
A Systematic Approach to the Construction of

Non-empty Choice Sets∗

John Duggan
Department of Political Science
and Department of Economics

University of Rochester

May 17, 2004

Abstract

Suppose a strict preference relation fails to possess maximal ele-
ments, so that a choice is not clearly defined. I propose to delete
particular instances of strict preferences until the resulting relation
satisfies one of a number of known regularity properties (transitivity,
acyclicity, or negative transitivity), and to unify the choices generated
by different orders of deletion. Removal of strict preferences until the
subrelation is transitive yields a new solution with close connections to
the “uncovered set” from the political science literature and the litera-
ture on tournaments. Weakening transitivity to acyclicity yields a new
solution nested between the strong and weak top cycle sets. When the
original preference relation admits no indifferences, this solution coin-
cides with the familiar top cycle set. The set of alternatives generated
by the restriction of negative transitivity is equivalent to the weak top
cycle set.

∗I am indebted to Mark Fey and Tasos Kalandrakis for helpful discussions during the
construction of this paper.



1 Introduction

Consider a strict preference relation over a set of alternatives. If this relation
possesses maximal elements, then some alternatives are at least as good as
all others, and these are obvious choices. In many applications, however,
maximal elements may fail to exist: this problem is common in the analysis
of pairwise majority voting, in the choice of a winning sports team, or in the
aggregation of multiple choice criteria. In such situations, there are no un-
ambiguous choices. I examine procedures for the construction of non-empty
choice sets that are based on the systematic removal of particular instances
of strict preferences. The idea is to delete strict preferences until the re-
sulting relation satisfies one of a number of common transitivity properties:
transitivity, acyclicity, and negative transitivity. Since particular orders of
deletion may lead to different sets of maximal elements, I propose to unify
the choices resulting from all possible orders of deletion. As a result of
the analysis, I introduce two new solutions concepts, and I provide a new
choice-theoretic foundation for the well-known top cycle set.

I first consider removing strict preferences until the resulting subrelation
is transitive, stopping at that point. This produces a maximal transitive
subrelation of the original preference relation. When the set of alternatives
is finite, this subrelation will admit maximal elements, where the original
did not. Even in the infinite setting, transitivity will facilitate the search for
maximal elements. Since different orders of deletion can produce different
choice sets, I take the union of all maximal sets of all maximal transitive
subrelations. This procedure for the construction of choice sets has a simple
binary representation: the resulting choice set can itself be written as the
maximal elements of a new “extended covering” relation, which strengthens
the notion of covering from the political science literature and the literature
on tournaments.1 The choice set generated in this manner, the “extended
uncovered set,” is therefore a superset of the usual uncovered set. Banks,
Duggan, and Le Breton (2002, 2003) prove that the uncovered set is non-
empty if the set of alternatives is compact and the original strict preference
relation is open. Thus, the above procedure succeeds in generating non-
empty choice sets quite generally.

While transitivity is conducive to the existence of maximal elements, it
is not a necessary condition. A weaker condition is acyclicity — this is still
sufficient for existence of maximal elements when the set of alternatives is

1See McKelvey (1986) and Moulin (1986).
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finite, and it is actually necessary for existence of maximal elements in all
subsets of alternatives. Thus, I consider modifying the above procedure to
remove particular instances of strict preferences until the resulting subrela-
tion is acyclic, rather than waiting until it is fully transitive. Again, different
orders of deletion can produce different choice sets, so I take the union of
all maximal sets of all maximal acyclic subrelations.

This solution to the problem of constructing choice sets has a novel
binary representation, in terms of a relation I call the “trapping” relation.
We say an alternative x “traps” y if it is strictly preferred to y and it cannot
be reached from y through any finite sequence of strict preferences, and the
maximal elements of this relation are the “untrapped set.” I show that it
coincides with the maximal elements of all maximal acyclic subrelations,
and that the untrapped set is nested between the strong and weak top cycle
sets. In the absence of indifferences, as in the literature on tournaments,
the strong and weak top cycles coincide, and they therefore coincide with
the untrapped set. This equivalence yields a previously unknown foundation
for the top cycle set in terms of choice from maximal acyclic subrelations. I
prove that the strong top cycle set is non-empty under the usual compactness
and continuity conditions, from which it follows that the untrapped set is
non-empty quite generally.

