspace
V + v is 7#. The affine hull of an arbitrary set V, aff V, is the smallest affine subset
containing V.

Suppose now that 7/" is a topological vector space and V, A, B 7/. The interior
of V relative to aft V is denoted by ri V. 7/’* separates A and B if 0 and there
exists a such that l(a)-<_ a <_-l(b), a A, b B. If either A or B is a cone then
can be chosen to be zero without loss of generality and thus eAef’l (-B).

We will also require the following easily verified results. If 7/’ and 7/’2 are vector
spaces, V c o//. and V2 c 7/’9. then aft (V x V2) (aft V) x (aft V2). If in addition
and //’2 are topological vector spaces then ri (V x V2) (ri V) x (ri V2).

The proof of MT rests upon the following separation lemma. This result is a
generalization of a well-known theorem which follows when intA (see, e.g., [7,
p. 63], or [31, p. 243).

LEMMA 3.1. Let A and B be convex subsets of a topological vector space 7# such
that aftA is closed and has finite codimension, riA ( and (ri A)fqB . Then
them exists * separatingA and B.

Lemma 3.1 is a corollary of an algebraic separation theorem stated without proof
in the survey paper [19, p. 253]. In the algebraic setting 7# is assumed to be a vector
space and the "intrinsic core" of A plays the role of ri A. The additional assumption
that aftA is closed implies that is continuous (see [19, pp. 240-1]). A proof of the
algebraic separation theorem can be obtained by means of induction on n codim aftA
using a method similar to that used in [31, proof of Thm. 2.9].
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We consider the full proof of the Main Theorem only for the case # and
k >0 since the proofs of the remaining cases involve similar arguments. A large
portion of the proof is contained in the following two lemmas. Suppose MC is satisfied
and define A (int Z)-cone (O(g) + Y). Note that is an open convex cone.

LEMMA 3.2. IfK and {0} are separated by a continuous linear functional then
there exists (l+, 2)* k satisfying (2.7)-(2.10).

Proof. Since Z {0} is a cone there exists (l, l,) * k satisfying (2.7) and
such that (-K) fq( {0}). Thus satisfies (2.10). By Proposition 1.10, 16 ’and, by Proposition 1.9, 16 (int Z) and l (& (g) + Y) ->_ 0. By Proposition 1.6
(int Z) Z and thus (2.8) holds. Since O () + Y Z, 16 (O () + Y) -<- 0, which
implies (2.9).

LEMMA 3.3. IfK and {0} are not separated by a continuous linear functional
then them exist a k-simplex S Kand a positive real number tr satisfying (2.1) and (2.2).

Proof. We first show that 0 int rr(. If this is not true, then it follows (see, e.g.,
[30, Thm. 1.5.19] that there exists sck, 0, such that . v_>0, v rr. Then

(0, :) 6 Y’* k separatesK and {0}, which is a contradiction. Since 0 int zrr
there exists a k-simplex U &co {u 1,’’ ", Uk+l} 7r+K such that 0 int U. For each

{1, , k + 1} let s 6K satisfyr u.
Since att( {0}) (aft) (aft {0}) {0} is closed and has finite codimension

k and since ri ( {0}) (ri 2) (ri {0}) {0} , Lemma 3.1 implies that (2
{0}) 71K . Thus, there exists s a__ ( tr’(O (g) + Y), 0) K, where intZ and
o-’> 0. Since intZ we can choose A (0, 1) sufficiently close to 1 so that A +
(1 A )Tr6s int Z, 6 {1, , k + 1}. Define h A As + (1 A )s, 6 {1, , k + 1}, and
SAco{h,...,hk+l}. Letting o’a-Atr ’, and zTAtr(O()+Y) it is easy to see that
hi (A + (1 A )Trs zT, (1 A )ui) K, S K and r6hi (int Z) z’. Since 7rS
(1 A U and 0 int U, (2.1) must hold. Since u , , Uk+l are affinely independent
and (1-A)-r,h u it follows from Proposition 1.2 that h,... ,hk+ are attinely
independent and hence S is a k-simplex. Finally, since Y.+Tr6hiintZ, i
{1,. ., k + 1}, (2.2) is satisfied.

We can now proceed with the proof of MT. Suppose that the theorem is false.
By Lemmas 3.2 and 3.3 there exist a k-simplex S =co{h,..., hg+l}K and a
positive real number tr satisfying (2.1) and (2.2). Since tr(&(g)+ Y)+rhintZ,
{1,..., k + 1}, the open set N ___a 71/k=+l ((int Z)-tr(&() + Y)-Tr6h) is a neighbor-
hood of the origin in . It follows easily that tr(O (g) + Y) + zrS +N = int Z. Because
of (2.1) we can choose rt > 0 so that [k (rt) zrS. For S, tr, N and r/ thus defined
there exist y, A and 19 with the properties specified in MC.

From (2.3), (2.4), Proposition 1.7 and the choice of N we have

O O(S) A-l(o’(O(?) + Y)+zr,S +Z +N)

A-l((int Z) +Z) A-a(int Z) int Z.

This implies that, for all h S, OooO(h)< 0 and oO(h)< 0.
Let ,k,:S -> zroS be defined by 6-,(h)= zr,h. Since S and roS’ are k-simplexes, ,k,

associates points with the same barycentric coordinates. Proposition 1.3 implies that
-1 Rkzr, zroS->S is continuous. Define G’rog--> byG(u)=-yOoOor-l(u)+u. From

(2.5) it follows that G is continuous and, from (2.6) and the choice of /, G: ro9 --> rog.
Since zro9 is compact and convex, the Brouwer fixed point theorem implies that there
exists u*6 rS’ such that G(u*)= u*. Since "y # 0 it follows that $(e*)= 0, where
e* &O(h*)6E and h* &ff’,(u*)eS. Since e* also satisfies O0(e*) <0 and (e*) <0,
does not solve OP, which is a contradiction.
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The proof for is almost identical to the above proof. It is only necessary
to, delete the details pertaining to O. In the case k 0 the proof is considerably shorter.
Z plays the role of Z {0} in Lemma 3.2 and, in Lemma 3.3, the k-simplex S is a
singleton. The remainder of the proof proceeds along the same lines as the above
proof except now the development relating to is not needed.

4. A specialization of the Main Theorem. In this section we specialize the Main
Theorem to obtain Theorem 4.1. For our purposes here, Theorem 4.1 may be regarded
as a convenient intermediate step to the results of 5 and 6. It may have independent
interest, however, in other applications.

Theorem 4.1 is obtained by imposing additional structure on MT in three ways.
First, we introduce an auxiliary vector space as discussed in Remark 2.2. This com-
pensates for the lack of assumptions on ft. Second, we assume that the cost and
constraint functions possess one-parameter polynomial expansions. These expansions
may be regarded as a primitive form of the variational and power series required for
the derivation of higher-order necessary conditions in 5 and 6. Third, we impose
additional structure on the inequality constraint (1.2). Specifically, we assume that
there exists / N and, for each {1, .,/’}, there exist a topological vector space
a mapping Oi:’ ’i and a solid closed convex cone Zi cf not equal to such that
o ’ ... ,,a], --((1,""", )]) and 2 Zl ’’’xZ]. For e{1,... ,j} and z,
’i we define z -< and z <. in the obvious way. Now (1.2) becomes

(1.2)’ Oi(e) < 0, s{1,... ,/’}.

