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Multimedia algorithms deal with enormous amounts of data transfers and storage,
resulting in huge bandwidth requirements at the off-chip memory and system bus level.
As a result the related energy consumption becomes critical. Even for execution time the
bottleneck can shift from the CPU to the external bus load. This paper demonstrates
a systematic software approach to reduce this system bus load. It consists of source-to-
source code transformations, that have to be applied before the conventional ILP
compilation. To illustrate this we use a cavity detection algorithm for medical imaging,
that is mapped on an Intel Pentium(R) II processor.
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1. INTRODUCTION

Multimedia systems such as medical image pro-
cessing and video compression algorithms, typ-
ically use a very large amount of data storage
and transfers. This causes huge bandwidth

requirements at the off-chip memory and system
bus level. The required memories and bus transfers
will consume a lot of power [8, 14], which is
especially a problem in embedded systems. It has
been shown that a dominant part of the power in
embedded multimedia systems is consumed by
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data storage and transfers (as opposed to the
computations which consume much less) [23],
and even on the CPU chip itself it is a major
contribution [10, 20].

Additionally, in many cases the performance
bottleneck for this kind of applications lies not in
the CPU, but in the board containing the external
system bus and the off-chip memories. Even when
the bottleneck is still with the CPU computations
for a single application, the huge bandwidth
requirements will cause performance problems
when this application has to share the system bus
with other applications or background processes
running on the same board (containing one or
more processors).

In this paper, we demonstrate our DTSE (Data
Transfer and Storage Exploration) methodology,
which is a software approach to alleviate the
system bus load problem. In this approach, several
source-to-source code transformations to optimize
the global memory accesses of an application are
applied in a systematic way.

In the past we have developed such a metho-
dology for customizable hardware systems [4],
where the memory hierarchy can be designed for
a specific application. In this paper we apply
the relevant steps of this methodology (with
adaptations) to a programmable system with a
fixed memory hierarchy, to show that it reduces
the system bus load on programmable systems
too.

Because most of the basic methodology steps
are explained in [4] (for customizable systems), we
will not focus in detail on the steps themselves.
Instead we demonstrate the methodology by
applying it on a representative application
(a cavity detector for medical imaging), with a
programmable processor (a 450 MHz Pentium(R)
II with 512K L2-cache) as target architecture. In
Section 2, we will give a short overview of our
methodology. In Section 3, it is applied to the
cavity detection application. Section 4 gives some
other experimental results, and Section 5 dis-
cusses the current status of our work. Conclu-
sions are drawn in Section 6.

2. OVERVIEW OF THE METHODOLOGY

In [4], we have thoroughly described our DTSE
methodology for data transfer and storage
exploration, for customizable systems. A number
of data storage and transfer optimization steps are
included in this methodology:

1. Memory oriented data-fl0w analysis and prun-
ing of the initial system specification.

2. Global data-flow and loop transformations of
the system’s description for reduction of the
required background memories and accesses
but also to enable further optimization steps.

3. Data reuse transformations to exploit a dis-
tributed memory hierarchy more effectively in
the algorithm. In this step, additional data
copies are introduced in a judicious way.

4. Storage cycle budget distribution to determine
the bandwidth requirements and the balanc-
ing of the available cycle budget over the
different memory accesses in the algorithmic
specification.

5. Memory allocation and signal to memory/port
assignment, to determine the necessary number
of memory units and their type (if freedom is
left, e.g., in the off-chip memory organization).
The goal of this step is to produce a netlist of
memory units from a memory library as well
as an assignment of signals to the available
memory units.

6. In-place mapping. Here the aim is to increase
the cache hit rate and reduce the memory
size by storing signals with non-overlapping
lifetimes in the same physical memory loca-
tion. Conventionally memory reuse is only
applied for variables with different scopes.
We apply aggressive in-place transformations
also when arrays have partly overlapping
lifetimes.

7. Main memory data layout organization. Here
we rearrange the data in memory to reduce
cache conflict misses as much as possible.

Because Steps 4 and 5 are not relevant when the
target architecture is a programmable processor
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with a fixed memory hierarchy, they will not be
applied in this paper.