I also consider the possibility of removing instances of strict preferences
until the remaining strict preference relation is not only transitive, but neg-
atively transitive. These are the subrelations that correspond to complete
rankings of alternatives. The set of alternatives that appears at the top of
each such maximal “sub-ranking” coincides with the weak top cycle. We
conclude that, in the absence of indifferences, the choices generated by the
maximal acyclic subrelations and by the maximal negatively transitive sub-
relations are equivalent.

2 Framework

I will make use of the following conceptual apparatus for an arbitrary binary
relation, say B, on a set X. While B consists of ordered pairs of elements
of X, it is common to write x B y for (x, y) ∈ B. For x ∈ X, let

B(x) = {y ∈ X | y B x}
B−1(x) = {y ∈ X | x B y}
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denote the upper and lower sections of B at x. Given a subset Y ⊆ X, say
B is a relation on Y if B ⊆ Y × Y . Let P(B) denote the asymmetric part
of B, i.e., for all x, y ∈ X, x P(B) y if and only if x B y and not y B x.
Let T(B) denote the transitive closure of B, i.e., for all x, y ∈ X, x T(B) y
if and only if there exist a natural number n and elements x1, . . . , xn ∈ X
such that

x = x1 B x2 · · ·xn−1 B xn = y.

Thus, x T(B) y means that we may move from x to y in a finite number of
“B-steps.” Duggan (1999) gives a characterization of the negation of T(B),
showing that x T(B) y fails to hold if and only if y “traps” x, in a sense:
there is a partition {X1, X2} of X such that, for all z ∈ X1 ∪ {x} and all
w ∈ X2 ∪ {y}, not z B w. That is, there is no way to pass via B from a
certain set around x to the remaining set around y.

As usual, B is transitive if, for all x, y, z ∈ X, x B y B z implies x B z.
A subset Y ⊆ X is a B-cycle if, for all x, y ∈ Y , we have x T(B) y and
y T(B) x. We say B is acyclic if there does not exist a B-cycle, i.e., there
do not exist a natural number n and elements x1, . . . , xn ∈ X such that

x1 B x2 · · ·xn−1 B xn B x1.

We say B is negatively transitive if, for all x, y, z ∈ X, x B y implies either
x B z or z B y. Let M(B|Y ) denote the elements of Y that are B-maximal
in Y , i.e.,

M(B|Y ) = {x ∈ Y | for all y ∈ Y, y B x implies x B y}.
When Y = X, we write M(B) for this set and refer to the elements simply
as “B-maximal.” When Y is finite, transitivity, acyclicity, and negative
transitivity of B are all sufficient for the existence of an element that is
B-maximal in Y .

Now let P denote an asymmetric relation on a set X, and let R denote
the complete relation such that, for all x, y ∈ X, x P y if and only if not
y R x. We interpret elements of X as alternatives, P as a strict preference
relation, and R as the associated weak preference. Let I denote the associ-
ated indifference relation, so that xIy holds if and only if neither x P y nor
y P x. Say P is total if, for all distinct x, y ∈ X, either x P y or y P x. This
condition formalizes the idea that no two distinct alternatives are indifferent
according to P . Because P is asymmetric,

M(P ) = {x ∈ X | there is no y ∈ X such that y P x},
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so an alternative is P -maximal if and only if there is no alternative strictly
preferred to it. Because R is complete,

M(R) = {x ∈ X | for all y ∈ X, we have x R y},

so an alternative is R-maximal if and only if it is weakly preferred to all
others. Of course, M(P ) = M(R). In the sequel, we take the relations P
and R as fixed.