As discussed below, writing (1.2) in the form (1.2)’ extends the applicability of the
Main Theorem.

Condition 4.1, which is used in Theorem 4.1, incorporates the above aspects.
This rather complex condition may be motivated by the following comments. Roughly
speaking, we assume that &o," ", &j have expansions of the form

(4.1) qbi(e):ti()+ E Ogryir’"O(Olmi),
r=l

", -"’o )0asa-where m N (_J {0}, Ygr Zi for all r {1, mi}, a > 0 and a (a "’ 0/

In the proof of Theorem 4.1 it turns out that if for all a > 0 sufficiently small

(4.2) Oi(6)- E olrrir < 0,
r=l

then the term o(a ’) plays no role in the higher-order necessary conditions. This is
advantageous if either: (1) &i possesses an expansion of order mg and not of order
m + 1, or (2) the term Yi.,,,/l is not an element of Z. The form of the constraint (1.2)’
is used so that the order m of the expansion can depend on i.

By adding "’ r)r=l (1-a Yir to the left side of (4.2) (assuming a < 1) and using
Proposition 1.7 it follows that (4.2) implies

(4.3) ti(e) + E Fir < O.
r=l

Similarly, it can be seen that the reverse implication is true. The equivalence of (4.2)
and (4.3) accounts for the appearance of (4.3) in Condition 4.1 (via the set I’ defined
below). In the proof of Theorem 4.1 the ith component of Y inMT is given by Y.r Yir.
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Additional aspects of Condition 4.1 are" the "auxiliary" vector space, a convex
set of "variations" M =, a mapping V:M ’ which provides a representation for
K in MC (specifically, K-co V(M)) and, for each k-simplex X =M, a mapping
sr:x -+E which corresponds to 0 in MC.

In what follows we use the conventions {ai}= , EiO- ai 0 and let / 0 when
the inequality constraints (1.2)’ are absent. As in 2 we assume for convenience that
b0() 0. For eE define the index sets I’-a {i e {0,. ., }: bi(e)+ra Yir < 0}
and I" A {0,. ., f}/I’. Finally, let e (’* denote (lo," ", li, l) e o* " r Rk

when k > 0 and (lo,. ", lj) e o* ’ ’ when k 0.
Condition 4.1. There exist a feasible element , a vector space , a nonempty

convex setM , n e , mi e’{0, ", n 1} and {Yir}rm2_l c Zi for all e {0,. .,/}, and
V a__ Vo," , V., V,):M ’ (omit V when k 0) such that Vi:M :i is Z-convex
for all e I", Vo:M Rk is affine and such that the following property is satisfied. (Let
X =CO{Xl,’’’,Xk+I}
for all
and r there exist a and " satisfying

--ttli(4.4)
r---1

--(mi+l) o"(4.5) a c, (X)-ti(_,)- otryir : (co V,(X))+Zi +N,, el",

(4.6)
[k+l

.l,-l[Ioi=l [.l,iX "Ak--k

(4.7) Ic -4o sr (x) V (x)l < r/, x eX (omit if k 0).

is continuous (omit if k 0),

THEOREM 4.1. Suppose Condition 4.1 is satisfied. If g solves OP then there exists
e’* such that

(4.8)

(4.9)

(4.1o)

10,

l eZ, e{O,...,f},

li=O, ieI’,

(4.11) li qbi(e) + Yi 0,

(4.12) l(V(x))>=O, xeM.

Remark 4.1. The additional structure of (1.2)’ accounts for the form of (4.10)
and (4.11). Condition (4.10) generalizes the "complementary slackness" condition
pertaining to the "inactive" inequality constraints (4i()< 0) in first-order necessary
conditions. Note that 4()+rl Yr 0 for e I" is possible when dimZ > 1. In this
way (4.11) may yield information regarding l.

Remark 4.2. By setting n 1 in Condition 4.1 it is easy to see that Theorem 4.1
implies [29, Thm. 3.1] when this result is specialized to OP. Note that in Condition
4.1,X is a k-simplex whereas in [29, cond. 3.1],X is an/-simplex, where e {1, ., k}.
Furthermore, because inactive inequality constraints require only a trivial expansion
of the form (4.4) (since m 0), (4.4) and (4.5) allow a more general treatment of the
inequality constraints than is possible by [29, (3.2)].
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Proof of Theorem 4.1. We give the details for the case k > 0 only since the proof
for k 0 is similar. Since the functions Vi, I’, play no role in Condition 4.1 or the
results of the theorem, we define Vi(x) 0, x M, el’. The main idea of the proof
is to show that MC holds with

(4.13) Y= Y’. Y0r,"’, Y.

and

(4.14) K co V(M).

To show that (2.7)-(2.10) imply (4:8)-(4.12), note that (4.9) is merely a rewriting of
(2.8) and that (4.11) and (4.12) follow from (2.9) and (2.10), respectively. Also, (4.10)
follows from (2.9), (4.9) and Propositions 1.6 and 1.8.

We now show that Condition 4.1 implies MC. Let S co {hi,." ", hk/}, tr, N
and rt have the properties specified in MC. Since hi K, {1, ., k + 1}, and K
co V(M), we have hi=Y’, v’

r=l l’irV(Xir), where /i , (/’/’il, d,i,vi) AVi-1 and
xi, ", xi. M. Define xi a-A,r [d, irXir, {1,. ., k + 1}, and X a-co {x,. ., x+}.
Since V is affine,

(4.15) W(xi) Try,hi, {1,. ., k + 1}.

From (2.1) it follows that zrh 1, , zrhk /1 are affinely independent. Proposition 1.2
and (4.15) thus imply that X is a k-simplex. For each s {0,...,/’} choose Ni to be
a neighborhood of the origin ini so that

(4.16)

Also, let r
a -1

With X, No,’", Ni, and - now specified Condition 4.1 implies that there exist
a s (0, -) and r.X-->E satisfying (4.4)-(4.7). We now exhibit y, A and(R) so that
(2.3)-(2.6) are satisfied.

k+l ALet 19" S->E be defined by (R)=fog where g" S->Ak, f: Ak->E, g(i= t’ihi)--ix
and f(tt) a .--,k+l Rk=’Li=l/zixi). From (4.6) it follows that of: Ak is continuous. Since,
by Proposition 1.3, g is continuous, oO=ofog. Sk is continuous. This proves
(2.5). For use below note that

(4.17) 0 ihi ixi e Ak

=’1

(4.18) o(s) (x).

For h s Zo X Zi x, H Zo X xZ xk and is{0,...,f} let ih
component of h in Zi and iH {ih" h H}.

Since V is Zi-convex, s [", we have

(4.19) Vi(x,) <- ., Izprgi(xpr) ’rriho, p {1,..., k + 1},
r=l

which implies that, for all Ix Ak,

(4.20)
[ k+l p) kl k+l

Vi

__
[d,pX N l,p Vi (Xp t.t,pTrihp ’71"iS.

p p=l p=l
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Consequently,

(4.21) co V(X) zrS +Z, I".