3. APPLICATION TO A REPRESENTATIVE
EXAMPLE

3.1. The Initial Cavity Detection Algorithm

The cavity detection algorithm extracts edges from
medical images, such that they can more easily be
interpreted by physicians [2]. The initial algorithm
consists of a number of functions, each of which
has an image frame as input and one as output (see
Fig. 1). The initial code is given in Figure 2.
We have made two types of measurements to

compare the data transfer and storage require-
ments of different versions of the algorithm. First
of all, to obtain precise feedback on the number
of data accesses, we have developed an access
counting tool (ATOMIUM), which counts all
accesses for each array in an algorithm, and this
in each function (or even on a finer granularity).
This allows to locate the bottlenecks in terms of
data storage and transfers. In Figure 6, we have
summarized these results. Note that the distinction
between main memory and local memory in this
figure is made manually, by assigning each array to
a level of the memory hierarchy. On a customiz-
able system, this can also be done physically, but
on a cache-based programmable system, these
results do not directly indicate the real data
transfers. To obtain these, we have used the
Pentium(R) II event counters to count the number
of L1 cache misses and the number of system bus
memory transfers, as shown in Figure 7.
For the initial algorithm, we can see in these

figures that the system bus bandwidth require-
ments are very high. The main reason is that each

of the functions reads an image from off-chip
memory, and writes the result back to this
memory. After applying our DTSE methodology,
these off-chip memories and transfers will be
heavily reduced, resulting in much less off-chip
data storage and transfers. Note that all these
steps are performed in an application-independent
systematic way.

3.2. Global Data-flow and Loop
Transformations

During this step, the code is transformed to expose
maximal locality and potential data reuse. This is
done by applying data-flow and loop transforma-
tions. Because loop transformations are relatively
well known for increasing locality and introducing
parallelism [1, 9, 12, 22], we will not go into much
detail, such that we can concentrate more on the
other steps of our methodology. Note however
that we we apply these transformations on a more

global scale than conventionally done, to optimize
the global data transfers which are most crucial for
the system bus load [6].

First some redundant initializations are re-
moved by a data-flow transformation. Then
another data-flow transformation is applied to
remove the computation of the maximum of the
whole image (in the function Reverse()). Although
this computation is negligible in terms of CPU
time, it is very important in terms of data trans-
fer and storage, because the whole image has
to read from memory, and stored again, before
the next function (DetectRoots()) can proceed.
In this case however, this maximum computa-
tion can be eliminated by a global data-flow
transformation.

Next, a loop folding and merging transforma-
tion is applied to the y-loops in the algorithm. As a

function
GaussBlur
(uchar image_in[N][M],
uchar image_out[N][M])

function
ComputeEdges
(uchar image_in[N][M],
uchar image_out[N][M])

function
DetectRoots
(uchar image_ln[N][M],
uchar image_out[N][M])

FIGURE Initial cavity detection algorithm.
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void GaussBlur (uchar image_in[M] [N], uchar gauss_xy[M] [N])
uchar gauss_x[M] [N] // uchar stands for unsigned char
for (y=0; y<M; ++y)

for (x=0; x<N; ++x)
gauss_x[y] [x] .... // Apply horizontal gauss blurring

for (y=0; y<M; ++y)
for (x=0; x<N; ++x)
gauss_xy[y] [x] // Apply vertical gauss blurring

void ComputeEdges (uchar gauss_xy[M] [N], uchar comp_edge[M] [N])
for (y=0; y<M; ++y)

for (x=0; x<N; ++x)
comp_edge[y] [x] =... // Replace pix. with max. diff. with its neighbors

void Reverse (uchar comp_edge[M] [N], uchar ce_rev[M] [N])
for (y=0; y<M; ++y) // Search for the maximum value that occurs maxval

for (x=0; x<N; ++x)
maxval

for (y=0; y<M; ++y) // Subtract every pixelvalue from this maximum value
for (x=0; x<N; ++x)

ce_rev[y] [x] maxval comp_edge[y] [x];

void DetectRoots (uchar comp_edge [M] [N] uchar image_out [M] [N]
uchar ce_rev [M] [N]
Reverse (comp_edge, ce_rev) / / Reverse image
for (y=0; y<M; ++y)

for (x=0; x<N; ++x)
image_out[y] [x] =... // is true if no neighbors are > than ce_rev[y] [x]

void main ()
uchar image_in[M] [N], gauss_xy[M] [N], comp_edge[M] [N], image_oltt[M] [N];
GaussBlur (image_in, gauss_xy)
ComputeEdges (gauss_xy, comp_edge)
DetectRoots (comp_edge, image_out)