Negative transitivity of P is equivalent to transitivity of R, which means
that the set of alternatives can be ranked by these preference relations.
Clearly, negative transitivity of P implies transitivity, which implies acyclic-
ity. All three conditions are sufficient for existence of P -maximal elements
in finite sets, and acyclicity of P is actually necessary for existence of max-
imal elements in all finite subsets of X, so it cannot be relaxed much while
maintaining the possibility of P -maximal elements. Dropping finiteness of
X, it is known that acyclicity is still sufficient for existence of P -maximal
elements quite generally, and it can be weakened even further. Assuming
X is compact and P−1(x) = {y ∈ X | x P y} is open for all x ∈ X, there
exists a P -maximal element if and only if the following condition holds: for
every finite set Y ⊆ X, there exists x ∈ X such that, for all y ∈ Y , x R y.2

In some applications, however, acyclicity of P turns out to be restrictive:
when P represents the preferences of a society through a given aggregation
mechanism, for example, it is common for P to violate this regularity con-
dition. The well-known Condorcet Paradox demonstrates this for social
preferences derived from majority rule: if three voters have rankings, xyz,
yzx, zxy, respectively, over three alternatives, and if P represents the strict
majority preference relation, then we have x P y P z P x, a cycle, so
that M(P ) = ∅. The literature in social choice theory has generalized this
example, establishing that social preference cycles are unavoidable when
decision-making authority is decentralized.3 To address the absence of max-
imal elements, several methods for constructing non-empty choice sets have
been considered.

One of the primary alternatives to maximality is the “top cycle.” Follow-
ing Schwartz (1986), we define two versions of the top cycle, one a subset of
the other.4 The weak top cycle set, denoted WTC, is defined as the maximal

2See Walker (1977) and Austen-Smith and Banks (1999).
3See Sen (1970), Mas-Colell and Sonnenschein (1972), Schwartz (1986, 2001), and

Banks (1995).
4Schwartz (1986) refers to these sets as GETCHA and GOCHA.
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elements of the transitive closure of R, i.e.,

WTC = M(T(R)).

In other words, an alternative x is in the weak top cycle if and only if,
for all y ∈ X, x T(R) y. Clearly, T(R) is transitive, so that the weak top
cycle is non-empty as long as X is finite. More generally, if X is a compact
topological space and P−1(x) is open for all x ∈ X, then the weak top cycle
is non-empty.

The strong top cycle set, denoted STC, is defined as the maximal ele-
ments of the transitive closure of P , i.e.,

STC = M(T(P )).

In other words, x is in the strong top cycle if and only if, for all y ∈ X,
y T(P ) x implies x T(P ) y. An alternative characterization of the strong top
cycle is as follows. A subset Y ⊆ X is undominated if, for all x ∈ Y and all
y ∈ X \ Y , we have x R y. Letting Y denote the collection of undominated
P -cycles, we have

STC =
⋃

Y.

It is well-known that STC ⊆ WTC generally. Furthermore, if P is total,
then the two sets coincide. In this case, I refer simply to the “top cycle set”
and use the notation TC.

As above, T(P ) is transitive, and finiteness of X implies the strong top
cycle is non-empty. More general conditions for non-emptiness of the strong
top cycle are not immediate, as the relation T(P ) does not generally possess
desirable continuity properties. The next result establishes general condi-
tions for non-emptiness of the strong top cycle and implies the claimed result
for the weak top cycle as well.

Proposition 1 Assume X is compact and P−1(x) is open for all x ∈ X.
Then STC 6= ∅.

With the continuity assumption of the proposition, a necessary and suf-
ficient condition for the existence of P -maximal elements is that for every
finite subset Z ⊆ X, there exists x ∈ X such that, for all y ∈ Z, we have
x R y. Under this condition, M(P ) 6= ∅, and then non-emptiness of the
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strong top cycle follows from M(P ) ⊆ STC. Thus, to prove the proposi-
tion, assume there is a finite set Z ⊆ X such that, for all x ∈ X, there exists
y ∈ Z with y P x. Since T(P ) is transitive, there exists z∗ ∈ M(T(P )|Z).
Then Z∗ = T(P )(z∗) is non-empty, since there exists y ∈ Z with y P z∗,
and I claim that Z∗ is an undominated P -cycle. Clearly, for all x ∈ Z∗ and
all y /∈ Z∗, we have x R y, so Z∗ is undominated. Now take any x ∈ Z∗,
so x T(P ) z∗. If x ∈ Z, then z∗ T(P ) x follows by maximality of z∗. If
x ∈ Z∗ \ Z, then there exists y ∈ Z such that y P x, so y T(P ) z∗. Again,
by maximality of z∗, we have z∗ T(P ) y, and then z∗ T(P ) y P x implies
z∗ T(P ) x. To see that Z∗ is a P -cycle, take x, y ∈ Z∗. By the preceding
argument, we have