To simplify what follows we assume without loss of generality that tr > 1. To see
that this is possible note that if tr <= 1 then we can add 0(b ()+ Y), where 0 > 1-r,
to each side of (2.2). Since p(b()+ Y) Z, Proposition 1.7 can be used to replace
(int Z)+p(b()+ Y) by intZ. Then o, +p can be relabelled as tr to yield the desired
result. Note that tr > 1 implies c < 1.

Since Zi is a convex cone it follows that, for all {0,...,/’},

(4.22)
r=l

From (4.13) it follows that

(4.23) 7riY Y. Yi, {0, ., ]},
r=l

and, since V/(x)= 0, I’, we have

(4.24) 7riS {0}, I’.

Since trc ->tr, r 6 {0, 1, .}, (4.4), (4.18), (4.22), (4.23) and (4.24) imply

(4.25)

Since c >or, r s , (4.5), (4.18), (4.21), (4.22) and (4.23) imply

--(mi + ))(4.26) a oO(S)r(ti(g)+TriY)+TriS +Zi+Ni, I"

For z _a_ (Zo," , zj) Z define A(z) A (aozo," ajz), where ai
a_

-(mi+l) I’,and aiA i which satisfies (2.3). Condition (2.4) follows from (4.16)
(4.25), (4.26) and the fact that Ni trNi. Since V is affine, (4.15) implies

{k+l ) k+l

Ak.(4.27) Vi=l ld,ix 7"t’, . i.l,ihi, i1,
i=1

Letting 3’---a c-", (4.7), (4.17) and (4.27) imply (2.6), which completes the proof. [3
Remark 4.3. If k > 0 and dimM < k then M does not contain a k-simplex and

Condition 4.1 holds trivially. In this case the necessary conditions (4.8)-(4.12) can be
satisfied by choosing (0,. , 0, l0) where l0 s (-V (M))e and l 0. Such l, exists
since by Proposition 1.2 dim Vo(M)< k.

Remark 4.4. Suppose Condition 4.1 is satisfied and, in addition, I", M is a
cone and V is positively homogeneous and affine. Then Theorem 4.1 remains valid
with a slightly weakened version of Condition 4.1 in which xl,. ", Xk+ are assumed
to be linearly independent. To see this, note first that I" is equivalent to (2.13)
with (4.13). By (2.14) h,... ,hk/l are linearly independent. Thus Proposition 1.2
and the fact that V(xi) hi, s {1, .., k + 1}, imply that Xl, , Xk+ are linearly
independent. This weakened version of Condition 4.1 is thus satisfied trivially when
M does not contain k + 1 linearly independent elements.



HIGHER-ORDER NECESSARY CONDITIONS 223

5. Applications involving directional differentials. We now assume that the map-
pings b0, , bj and q satisfy certain first- and second-order one-sided differentiability
conditions. These assumptions lead to the principal results of this section, Theorems
5.1 and 5.2, which contain the first- and second-order necessary conditions for OP.
A rather extensive investigation of the relationship between these results leads to
Theorem 5.4 which generalizes [35, Thm. 2.3]. The proof of Theorem 5.2 is then
given along with remarks pointing out how the results of this section can be generalized.

In order to state the differentiability assumptions for the cost and constraint
functions, it is necessary to introduce a generalization of the Fr6chet derivative. This
definition, which is due to Warga [33, p. 167] allows a function to have a derivative
at a point which is not in the i.nterior of its domain. Some consequences of this
definition needed in the proofs of this section are discussed in the Appendix.

DEFINITION 5.1. Let be a Banach space with norm 1. [, be a topological
vector space, { and f:{-* . f is /-differentiable at :{ and has the
derivative f($)Af’($)(;) if $ is contained in a solid convex subset of
and

(5.1) lim Ix -$l-[f(x)-f($)-f’($)(x -,)] 0.
X-

xAl{}

If f’(x) exists for all x then f is/-differentiable.
The second derivative requires a topology on (; ). This is handled by

assuming that is a Banach space and defining a norm on (; ) as in 1.
DEFINITION 5.2. Let , {, and f be as in Definition 5.1 and assume further

that is a Banach space, f is twice/-differentiable at and has the second
/-derivative f2)()a_f,,()(;(; )) if f is/-differentiable and the mapping
x - f’(x)" - (;) is/-differentiable at .

First- and second-order one-sided directional differentials appear in the theorem
statements. Their definition is a simple application of the preceding definitions.

DEFINITION 5.3. Let be a vector space, be a topological vector space, A
F’A , A and h . Suppose that there exists / > 0 such that +h A,
c [0, 8), and define f:[0,/) by f(c) =F( +ch). If f’(0) exists then DF(; h)&
f’(0) is the one-sided directional differential of f at in the direction h. If is a
Banach space and f"(O) exists, then D2F(2; h) a-f"(O) is the second-order one-sided
directional differential of F at in the direction h.

Note that in Definition 5.1 is given by [0, B) in Definition 5.3. It can be seen
that if DF(;h) exists then DF(;h) exists for all c > 0. Thus, although DF(2;h)
as defined is an element of (; ), we regard DF(g; .) as a map from cone h
into

The following notation concerning a feasible element simplifies the statement
of what follows. If ] > 0 let I __a {i {1,. ., ]}: $i() < 0}, IA a__ {1,. ., ]}liar and
Iaoa--IA U{0}; if ]=0 let Ir a--I __a and I0-a-{0}. Note that if ]>0 and dimZ > 1
for some {1,... ,]}, then I does not necessarily coincide with the set {i
{1,. ., ]}: b,() 0}. We define

&J(eo,..., $;, ,), k>0,(5.2)
(bo, b.), k=0.

Finally, we recall from 4 the meaning of the notation Z’* and the convention
o() 0.

Condition 5.1. E is a subset of a vector space and there exist a feasible element
and a nonempty convex subsetM of ,T such that the following property is satisfied.
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For each X co {x 1, Xk+l} CM there exists fl > 0 such that

(5.3) e+xE, [o,/3),

(5.4) I-" 0 + c tzix --> is continuous, a e (0, B)
i=1

(omit if k 0),

(5.5) x--, e + ax
i=1

Furthermore, if k 0 then

is/-differentiable at x 0:

(5.6) x "> Dqi(e; x)"M Zi is Zi-convex, s {0,. ",/’}.

THEOREM 5.1. Suppose Condition 5.1 is satisfied. If solves OP then there exists

’* such that

(5.7) # 0,

(5.8) Z.t {0,.’’, f},

(5.9)

(5.10) 1,(,(e))=O, etA,

(5.11) l(DO((.;x))>-_O, x M.

Condition 5.2. Zo,"’,’i are Banach spaces, g is a subset of a vector
space and there exist a feasible element & a vector y and a nonempty
convex set M’c such that the following property is satisfied. For each X
co {x 1, , Xg + 1}c M’ there exists fl > 0 such that

(5.12) +Oly +o:2X c ’, (O 1, O2) [12(),
2X 2)(5.13) +ay+a cE, (a,a

( +2 )’P+(B(5.14) a-O +aly + OliXi-1 )’>Z’
i=2

is twice F-differentiable at x 0.