FIGURE 2 Initial code of the cavity detection algorithm.

result, the functions will not work on whole image
at once anymore, but on a line-per-line pipelining
base. This is shown in Figure 3. Finally, a similar
loop folding and merging transformation is
applied to the x-loops too. The result is that the
algorithm will now work on a fine-grain (pixel per
pixel) pipelining base. This is shown in Figure 4.
The code for the heart of the loop nest (without

pre- and post-ambles) after these transformations
is given in Figure 5.

Figure 6 shows that the main memory transfers
have been reduced with a factor of 2 due to the
data flow transformations. No further reduction in
array accesses has been achieved, since the loop
transformations do not change this; they only
increase the locality. As a result of that however,
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GaussBlur

y-1

ComputeEdges

y’2

DetectRoots
y-3

y-1

FIGURE 3 Cavity detection algorithm after y-loop transformation.
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Can be discarded now
(So upper and lower line can be
stored in the same line buffer.)

FIGURE 4 Cavity detection algorithm after x-loop transformation.

void cav_detect (uchar image_in[M] [N], uchar image_out [M] [N])

for (y=0; y<M; ++y)
for (x=0; x<N; ++x)

gauss_x[y] [x] =... // Apply horizontal gauss-blurring
gauss_xy[y-l] [x] =... // Apply vertical gauss-blurring
comp_edge[y-2] [x-l] =... // Replace pix. with max. diff. with neighbors

image_out[y-3] [x-2] =... // true if no neighbors are < than curr. pix.

FIGURE 5 Cavity detection code after application of data-flow and loop transformations.

the cache misses and system bus load are
significantly reduced, as shown in Figure 7.

3.3. Adding Hierarchical Data Reuse Copies

While the loop transformations increase the
locality of the code, we have found that in many
cases this locality is not optimally exploited by the
cache hierarchy. To make the data reuse more
explicit, we introduce additional variables (usually
small arrays) into the code in a judicious way. In
these variables, copies of parts of other variables
(usually large arrays) are stored. The explicit
addition of these variables is necessary to enforce

the data reuse decisions on the lower level stages of
compilation. It is an alternative for relying on the
HW cache controller which cannot make any
global trade-offs at run-time.
Many alternatives for these hierarchical copies

are available. We have a systematic search strategy
and a model which represents all promising
alternatives [24]. That allows us to identify the
best solution. For the cavity detection example,
two levels of data reuse can be identified from the
above figures which illustrate the loop transforma-
tions: line buffers and pixel buffers.

Line Buffers For each of the functions, a buffer
of three lines can be implemented, in which the line
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Initial

Data-flow transftrmations

Loop transformations

Data reuse (line buffers)

iData reuse (pixei buffers)

In-place mapping

0 10 2.0 30

,Main memory transfers (frames)

Main :memory size (frames x 5)

iLocal memo.ry transfers (frames)

FIGURE 6 Array accesses and sizes, for image size of 1280 1000.

Loop transformations

Data reuse (line buffers)

reuse (pixet buffers)Data

In-place mapping

Pixel bu.ffers in registers

0 200 400 600 800 1000

Data-flow transfoations

data cache misses (K)

System bus transactions (K)

FIGURE 7 Cache and system bus results. Note that system bus transactions correspond + to L2 cache misses and write-backs.
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being processed is stored, together with the
previous and the next line:

The horizontal gauss-blurring is done on an

incoming pixel, and the result is stored in the
buffer gauss x lines.
Next, the vertical gauss-blurring is performed
(on one pixel) in this buffer, and the result stored
in gauss_xy_lines.
Then ComputeEdges() can be executed in that
buffer, the result of which is stored in comp_-
edge_lines.
Finally, DetectRootsO is executed in comp_-
edge_lines, and the resulting pixel stored in the
output image.