x T(P ) z∗ T(P ) y T(P ) z∗ T(P ) x,

so z∗ is a P -cycle. Therefore, Z∗ is a non-empty, undominated P -cycle. This
implies STC 6= ∅, completing the proof of the proposition.

Following McKelvey (1986), we say x covers y, denoted x C y, if x P y,
P (x) ⊆ P (y), and R(x) ⊆ R(y). Note that C is transitive, though it does
not typically possess desirable continuity properties. The uncovered set,
written UC, is the set of C-maximal elements: UC = M(C). Alternatively,
an alternative x is uncovered if the following “two-step principle” holds: for
every y ∈ X, either x R y, or there exists z ∈ X such that x R z P y,
or there exists z ∈ X such that x P z R y. Because covering is transitive,
it immediately follows that the uncovered set is always non-empty when
X is finite. The following result, due to Banks, Duggan, and Le Breton
(2002, 2003), establishes non-emptiness of the uncovered set under the same
general conditions used for the strong top cycle.

Proposition 2 Assume X is compact and P−1(x) is open for all x ∈ X.
Then UC 6= ∅.

It is known that the strong top cycle and the uncovered set are not
logically nested.5 That the uncovered set is a subset of the weak top cycle
set follows directly from the two-step principle. Several different definitions
of the covering relation have appeared in the literature: Fishburn (1977)
drops the R(x) ⊆ R(y) condition; Miller (1980) drops the P (x) ⊆ P (y)
condition; while Duggan (2004) strengthens the definition of covering by

5See Duggan and Le Breton (1999) for examples showing that either can be a proper
subset of the other.
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demanding R(x) ⊆ P (y). All of these definitions are equivalent when P
is total, precluding indifferences. The analysis of the next section provides
a foundation for a strengthening of McKelvey’s covering, which can yield
larger choice sets.

3 Choice via Transitivity: The Extended Uncov-
ered Set

We first consider the choices generated by maximally transitive subrelations.
Let PT denote the transitive subrelations of P , i.e.,

PT = {P̂ ⊆ P | P̂ is transitive },

and let P∗
T denote the elements of PT that are maximal with respect to

set-inclusion. The main result in this section establishes a simple binary
characterization of the choices generated by transitive subrelations, i.e., I
show that these choice sets can be viewed as maximal elements of a particular
binary relation.

We say x extended covers y, written x XC y, if x C y and

P (x) ⊆
⋂

z∈P−1(y)

P (z).

That is, we add to the definition of covering the requirement that for all
s, t ∈ X, if s P x and y P t, then s P t. The extended uncovered set,
written UXC, is the set of XC-maximal elements: UXC = M(XC). It is
easily verified that an alternative belongs to the extended uncovered set if
and only if it respects the following “three-step principle”: for all y ∈ X, at
least one of

(i) x R y

(ii) there exists w ∈ X such that x P w R y

(iii) there exists z ∈ X such that x R z P y

(iv) there exist s, t ∈ X such that x P s R t P y
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holds. The following result clarifies the relationships between the extended
uncovered set and the solutions introduced above. As a consequence, it
follows from Proposition 2 that the extended uncovered set is non-empty
under the usual general conditions: it is sufficient that X is compact and,
for all x ∈ X, the lower section P−1(x) is open.

Theorem 1

UC ⊆ XUC ⊆ WTC.