Furthermore,

(5.15) Di(; y)<_-0, Iao,

(5.16) D$(; y) 0 (omit if k 0)

and, if k -0, (5.6) is satisfied withM replaced by M’.
THEOREM 5.2. Suppose Condition 5.2 is satisfied. If solves OP then there exists

’* such that

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

l#0,

I, Z, {0,.’’, ]},

li O, I &I U {i Iao: $i(g) +D(g.; y) < 0},

li(i(g)+D,(e; y)) 0, ieI’ a--{O, ,/}/I’o,
l(DO(g;x)+1/2DO(g; y)) =>0, x eM’.
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The proofs of Theorems 5.1 and 5.2, given at the end of this section, are based
on Theorem 4.1. In brief, the reasons for Conditions 5.1 and 5.2 are as follows. Items
(5.3) and (5.12) set up the differentiability domains for . Theorem A.1 (see Appen-
dix), a version of Taylor’s theorem, is used with (5.5) and (5.14) to obtain expansions
for. These expansions in the variable t can be reduced to one-parameter expansions
by means of Proposition A.1. The correct properties for the intermediate terms of
these expansions follow from (5.15) and (5.16). In this way (4.4), (4.5), and (4.7) are
obtained. The purpose of (5.4) is to guarantee (4.6). In Theorem 5.2, (5.14) implies
(4.6). Condition (5.6) is required so that when k =0 the map V in Condition 4.1,
which is given by V(x)AD(; x), is Z-convex. No assumption analogous to (5.6)
is needed when k > 0 since (5.5)-and Theorem A.2 imply that V in Condition 4.1 is
affine. Similar remarks apply to Condition 5.2. In the proof of Theorem 5.1 ’(x)=
e +cx which, by (5.3), is an element of E. Theorem 5.2 involves feasible elements of

2
Xthe form ’(x)= +ay +a which, according to (5.13), are in E.

Remark 5.1. Because the origin of R" does not lie in the interior of [" (/), (5.5)
and (5.14) rely on Definitions 5.1 and 5.2 instead of the classical definition of the
Fr6chet derivatives. Since P"(/3)c B" (fl), weaker versions of Theorems 5.1 and 5.2
are obtained by replacing "P" by "[" in (5.5) and (5.14). Proofs of these weaker
results depend on the classical definition of the Fr6chet derivative along with a classical
Taylor theorem result. In this case, Theorem A.1 is not needed and a weakened
version of Proposition A.1 suffices.

The necessary conditions of Theorems 5.1 and 5.2 are not necessarily satisfied
by a common I. Thus, one should not jump to conclusions about the relationship
between the first- and second-order results. Much of the development in the remainder
of this section involves an examination of this issue. Of particular importance is the
relationship betweenM andE in Theorem 5.1 and among y, M’, E and g’ in Theorem
5.2. The latter case is more complex because of the "quadratic" nature of (5.13). For
example, y and M’ may be chosen to characterize features of E such as a curved
boundary.

The following two examples will be useful for illustrative purposes. It is easy to
see that (5.12) and (5.13) are satisfied in both cases.

Example 5.1. =g=R, k, =(0,0), y=(1,0), M’={0}x[1,2], E=
{($1, $2) 2. 0S1 1, s <_-s2_-< 2s}.

Example 5.2. , ge, k, , y as in Example 5.1, M’ {(s, s2) I2: s =< 0, 1 s <-

s2-<- 2- 2Sl}, E {($1, 82) 21 S21 S2, S22 Sl}.
Remark 5.2. Note that if Condition 5.1 holds then it remains valid if M is

replaced by cone M. Thus, without loss of generality, M can be assumed to be a
convex cone. Examples 5.1 and 5.2 show that it is not always possible to replace M’
by cone M’ in Condition 5.2 since (5.13) may not be satisfied.

Example 5.1 shows that Condition 5.2 does not imply that Condition 5.1 is
meaningfully satisfied. For this example the only setM satisfying (5.3) isM {(0, 0)}
which yields trivial necessary conditions. Even when Conditions 5.1 and 5.2 are both
meaningfully satisfied, M and M’ may be disjoint as in Example 5.2 whereM must
be a subset of Rz+ LI {(0, 0)}. Thus, it is not surprising that there may be no satisfying
both (5.7)-(5.11) and (5.17)-(5.21). The following assumption about the structure of
M’ leads to the existence of a common I. Consider

(5.22) M’= Q + R, Q convex, R a convex cone.

We use (5.22) to obtain the following result.
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PROPOSITION 5.1. Suppose the assumptions of Theorem 5.2 are valid with M’
given by (5.22). Ilk >0 then (5.21) is equivalent to

(5.23) l(D(;x))>-_O, x R,
(5.24) l(D(e;x)+1/2D2(g; y))-> 0, x Q.

ff k =0 then (5.21) implies (5.23) and (5.24). The converse in this case is valid ijCeither
Q {0} or the map x D(; x) :M’ is affine.

Proof. Define VxA-(D(e; Q)+1/2D2(e; y)), Vza---(D(e;R)) and V3 A
-(D(g;M’)+1/2D2(g; y)) and note that (5.24), (5.23) and (5.21) are equivalent
to V, V2 and V3, respectively. For the case k > 0 we have Vx + V2 V3
since D(;.) is positively homogeneous and affine (see Theorem A.2). Since V2
is a cone, Proposition 1.9 implies V 71 Vz V3, as desired. For the case k 0 it
can be shown that (5.6) with M replaced by M’ implies V1 + V2 = V3 +Z. Thus,
(V3--Z)) (V1- V2)) and, by Proposition 1.9, V3 fqZe= VI f’) V2. Since (5.18)
is satisfied, (5.21) implies (5.23) and (5.24). If either Q ={0} or D(; .) is affine,
V1 + V2 V3 and thus V 71 V2 V3, which completes the proof.

Notice that (5.22) can be satisfied trivially with Q-M’ and R {0}. However,
this does not produce new results. Situations of general interest are: Q {0}, R -M’
(i.e., when M’ is a cone) and Q {0}, R {0} (e.g., Example 5.2, where Q {0} 1, 2]
and R--{(s1,$2)R2:-Sl =<SE--<----2S1}). The following result is a consequence of
Theorem 5.2 and Proposition 5.1.

THEOREM 5.3. Suppose Condition 5.2 is satisfied with M’ given by (5.22) and
let M R. If solves OP then each satisfying (5.17)-(5.21) also satisfies (5.7)-
(5.11).

Proof. By Proposition 5.1, (5.21) implies (5.23) and (5.24). SinceM = R, (5.23)
implies (5.11). Condition (5.9) follows immediately from (5.19); (5.10) follows from
(5.19) and (5.20) using (5.15) and (5.18).

Theorem 5.3 shows that if the set M’ in Condition 5.2 is given by (5.22) andM
is an arbitrary convex subset of R, then the second-order necessary conditions (5.17)-
(5.20), (5.23) and (5.24) imply the first-order necessary conditions (5.7)-(5.11). The
strongest version of (5.7)-(5.11) is obtained whenM R. However, these "first-order
necessary conditions" may be unobtainable from Theorem 5.1 because Condition 5.1
may not hold for certain choices ofM = R. For instance, in Example 5.2 it is necessary
to chooseM {(0, 0)} in order to satisfy both (5.3) and the requirementM = R. The
reason Theorem 5.2 gives stronger "first-order necessary conditions" than Theorem
5.1 is that (5.13) takes the curvature of E into account while (5.3) does not. Note
that y must be nonzero since otherwise (5.13) and (5.3) are equivalent.