The resulting code for the heart of the loop nest
is given in Figure 8.

Pixel Buffers In Figure 4, we can see that a
second level of data reuse can be identified, i.e., the
pixels in the neighborhood of the pixel being
processed:

For the horizontal gauss-blurring, a buffer of
three pixels in_pixels can be implemented,
storing the last used values of the incoming
image.
For the vertical gauss-blurring, no such buffer is
possible. However, the output of this step is
stored into a three by three pixels buffer:
gauss_xyixels.

This buffer is used in ComputeEdgesO, and the
result of that step is again stored in a three by
three buffer, i.e., comp_edge_pixels.
Finally, DetectRootsO is performed on this
buffer, and the result stored in the output
image.

The resulting code is given in Figure 9 (again
without initializations and pre- and post-ambles).

Results The results are given in Figure 6 again.
This shows that the line buffers have a huge impact
on the main memory size and transfers, while the
pixel buffers reduce mainly the local memory
transfers. In Figure 7, we can see that also the
cache misses and system bus load are reduced by
these steps. Note that the pixel buffers can actually
be stored in registers; but they have to be
implemented as scalar variables instead of arrays
to allow the compiler to do this. However, this is
only done at the end of our DTSE script (see
Section 3.6), so the influence on cache misses and
bus transactions is only visible at the end of
Figure 7.

3.4. Aggressive In-place Mapping

The aim of this step is to reduce the memory size
by storing signals with different lifetimes in the
same physical memory location. Conventionally
memory reuse is only applied for variables with

void cav_detect (uchar image_in[M] [N], uchar image_out[M] [N])

uchar gauss x lines[3] IN], gauss_xy_lines[3] [N], comp_edge_lines[3] [N]

for (y=0; y<=M-l+3; ++y)
for (x=0; x<=N-l+2; ++x)
gauss x lines [y % 3] [x] // Apply horizontal gauss-blurring
gauss_xy_lines (y-l) % 3 [x] .... // Apply vertical gauss-blurring
comp_edge_lines (y-2) % 3] [x-l] // Replace with max. diff.
image_out [y-3] [x-2] .... // true if no neighbors are < than curr. pix.

FIGURE 8 Cavity detection code after introducing line buffers.
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void cav_detect (uchar image_in[M] [N], uchar image_out[M] [N])

uchar gauss_x_lines 3 [N] gauss_xy_lines 3 [N] comp_edge_lines 3 [N]
uchar in_pixels 3 gauss_xy_pixels [3 [3 comp_edge_pixels [3 [3

for (y=0; y<=M-l+3; ++y)
for (x=0; x<=N-l+3; ++x)

in_pixels [x % 3] image_in[y] [x]
gauss x lines [y % 3] [x-l] .... // Apply horizontal gauss-blurring
gauss_xy_pixels[ (y-l) % 3] (x-l) % 3]

gauss_xy_lines (y-l) % 3] [x-l] // Apply vert. gauss-blurring
comp_edge_pixels[ (y-2) % 3] (x-2) % 3]

comp_edge_lines (y-2) % 3] [x-2] .... // Replace with max. diff.

image_out [y-3] [x-3] // true if no neighbors are < curr. pix.

FIGURE 9 Cavity detection code after introducing pixel buffers.

different scopes. We apply aggressive in-place
transformations also when arrays have partly
overlapping lifetimes [7, 19,21]. The goal is to
make the data fit better in the caches, such that
capacity misses can be reduced.

1. Each set of 3 line buffers (e.g., gauss x li-
nes[3][N]) can be reduced to 2 line buffers (e.g.,
gauss x lines[2][N]) and a few scalars (as illus-
trated in Fig. 4), because the array variables in
the first and the last one have largely different
life-times. The extra scalars are the few pixels in
the current neighborhood computations, but
these are in the pixel buffers anyway.

2. The input and output image buffer can be
combined. Again these buffers as such do not
have non-overlapping life-times, but most of
the pixels in them do. The pixels for which this
is not the case, are in the line buffers anyway.