The first inclusion follows directly from the observation that covering im-
plies extended covering. The second inclusion follows directly from the three-
step principle. To see that both inclusions may be strict, consider the follow-
ing examples. First, let X = {a, b, c, d, e}, and let P = {(a, b), (a, c), (a, d),
(b, c), (c, d), (d, e), (e, a), (e, b)}; then b ∈ UXC \UC. Second, simply reverse
the strict preference (c, e) to (e, c), and we have b ∈ TC \ UXC. Since
P is total in the latter example, it shows that the extended uncovered set
may be a proper subset of the strong top cycle. For the opposite inclusion,
let X = {a, b, c} and P = {(a, b), (b, c)}, and note that STC = {a}, while
UXC = X.

Our interest in the extended uncovered set lies in its connection to choice
sets generated from transitive subrelations. The next result shows that these
connections are tight: an alternative is maximal for a maximal transitive
subrelation if and only if it belongs to the extended uncovered set.

Theorem 2

UXC =
⋃

P̂∈P∗T

M(P̂ )

To prove the theorem, take any P̂ ∈ P∗
T and any y ∈ M(P̂ ). Suppose

y /∈ UXC, so there exists x ∈ X such that x XC y. Define P ′ = P̂∪{(x, y)},
and let P be the transitive closure of P ′. To see that P ⊆ P , take any
s, t ∈ X such that s P t, so there exist a natural number n and alternatives
x1, . . . , xn ∈ X such that

s = x1 P ′ x2 · · ·xn−1 P ′ xn = t.

Consider the smallest n for which there exist such x1, . . . , xn. If (xk, xk+1) =
(x, y) for no k = 1, . . . , n, then, by transitivity of P̂ , we have s P ′ t. If
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(xk, xk+1) = (x, y) for some k = 1, . . . , n, then by choice of n this holds for
exactly one k. By transitivity of P̂ , we have n = 2, 3, or 4, with four cases:

• s = x XC y = t

• s P̂ x XC y = t

• s = x XC y P̂ t

• s P̂ x XC y P̂ t.

Since P̂ ⊆ P , s P t follows from x XC y in all three cases. Therefore,
P ⊆ P , but this contradicts maximality of P̂ . Therefore, y ∈ UXC.

Now take any x ∈ UXC. Construct the transitive subrelation P ′ of P
in three steps. Step 1: For each y ∈ X such that x P y, let (x, y) ∈ P ′. Step
2: For each y ∈ X such that (A) y P x and (B) there does not exist w ∈ X
such that x P w R y, if there exists z(y) ∈ X such that xI z(y) P y, then let
(z(y), y) ∈ P ′. Step 3: For each y ∈ X such that (A) y P x, (B) there does
not exist w ∈ X such that x P w R y, and (C) there does not exist z(y)
such that x I z(y) P y, if there exist s(y), t(y) ∈ X such that t(y) P x and
x P s(y) R t(y) P y, then let (t(y), y) ∈ P ′. This completes the definition
of P ′. Clearly, P ′ ⊆ P , and x is P ′-maximal.

I claim that P ′ is transitive, for suppose a P ′ b P ′ c. Since x is P ′-
maximal, we have b 6= x. So there exists y ∈ X such that c = y and either
b = z(y) or b = t(y). In the latter case, by construction we have b = t(y) P x,
and there exists s(y) such that x P s(y) R t(y). Then, however, we cannot
have a P ′ t(y) = b: in steps 2 and 3, condition (B) is not fulfilled. Therefore,
b = z(y), and we have b I x. If x = a, then we have x P ′ b, implying x P b,
a contradiction. Thus, x 6= a, and there exists y′ ∈ X such that b = y′

and either a = z(y′) or a = t(y′). In both cases, we have b = y′ P x, a
contradiction. Therefore, P ′ is indeed vacuously transitive.

Now define the class

P̂ = {Q ⊆ P | P ′ ⊆ P̂ and Q is transitive }
of transitive subrelations of P containing P ′. Since P ′ ∈ P̂, this set is non-
empty. Now take any chain Q ⊆ P̂, and let Q =

⋃
Q. Clearly, P ′ ⊆ Q ⊆ P .