Remark 5.3. The observation that second-order necessary conditions may contain
"first-order necessary conditions" that are stronger than actual first-order necessary
conditions has been made previously in [28, Remark 2, p. 278]. In their treatment
of OP/" 0, R, bo and are continuously differentiable and it is assumed from
the outset that (5.22) holds with Q {q}.

Remark 5.4. The relationship between the first-, and second-order necessary
conditions can be thought of in the following way. If Condition 5.1 is satisfied, then
the first-order necessary conditions involve finding an element in Lr’* satisfying
(5.7)-(5.11). If, in addition, Condition 5.2 is satisfied with (5.22) and M =R, then
the second-order necessary conditions are equivalent to the existence of an element
in ’* satisfying both (5.7)-(5.11) and the additional conditions (5.19), (5.20), (5.23)

and (5.24). In this case, Theorem 5.2 supplements Theorem 5.1 and verification of
the necessary conditions can be thought of as a two-stage process.



HIGHER-ORDER NECESSARY CONDITIONS 227

Remark 5.5. Suppose Conditions 5.1 and 5.2 are satisfied with (5.22) and
M R and define

F-a-{/’*: satisfies (5.7)-(5.11)}.

Remark 5.4 shows that it is of particular interest to determine whether F is a
ray. Specifically, if F is a ray then the search for satisfying the second-order necessary
conditions is simplified since is determined uniquely to within a scalar multiple by
the first-order necessary conditions alone.

We now consider a subset ofM that is useful in verifying the first-order necessary
conditions and understanding the relationship between Theorems 5.1 and 5.2. Define

_a{y M: y satisfies (5.15) and (5.16)},

(y) __a {i IAO: di() +Dd, (e; y) < 0},

(5.26)

(5.27)

where y , and

(5.8) U (y).
y

PROPOSITION 5.2. Ill satisfies (5.7)-(5.11) then also satisfies
(5.29) l 0, IN US,
and

(5.30) l(c(e)+Dd,(;y))=O, ie(O,’’’,f}/(INUS), ye.

Proof. Since cM, setx =y in (5.11). From (5.16) we obtain

(5.31) E /,(D,(e; y))0.
ilo

It follows from (.1), (5.8) and (5.15) that/(D&(; y))= 0, [0. The result now
follows from (5.10) and Proposition 1.8.

Remark 5.6. Proposition 5.2 sharpens Remark .4 in the ollowin way. Suppose
Conditions 5.1 and .2 arc satisfied with (5.22) and M R. If y in Condition 5.2 is
an element ofM (which implies y) then (5.19) and (5.20) are a consequence o
(5.29) and (5.0) and thus do not strengthen (.7)-(5.11).

Remar .7. The ideas used in the proof of Proposition 5.2 could also be used
in other contexts in the optimization literature to show that additional multiplier
components arc zero. However, this approach does not appear to have been used
before.

We now consider some consequences of strcnthenin Condition 5.1. Sometimes
the set is sucicntly "large" near so that

(.) +ay+aX, (a, a) ().
This strengthening of Condition 5.2 is formalized in Condition 5..

Condition .. Condition 5.2 is satisfied with (5.12) replaced by (5.) and with
(5.1) omitted.

The following results are easily verified.
PaOPOSTO 5.. If Condition . is satisfied then it is also satisfied ith M’

replaced by cone M’.
PaOPOSITON 5.4. If Condition . is satisfied, then Condition .1 is satisfied

#hM M’.
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The importance of Condition 5.3 lies in Proposition 5.4 which guarantees that
nontrivial first-order necessary conditions can be obtained independently of the
second-order necessary conditions. Proposition 5.3 shows that (5.22) is satisfied with
R cone M’ and Q {0}.

Sometimes Conditions 5.2 and 5.3 are equivalent. For example, this occurs if
either 8’ E or y 0. A more interesting case is contained in the following proposition
which leads ultimately to Theorem 5.4, a simply stated specialization of Theorem 5.1
and 5.2.

PROPOSITION 5.5. Suppose Condition 5.2 is satisfied with (5.13) deleted and with
the additional conditions

(5.33) 0M’,

(5.34) yM’,

(5.35) (q (M’ +) m E.

Then Condition 5.3 is satisfied.
Proof. It suffices to show that (5.33)-(5.35) and (5.12) imply (5.32). Let/3 (0, 1)

and X=cO{Xl,’.’,Xk/}mM’. From (5.33) and (5.34) it follows that {&+/3y,
+flXl," -t-flXk+}c M’+& Thus CO{., .-bfly, +flX," q-flXk+}cM’+
which is equivalent to +Oly+CeEXM’-t-, (cel, O2)[E(fl). The desired result
now follows from (5.12) and (5.35). Iq

It is easy to verify that the following conditions imply Conditions 5.1 and 5.2,
respectively.

Condition 5.4. E is a subset of a vector space and there exist a feasible element
and a nonempty convex subset M of such that 0 M and 8’ f’)(M +)E and

such that the following property is satisfied. For eachX co {x 1, , Xk /1} mM there
exists/3 > 0 such that

(5.36) +aX m 8’, c [0,/3),

and (5.4) and (5.5) are satisfied. Furthermore, if k 0 then (5.6) holds.
Condition 5.5. Condition 5.4 is satisfied, 0,"" ", are Banach spaces and the

following property is satisfied. For each X co {x 1, ’, Xk /2} M there exists/3 > 0
satisfying (5.36) and such that

( k2 ) pk+2(]{ 0’(5.37) at -+ g + x -+
i=1

is twice F-differentiable at a 0.
TIaEOREM 5.4. Suppose g solves OP. If Condition 5.4 is satisfied then there exists

o,, satisfying (5.7)-(5.11). If, furthermore, Condition 5.5 is satisfied, then for each
y there exists ’* satisfying (5.7)-(5.11) and

(5.38) l(D2(e; y)) >- O.

Proof. Arguments similar to those used to prove Proposition 55 show that the
conditions on M and (5.36) imply (5.3). Thus, the first part of the theorem follows
from Theorem 5.1. To prove the second part of the theorem let X=
CO{Xl,’’’,Xk/I, y}cM, where y, and note that (5.36) with this choice of X is
equivalent to (5.12). Thus, Condition 5.2 is satisfied with (5.13) deleted. Since also
(5.33)-(5.35) (with M’ =M) are satisfied, Proposition 5.5 implies that Condition 5.3
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must hold with M’= M. By Proposition 5.3, Condition 5.3 is satisfied withM replaced
by cone M. Since Condition 5.3 implies Condition 5.2, it follows from Theorem 5.2
and Proposition 5.1 (with R coneM and Q {0}) that there exists ’* satisfying
(5.17)-(5.20), (5.11) and (5.38). Finally, Proposition 5.2 implies that satisfying
(5.7)-(5.11) must also satisfy (5.19) and (5.20). Thus, these last two conditions have
been omitted.