The results of this step are given in Figures 6
and 7 again.

techniques from [3, 5, 11, 15, 17] can be applied,
but we also go further as described in [13]. There
the reduction of the conflict misses is accomplished
by storing arrays in memory in an interleaved way,
based on cache parameters such as line size,
associativity and cache size. Arrays with potential
conflict misses are assigned to memory regions
that will be mapped to different lines of the cache.
Note that not only the starting address or the in-
ternal layout of an array is changed: the arrays are
really cut in pieces and interleaved with each other.

However, this technique is especially suited for
embedded systems with small caches. After the
previous optimizations of the cavity detection
algorithm, the number of conflict misses is
already minimal on the 512K 4-way L2-cache
of the Pentium(R) II. Therefore, we have not
included this step in the cumulative results of
Figure 7. However, when applied on the initial ver-
sion, the data layout step reduces both L1 misses
and system bus transactions with about 20%.

3.5. Main Memory Data Layout
Optimization

In the next step of our DTSE script, the layout of
the data in main memory has to be chosen to
reduce the cache conflict misses. In this step, the

3.6. Address and Loop Flow Related
Optimizations (ADOPT)

Up to now, we have not given performance results
for the above versions, because some DTSE stages
make the array index expressions much more
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TABLE Performance results for cavity detection algorithm

Execution time

Initial 1.38
DTSE only 2.64
DTSE+ADOPT 0.58
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TABLE II Results for two other applications

Application L1 misses System bus trans. Execution time

QSDPCM (initial) 332K 370K 5.15
QSDPCM (DTSE+ADOPT) 72K 65K 2.74
Voice coder (initial) 96K 70K 0.013
Voice coder (DTSE+ADOPT) 40K 13 K 0.006

complex, and these have to be optimized again
(e.g., by replacing modulo operations with coun-

ters). Also some conditions and more complex
loop bounds were added, and these can be
removed from the heart of the loop nest by a loop
splitting operation. These optimizations are not
really part of the DTSE methodology, but should
be performed additionally to increase the perfor-
mance. We have a systematic methodology for
these optimizations too: ADOPT (ADdress OPTi-

mizations) [16]. Note that, as part of these address
optimizations, also the pixel buffers introduced in
Section 3.3 are replaced by individual scalars
(instead of arrays), such that the compiler can
map them on registers.

3.6.1. Performance Results

Table I gives the performance results for the
Pentium(R) II target processor. The table shows
that the complex addressing introduced by DTSE
reduces the performance at first, but after remov-
ing this addressing overhead again, a clear perfor-
mance gain w.r.t, the initial version is obtained.

4. OTHER EXPERIMENTAL RESULTS

The cavity detection is a very regular application,
which lends itself very well to the DTSE optimiza-
tions. That is why we have used it in this paper to

illustrate the methodology. In Table II, we give
some results for two other applications: a Voice
Coder, and a video compression algorithm based
on motion estimation (QSDPCM) [18]. The table
shows that we obtain good results for these
applications too.

5. CURRENT STATUS

It is not our goal to automate the DTSE
methodology as a whole (this is not what designers
want either). Rather, we want to develop a
systematic methodology, with tools that automate
some substeps, or help to select the best alter-
native. Currently we have prototype tools which
apply the in-place mapping and data layout steps.
For the data reuse step, we have a tool to represent
all alternatives as a tree. Such a tree can be
constructed for each alternative which results
from the data-flow and loop transformation step.
This makes it convenient for a designer to select
the best alternative. Throughout the design pro-
cess, our ATOMIUM access counting tool can be
used to identify the (remaining) bottlenecks.

6. CONCLUSION

In embedded multimedia systems, the energy
consumption and performance bottlenecks are
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mostly in the system bus load and off-chip memory
accesses (instead of the CPU) nowadays. In this
paper, we have demonstrated a systematic code
rewriting methodology, partly supported by tools,
to optimally exploit the memory hierarchy and
reduce the system bus load for these applications.
The approach is valid for both programmable and
custom hardware realizations. Here, we have
illustrated the methodology on a cavity detection
application for medical imaging, with a program-
mable processor (Pentium(R) II) as target architec-
ture. The result is a large saving in the system bus
load. The CPU performance improvement is also
very significant, but it is smaller than the system
bus load reduction.
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