That Q is transitive follows because the class of transitive relations is upward
closed. (See Duggan, 1999.) Therefore, by Zorn’s lemma, P̂ contains a
relation, say P̂ , that is maximal in P̂ with respect to set-inclusion.
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Finally, I claim that x ∈ M(P̂ ), for suppose y P̂ x. By the three-step
principle, at least one of (i), (ii), (iii), or (iv) holds. Since yP̂ x implies y P x,
(i) cannot hold. If (ii) holds, then we have x P z R y, and by construction
we have x P ′ z, implying x P̂ z. Then from y P̂ x P̂ z and transitivity of
P̂ , we have y P̂ z, which implies y P z, a contradiction. Thus, (ii) does not
hold. If (iii) holds, then we have x I z P y, and by construction we have
z P ′ y, implying z P̂ y. Then from z P̂ y P̂ x and transitivity of P̂ , we have
z P̂ x. But this implies z P x, a contradiction. Thus, (iii) does not hold, and
therefore (iv) obtains. Thus, we have x P s R t P y. Furthermore, we have
t P x, for otherwise we have x R t P y, which is impossible if (ii) and (iii)
are false. Then, by construction, we have t P ′ y and x P ′ s, implying t P̂ y
and x P̂ s. From t P̂ y P̂ x P̂ s and transitivity of P̂ , we have t P̂ s, which
implies t P s, a final contradiction. Therefore, x ∈ M(P̂ ). This completes
the proof of the theorem.

4 Choice via Acyclicity: The Untrapped Set

In the previous section, we considered removing strict preferences until the
resulting subrelation is transitive. The condition of acyclicity is weaker than
transitivity, however, and potentially allows us to stop before arriving at a
fully transitive subrelation. Let

PA = {P̂ ⊆ P | P̂ is acyclic }

denote the acyclic subrelations of P , and let P∗
A denote the elements of

PA that are maximal with respect to set-inclusion. The main result of this
section gives a simple binary characterization of choices generated by acyclic
subrelations.

We say x traps y, written x T y, if x P y and not y T(P ) x. Equivalently,
x traps y if it is preferred to y and there exists a partition {X1, X2} of the set
of alternatives such that x ∈ X1, y ∈ X2, and, for all w ∈ X1 and all z ∈ X2,
w R z.6 The trapping relation is not generally transitive, but it is acyclic:
if x1 T x2 · · ·xn T x1, then we have x2 T(P ) x1, contradicting x1 T x2. The
untrapped set, written UT , is the set of T -maximal elements: UT = M(T ).
Clearly, alternative x is untrapped if and only if the following implication
holds: for all y ∈ X, y P x implies x T(P ) y. Because trapping is acyclic,

6For one direction, simply set X2 = T(P )−1(y)∪{y} and X1 = X \X2. The remaining
direction is obvious.
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it immediately follows that the untrapped set is always non-empty when
X is finite. The next result establishes the close relationship between the
untrapped set and the top cycle sets. As a consequence, with Proposition
1, it follows that the untrapped set is non-empty under the usual general
conditions: it is sufficient that X is compact and, for all x ∈ X, the lower
section P−1(x) is open.

Theorem 3

STC ⊆ UT ⊆ WTC.

To prove the first inclusion, it suffices to show that T ⊆ P(T(P )). To
this end, suppose x T y, so x P y and not y T(P ) x. The former condition
clearly implies x T(P ) y, and then x P(T(P )) y follows. For the second
inclusion, it suffices to show that P(T(R)) ⊆ T . Suppose x T(R) y but not
y T(R) x. The latter implies not y R x, which implies x P y, and it also
precludes the possibility that x T(P ) y. Therefore, x T y, as required. This
proves the theorem.

That each inclusion in Theorem 3 may be strict follows from two ex-
amples. First, let X = {a, b, c, d} and P = {(a, b), (b, c), (c, d), (d, b)};
then STC = {a}, while UT = {a, c, d}. Second, let X = {a, b, c} and
P = {(a, b), (b, c)}; then UT = {a, c}, while WTC = X.

Given Theorem 3, the following corollary is immediate: when P is total,
the strong and weak top cycle sets coincide, and therefore they both reduce
to the untrapped set. Thus, for the case of tournaments, we give a new in-
terpretation of the familiar top cycle and establish its connections to acyclic
choice.