Remark 5.8. Remark 5.5 takes on added importance in the context of
Theorem 5.4. This is because when F is a ray, no longer depends on y . In this
case Theorem 5.4 can be strengthened by deleting the phrase "for each y " and
replacing (5.38) by

(5.39) l(DZdp(g; y))_-> 0, y 6.

Remark 5.9. Theorem 5.4 generalizes Warga [35, Thm. 2.3]. To obtain his result,
specialize OP by setting/" 0, Z0 R and Zo R-. The hypotheses of Theorem 5.4
are weaker than those of [35, Thm. 2.3] in several important ways. In [35],
(M+g)cE is replaced by $’(M+g)=E, P is replaced by in (5.37) (see
Remark 5.1), the map in (5.37) is assumed to be twice continuously differentiable in
a neighborhood of the origin and an additional normality-like condition is assumed.
It is shown in [13] that this normality condition implies that F (specialized to the
problem of [35]) is a ray.

We now prove Theorem 5.2. For brevity, we assume k > 0; the case k 0 follows
from similar arguments. For I c {0, ,/’} let, a__ (4o, ’, ., ,), where i &, /,
and $i & 0, {0,..., f}/L We will show that Condition 4.1 is satisfied with ( and

as specified,M M’, n 2, m 0 for IN, m 1 for Iao, YI D$i((; y) for
iIao, and V(x)=DdPt6((;x)+1/2D2dpt6((; y). Since I’=I’o and I"=I, (5.19) and
(5.20) follow from (4.10) and (4.11). Also, (4.12) and (5.19) imply (5.21).

We now show that Condition 5.2 implies Condition 4.1. Note that from (5.14)
and Theorem A.2 (with 2) it follows that V"M’ " is affine. Thus (see Condition
4.1 for notation), V, is affine and V is Zi-convex, I. LetX co {x 1, ’, Xk / 1} cM’
be a k-simplex and define f’Pk/2([3)’ by

[() e + y + E x_x
i=2

Also, let/o>0 satisfy/0 +/2o </. From (5.14), Proposition A.I.III, Remark A.1 and
-.k+lTheorem A.2, it follows that for a e [0, Bo), p e Ak and x z.= px,

2
X

2 2dpt(p. + ay + a f(a, a Ix 1, Ol [.tk+ 1)

(5.40)
i=l

2(P.) + aDcb(g.; y) + a V(x) +R (a, Ix),

where a-2R(a,p) 0uniformlyforp e h.From (5 14) it follows that the mappingO+

+y + Y. x_ )o
i=2

is continuous at 0, IN, and -ditterentiable at 0, I’O/IN. Thus, Proposition
A. 1.I implies

2X 1’ 0(5.41) ,(e + ay + a ,(e)
,-.o
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uniformly for Ak, IN, and Proposition A. 1.II yields

2X 0(5.42) a l[i(e +oy+ )-ck,(e)-aDck,(e" y)] -uniformly for W Ak, I’o/IN. For No, , Ni, B and r as specified in Condition 4.1,
it is now easy to see from (5.40)-(5.42) that there exists a 6 (0, r) such that (4.4),
(4.5) (without need for Zi) and (4.7) are satisfied with r(x)=8+ay +a2x. Finally,
(4.6) is a consequence of (5.14).

To prove Theorem 5.1, let n 1, rni 0 for IN, mi 1 for Ia0, and V(x)=
DcI)xAo((; x). Since I’=IN andI"=IAo, (5.9) and (5.10) follow from (4.10) and (4.11).
Also, (5.11) follows from (4.12) and (5.9). The remainder of the proof follows from
arguments that should by now be clear.

We now point out several ways in which the results of this section can be
generalized. First, it is possible to take advantage of the presence of Zi in (4.4) and
(4.5) by replacing continuity and differentiability conditions such as (5.51) and (5.52)
by conditions involving semicontinuity and semidifferentiability. This approach
appears in [20] for first-order necessary conditions but apparently has not been
extended to higher-order necessary conditions.

Another approach to generalizing Theorems 5.1 and 5.2 is based on the concept
of a conical approximation. This involves the existence of a map 0 depending on X
such that, instead of (5.3), (5.12) and (5.13), the following conditions hold:

(5.3)* 0( + aX) E, a [0, fl),

(5.12)* 0(ff+aly +a2X) , (O 1, O2) P2(),

2) 2(5.13)* 0(e+ay+a2X)E, (a,a (fl).

Moreover, in (5.5) and (5.14), o0 plays the role of . Additional assumptions such
as the following are then required" ifX andJ have corresponding maps 0 and , then

(5.43) Do0(g; x)=Dod(g; x), xX (3.

A closely related approach appears in [7, Def. B.1.3]. See [28] for a related notion
of conical approximation in the context of second-order necessary conditions for a
nonlinear programming problem.

6. Applications to nonlinear programming. In this section we further illustrate
the use of Theorem 4.1 by deriving first-, second- and third-order necessary conditions
for a nonlinear programming problem. The third-order conditions are new while the
first- and second-order conditions sharpen results from the previous literature. To
keep the conditions reasonably simple, the hypotheses of this section are considerably
stronger than those of 5.

To derive nth-order necessary conditions, the strengthened assumptions for OP
are’

(6.1)

(6.2)

is a Banach space,

(6.3) bo,""", i and 0 are
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A mapping from ’ into r is C" if it is n-times Fr6chet differentiable and its first-
through nth-order derivatives are continuous. Let NP denote OP in the presence of
(6.1)-(6.3). As before, let/’=0 and k =0 denote the absence of (1.2)’ and (1.3),
respectively. Define the (Lagrangian) function L: ff Rl+j+k --> I by

E 1,4,(e)+l6(e), l=(lo,...,l,l,), k>0,
i=0

(6.4) L(e,l)=

li,(e), l=(lo,...,lj), k=0.
i=0

Notation for the Fr6chet derivative and partial Fr6chet derivative, such as in

TLee(e,/)(y, )=
i=0

is made precise in the Appendix. We require some notation pertaining to a feasible
element 6. Recall that if/" > 0 then IN {i S {1, ,/’}: bi(6) < 0} and, because of
(6.2), IAO {0} LI {i s {1, , }: bi(6) 0}. If/" 0 then IN and Iao {0}. Let the
set of variationsM be chosen to satisfy

(6.5) 0 sM =E 6, M is convex.

For the following definitions let 0 when k 0. If n 1 define
a (e)(y) < O, Iao, 4,’(e)(y) 0},(6.6) l={y sg’ i

(6.7)

where y s x, and

(6.8)

.-x (y) _a_. {i s Iao: 6 (e)(y) < 0},

A= U (y).

If n 2, then let

(6.9)
2(Y) &{ M: 1/2 6,’ (’)(Y)2 + 61 (’)() --< O,

Iao/oCl(y), 1/2 4,"()(y) 2+ 4,’(’)(33) 0},

where y 1,

(6.10)

and

(6.11)

where g e 2(y).

2 A {(Y, 37) sM2" y sl, s :z(y)}

o2(y, 3)a--{i I,,to/..,Cl(y)"

satisfying

(6.12) Il 1,

(6.13) lg _-> 0, e {0, , j},

(6.14) lg 0, e IN,

(6.15) L(& l)(x)>--O, x eM.

THEOREM 6.1. Suppose solves NP. I. ff n 1 then them exists la+i+k
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II. If n 2, then for each y @1 them exists g+i+ksatisfying (6.12)-(6.15) and

(6.16) Lee (e, l)(y )Z >__ O.

III. Ifn 3, then for each (y, )@2 there exists R+i+ksatisfying (6.12)-(6.15)
and

(6.17)

(6.18) Lee(e, l)(y, )+eee(e, l)(Y)O.
Remark 6.1. From Proposition 5.2 it follows that satisfying (6.12)-(6.15) must

also satisfy

(6.19) li =0, .
Remark 6.2. If 0 intM then (6.15) is clearly equivalent to the condition

(6.20) Le(, l) O.

Part I of Theorem 6.1 with
see, e.g., [25, Thm. 1]; when 0intM see, e.g., [7, Thm. 2.3.12]. Second-order
necessary conditions similar to those of part II can also be found in the literature.
For example, part II follows from [4, Thm. 3.2] when E ff ". There the condition
l =0, l(y), is included. Remark 6.1 shows, however, that this adds no new
information. After some manipulation, part II with and ] 0 can be obtained
from [28, Thm. 6]. The only third-order necessary conditions from the literature which
appear to be related to part III are [14, Thm. 2.5], [16, Thm. 5.1] and [22, Thin.
2.5]. Because of differing hypotheses, however, these results cannot be compared
directly.

Note that depends on y in part II and on (y,)2 in part III. Specific
examples of second-order necessary conditions where this dependence actually occurs
have been given in [4] and [22]. Note that for both parts II and III, must belong to
the set

(6.21) &{l a+i+" satisfies (6.12)-(6.15)}.

Using , Theorem 6.1 can be written more compactly. This equivalent version of the
theorem will help establish further connections with results from the literature.

COROttARV 6.1. Suppose g solves NP. I. If n 1, then

(6.22) .
II. If n 2, then

(6.23) for each y them exists satisfying (6.16).

III. If n 3, then

(6.24) for each (y,)2 them exists satisfying (6.17) and (6.18).

Remark 6.3. As shown in Remark 5.10, (6.23) can be expressed in the equivalent
form

(6.25) max Lee (g, /)(y )2

which is similar to [18, Thin. 6]. His result is valid for infinite-dimensional equality
constraints when ’(g) has full range. A similar result was also obtained in [23].

Remark 6.4. Condition (6.19) clarifies some second-order necessary conditions
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from the prior literature which involve a constraint qualification. In [26, p. 29] and
[24, p. 102], for example, the element satisfying the first-order necessary conditions
(6.12)-(6.14) and (6.20) (sinceM 8’) is used to determine a set of critical directions

’(e)(y) 0 if isIo and li > O,(/)__a {y s ,. (i

(6.26) b (e)(y) <- 0 if IAo and li O,

6’(e)(y) o}.

This definition gives the impression that 1(1) depends on l. However, using (6.19)
it is easy to show that 1(/)=1 for all satisfying (6.12)-(6.14) and (6.20). Thus
1(l) is independent of l.

Remark 6.5. Sometimes NP satisfies a constraint qualification which implies that
(6.23) can be replaced by a stronger condition such as

There exists F such that

(6.27)
Lee (,/)(Y)2 O, y 1,

or

(6.28) Lee(g, l)(y)=>0, !e, Y ex.
See [3], [4] for details of specific constraint qualifications in this context. Note that
(6.28) implies (6.27) and (6.27) implies (6.23). If is a singleton then (6.23), (6.27)
and (6.28) are equivalent.

We now present an example illustrating the use of Theorem 6.1. Let ] 3, k 0,
M=E ’ 2, g-(l, 0), o(tl, t2)=tx, x(t1, t2)=--(1--tx)3+t2, 2(tx, t2)=--tx and
b3(tl, t2)---t2. This example is often discussed in connection with the Kuhn-Tucker
constraint qualification (see, e.g., [9, p. 20]) which fails to hold at . Note that Iu {2},
Ia0 {0,1, 3}, 4(C’)=[10] and 4()=-b(’)=[01]. Thus, part I is satisfied
uniquely with /=(0,1/2,0,1/2). Because =_{0} and 47()=4()=[ ], also
satisfies (6.16) for all y @a. Thus, part II is satisfied. Define y (-1, 0) and, since
2(y) x{0}, let 3 (0, 0). Note that 2(y, 3) . Since 4’’() 0, (41),,,() 6
and all other components of b7() are zero, (6.18) implies that 11 _-< 0, which contradicts
ll . Thus, part III is not satisfied and g is not optimal.

If in this example 4o is redefined to be bo(tl, t2)=-t, then is optimal and the
necessary conditions are satisfied with as given above. These examples show that
even when l0 0 (and thus 4,o is absent from the Lagrangian) the higher-order necessary
conditions yield useful information. The reason for this is that bo still plays a role in
the necessary conditions because of its appearance in the definition of 1.

We now prove Theorem 6.1. Parts I and II follow most easily from Theorem
5.4, but Theorem 4.1 can also be used without great difficulty. When n 1, it is easy
to see that (6.1)-(6.3) and (6.5) imply Condition 5.4 with= . Note that: (5.8) and
(6.2) imply (6.13); (5.9) implies (6.14); and (5.11) implies (6.15). Note that (5.10) can
be ignored since it yields no useful information. When n 2, (6.1)-(6.3) imply Condi-
tion 5.5 with as just defined. It remains only to note that (5.38) implies (6.16).

Part III follows from Theorem 4.1. The arguments used in the proof of Proposition
5.5 show thatM can be replaced by cone M. We define n 3, I’ IN I,.J (Y) J o2(y, ),
I"={O,...,f}/I’, mi=O for iIN, m=l for i51(y), m=2 for iI"[.Jz(y,),
Yl=4(e)(y) for iIao, Yz=1/24’[(e)(y)2+4()() for iI"Uz(Y, 3) and

m 3V(x)=gwr,te)(y +r,(e)(y,)+’r,(g)(x). (See the proof of Theorem 5.2 for
the definition of r,.)
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Arguments similar to those used to prove Proposition 5.1 show that (4.12) yields
(6.15) and (6.18). Conditions (6.14) and (6.17) follow from (4.10). The arguments
required to show that Condition 4.1 is satisfied are a simple extension of those used

23 3in the proof of Theorem 5.2. We note only that r(x) + ay + a + a x and, because
of (6.3), the only result needed from the Appendix is a weakened version of Proposition
A.1.

7. Concluding remarks. It has been shown that various higher-order necessary
conditions can be obtained systematically from a single result. Specific cases examined
in detail include first- and second-order necessary conditions involving directional
differentials and first-, second- and third-order necessary conditions for a nonlinear
programming problem. With only minor extensions of the arguments used to obtain
these results it is possible in both cases to obtain necessary conditions of arbitrary order.