Corollary 1 Assume P is total. Then UT = TC.

Our interest in the untrapped set lies in its connection to choice sets gen-
erated from acyclic subrelations. The next result shows that these connec-
tions are tight: an alternative is maximal for a maximal acyclic subrelation
if and only if it is untrapped.

Theorem 4

UT =
⋃

P̂∈P∗A

M(P̂ ).
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To prove the theorem, take any P̂ ∈ P∗
A and any y ∈ M(P̂ ). Suppose

y /∈ UT , so there exists x ∈ X such that x T y. Define P ′ = P̂ ∪ {(x, y)}.
Since x P y, we have P ′ ⊆ P . Moreover, P ′ is acyclic, for suppose there
exist s ∈ X such that s T(P ′) s, so there exist a natural number n and
alternatives x1, . . . , xn ∈ X such that

s = x1 P ′ x2 · · ·xn−1 P ′ xn = s.

Since P̂ is acyclic, we must have (xk, xk+1) = (x, y) for some k = 1, . . . , n−1,
but then y T(P̂ ) x. This implies y T(P ) x, contradicting x T y. Therefore,
P ′ is acyclic, but this contradicts maximality of P̂ . Therefore, y ∈ UT .

For the converse direction, we use the following lemma, which is proved
in the appendix. According to the lemma, there is an acyclic subrelation of
P emanating from an arbitrary x such that every alternative “reachable”
from x under P is also reachable from x under the subrelation.

Lemma 1 For each x ∈ X, there exists an acyclic subrelation P̃ ⊆ P on
T(P )−1(x) ∪ {x} such that T(P̃ )

−1
(x) = T(P )−1(x) \ {x}.

Take any x ∈ UT . Let P̃ be as in Lemma 1. To see that x is P̃ -
maximal in Y = T(P )−1(x)∪{x}, suppose there exists y ∈ Y such that y P̃ x.
Since Y \ {x} = T(P̃ )

−1
(x), however, we then have x T(P̃ ) y, contradicting

acyclicity of P̃ . Let P̂ be the set of acyclic subrelations Q such that P̃ ⊆
Q ⊆ P . Let Q be a chain in P̂, and let Q̂ =

⋃
Q. Clearly, P̃ ⊆ Q̂ ⊆ P .

Since the class of acyclic relations is closed upward (see Duggan, 1999),
Q̂ is acyclic. Therefore, by Zorn’s lemma, P̂ has an element, say P̂ , that
is maximal with respect to set-inclusion. I claim that x is maximal with
respect to P̂ , i.e., x ∈ M(P̂ ). Otherwise, there exists y ∈ X such that
y P̂ x, which implies y P x. Since x ∈ UT , we must then have x T(P ) y,
implying y ∈ Y \ {x} = T(P̃ )

−1
(x). Therefore, we have x T(P̃ ) y, which

implies x T(P̂ ) y, contradicting acyclicity of P̂ . Therefore, x ∈ M(P̂ ), which
completes the proof of the theorem.

From Theorems 3 and 4, we have the following immediate consequence
for the location of acyclic choices: every alternative in the strong top cycle is
chosen by some maximal acyclic subrelation of P , and all choices generated
in this manner must lie in the weak top cycle set. In case P is total, these
sets coincide, yielding a new interpretation of the familiar top cycle in terms
of acyclic choice.
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Corollary 2

STC ⊆
⋃

P̂∈P∗A

M(P̂ ) ⊆ WTC.

If P is total, then

TC =
⋃

P̂∈P∗A

M(P̂ ).

The characterization in Theorem 4 raises interest in the connections
between the untrapped set and other solutions. In general, it can be seen
that UXC and UT are not logically nested, and in fact either can be a
proper subset of the other. For one inclusion, let X = {a, b, c}, and let
P = {(a, b), (b, c)}; then UXC = X, while UT = {a}. For the other, the
second example following Theorem 1 shows that the extended uncovered set
can be a proper subset of the top cycle set. Since P is total in that example,
the top cycle coincides with the untrapped set, as needed.