Theorem 5.4, which generalizes [35, Thm. 2.31, contributes in several ways to
generalizing the results of [34], [35] and [36]. First, since Theorem 5.4 involves finite-
and infinite-dimensional inequality constraints, it allows the handling of both endpoint
and state-space inequality constraints. Secondly, the cost criterion 40 in OP may be
nonscalar (e.g., Pareto-type). And thirdly, Theorem 5.4 does not require a normality
condition which is difficult to verify in practice. The results of [34] and [35] have been
extended in this direction in [13]. Other second-order necessary conditions from the
literature requiring such an assumption (e.g., [6] and [15]) can also benefit from this
generalization. Finally, the third- and higher-order necessary conditions mentioned
above lead to necessary conditions in optimal control theory of still higher order. It
is hoped that these conditions will be useful in treating singular optimal control
problems for which there is an extensive body of literature containing specialized
higher-order necessary conditions (see, e.g., [1], [2], [12], [201, [21] and the references
therein).

While this paper was being revised a theory of higher-order optimality conditions
appeared in [22]. Although a direct comparison of their results to the present paper
is rather complex because of differing assumptions, one interesting aspect of their
development appears to be more general. In Condition 4 1 it is assumed that { Yir} "’r_=l C
Zi so that Y as given by (4.13) is an element of Z. Their conditions require that mi n
for all yet allow for a more general situation in which Yil," , Yi.,,, satisfy

r-1

YiZi+ Y NY/q, r=l,...,mi,
q=0

where Yio ci(. ).

Appendix. This section collects together differentiation results needed for the
proofs of Theorems 5.1, 5.2 and 6.1. Some of them concern the notion of
differentiability given in Definitions 5.1 and 5.2 and extend well-known results from
the literature. Also included is a restatement of a result from [33].

Let be a Banach space with norm I" I, be a topological vector space, A
and f:A. When is a Banach space higher-order 10-derivatives fn)(y)
(; (T; ., 3(; 0))...), n => 2, may be defined inductively in the manner of

Definition 5.2. Following others (e.g., [11, p. 192]) we view fn)(Y), n =>2, as an
element of 5,,(T; ). Specifically, the values of fn)(f) on " are given by f")(f)
(hl,...,h,)A(...((f")(y)(hx))(h2))...)(hn). For notational simplicity
(h)na--f")(f)(h, ,h). The following is an extension of Taylor’s Theorem. Its
proof is a slight modification of the proof of [11, Thm. 3.6.2].
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THEOREM A.1. Let and be Banach spaces with the norm on denoted by
I" [, A c and f: A- . If f is m-times -differentiable at A, where m N, and
A’ is a convex set satisfying g A’ cA then

(A.1) lim Ix- l f(x)-f()-Y, (i!)-lf(i)(,)(X--.) :0.
xg i=1
A’/

Partial/-derivatives are introduced as follows (see [33, p. 168], and [30, pp.
58:59]).

DEFINITION A.1. Let a,"" ", F, be Banach spaces, be a topological vector
space, AcF-a--Yax’.’x,, f’A---> and a---(Ya,"’,,)A. For i{1,...,r}
define the set Ai() a__ {xi F" (a, , :-1, x, +a, , ,) A} and the mapping
xi’->fi(xi)’Ai()-’> by fi(Xi)Af(.l,’’’,.i_l, Xi, .i+l,’’’,.r). If fg(Xi) is /-
differentiabl at )i then fx,(Y) a=f(i)6Y3(Wi;) is the partial /-derivative of f
with respect to xi at .

Note that ([33, p. 169]) if f is iff-differentiable at , then fx,(Y) exists for all
6{1,. , r} and

(A.2) ft(x)(h)= fxi()(hi), h a-(ha,..., hr)l ’’" Xr.
i=1

If is a Banach space then for n N and ul,..., u, {1,..., r} the higher-order
ff’-partial derivative L..... (Y) (T., -,T1;) can be defined inductively. If
Vl v, v, then x)-(g) =f...x.( If )(g) exists, then the following
relation is valid [11, p. 197]

(A.3) f<")(Y)(h)"=EL....x..(Y)(h,.,’",h,), h A(ha,.’’, hr) El X’’" X ’r,

where the summation is over all (Pl, Pn) {1, ", r}".
The following proposition concerns a one-parameter expansion of a mapping

defined on "(/3). The result, which follows from Theorem A.1, shows that the
remainder term satisfies a uniform convergence condition.

PROPOSITION A.1. Let , n N, /3 >0, be a topological vector space and
< ->byf:P+ (/3). Forflo>O satisfying Ei=IO--- define F [0,/3o) xA"

(A.4) F(a, [1,) If(a, a 2
", an-I, an/. a n/d:+l), n > 2

I. Iff is continuous at x 0 then

0(A.5) F(a )-f(0)
-.o

uniformly for Ix A.
II. Iff is -differentiable at x 0, then

(A.6) -1[F(, )-f(0)-Vo(0, )] 0
--0

uniformly for g A.
III. /f is a Banach space, n >- 2 and f is m-times -differentiable at x 0, where

m {2,. ., n}, then

(A.7) -" F(a, )-f(O)- Y (i!)-l’F,(O, --------0
i=1 cO+

uniformly for Ix A.
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Proof. We prove part III only, since similar arguments apply in the other cases.
Since f("(0) exists, Theorem A.1 can be applied with =0A’=A =F/"(/3) to
obtain

(A.8) lim [,,1-" (i!)-’f(i)(o)(ot) =0.
t0 i=1

2 n-1Specialize (A.8) by replacing a by (a, a ,..., a a tza,"" ", a Ix,+1), where
(0,/30) and Ix h". Then (A.8) implies

(A.9) lim a -’[F(a Ix) -f(O) 0,, (a Ix)] 0
0

uniformly for all Ix E A, where

2 n-1(A.10) O,,,(a, Ix) A , (i!)-l[(i)(o)(a, O ", O O [J, 1,""", O /J,n+l)
i=1

Using the chain rule [33,p. 172] to express F, (0, Ix) in terms of the partial/L derivatives
of]" and applying (A.3) to (A.10) it can be shown that

(A.11) lim a 0,(a, Ix) (i!)-1a F,(0, =0
’0+ i=1

uniformly for all IxA. The desired result (A.7) now follows from (A.9) and
(A.11).

Remark A.1. The F-partial derivative F,(O, Ix) can be written explicitly in terms
of the -partial derivatives of f. For example’

x+l

n 1" F,, (0, Ix) Y txif,, (0);
i=1

n 2" F. (0, Ix) fl (0),
+1

F,,,(0, Ix)=/,,,I(0)+2 E /z,f,+,(0);
i=1

n 3" F, (0, Ix) f,(0),

F (0, Ix) f,,(0) + 2f(o),
+1

F (0, Ix) f,,,,(0) + 6f,(0) + 6 E /z,/,+(0).
i=1

The following result follows from [33, Thm. II.3.3].
THEOREM A.2. Let be a vector space, be a topological vector space, A ,

F"A -->, A, v and X a__ co {x 1, , x,} . Suppose there exists 13 > 0 such
that +aX cA, a [0,/3), and define/: "()--> by f(a) F(g +Y.--1 ax). If f’(O)
exists then DF($ x) exists for all x coneX and the mapping x -->DF(g x coneX -21 is positively homogeneous and affine.

Note that/, (0)=DF(2; x). Also, if if(0) exists then/,,, (0)=D2F(2; x).
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