Theorem 3 establishes that the untrapped set is nested between the
top cycle sets. In this respect, the untrapped set is similar to the “mixed
saddle,” defined by Duggan and Le Breton (1997, 1999, 2001) as a non-
cooperative game-theoretic solution to a particular two-player, symmetric,
zero-sum game derived from the relation P . Let the pure strategy sets of the
players be X, which we now assume finite, and let Π be the payoff function
for player 1 defined by

Π(x, y) =





1 if x P y
−1 if y P x
0 else.

Let σ and σ′ denote probability distributions on X, representing mixed
strategies, and let Π(σ, σ′) denote the expected payoff to player 1 from σ,
when player 2 uses strategy σ′. For a mixed strategy degenerate on one
alternative, we simply write that alternative in the argument of Π.

A subset Y ⊆ X is a mixed generalized saddle point (MGSP) if, for all
x ∈ X \ Y , there exists a distribution σ with support in Y such that, for
all y ∈ Y , Π(σ, y) > Π(x, y). That is, Y is a MGSP if every alternative
outside the set is strictly dominated by a mixed strategy, if we vary player
2’s strategies within the set Y . We say the MGSP Y is a mixed saddle if

13



it is minimal among MGSP’s with respect to set-inclusion. Duggan and
Le Breton (1997, 1999, 2001) show that there is a unique mixed saddle,
which we denote MS. These papers establish that the mixed saddle, like
the untrapped set, is nested between the top cycle sets:

STC ⊆ MS ⊆ WTC.

Moreover, Duggan and Le Breton show that the mixed saddle coincides with
the unique minimal “rationalizable set,” meaning that it contains all best
responses to mixed strategies with support within the mixed saddle, and it
is the unique minimal set with this property.

The following theorem establishes the relationship between the untrapped
set and the mixed saddle: the untrapped set offers a refinement of the mixed
saddle.

Theorem 5 Assume X is finite. Then UT ⊆ MS.

To prove the theorem, take any x ∈ UT . To see that x ∈ MS, suppose
otherwise. Let σ be any mixed strategy equilibrium. Duggan and Le Breton
(1999) show that σ(MS) = 1, and by symmetry it follows that Π(σ, σ) = 0.
If Π(x, σ) = 0, then x is a best response to σ, and since MS is a rationalizable
set, it follows that x ∈ MS. If Π(x, σ) < 0, then there exists some y ∈ X
with σ(y) > 0 such that y P x. Note that y ∈ MS. Since x is untrapped,
we have x T(P ) y, i.e., there exist a natural number n and alternatives
x1, . . . , xn ∈ X such that

x = x1 P x2 · · ·xn−1 P xn = y.

Note that Π(xn−1, y) = 1, so xn−1 is a best response to y. Since y ∈ MS
and MS is a rationalizable set, we have xn−1 ∈ MS. Similarly, xn−2 ∈
MS, and an induction argument based on this logic yields x = x1 ∈ MS,
a contradiction. Therefore, x ∈ MS, which completes the proof of the
theorem.

To see that the inclusion stated in Theorem 5 may be strict, consider the
following weak tournament. Let X = {a, b, c, d, e}, and let P = {(b, c), (c, d),
(d, e), (e, c)}. Note that b traps c, so that c /∈ UT . However, c ∈ MS, for
a ∈ MS because a ∈ M(P ); c is a best response to a; and since MS is a
rationalizable set, we must have c ∈ MS.

14



5 Choice via Negative Transitivity: The Weak Top
Cycle

We have considered the choices generated by maximal transitive subrela-
tions, and then we considered the choices generated by the weaker condition
of acyclicity. In this section, we consider subrelations that satisfy negative
transitivity, a more demanding condition than transitivity that entails that
the alternatives can be ranked.7 Let

PN = {P̂ ⊆ P | P̂ is negatively transitive }
denote the negatively transitive subrelations of P , and let P∗

N denote the
elements of PN that are maximal with respect to set-inclusion. The next
result establishes that the choices generated by maximal negatively transi-
tive subrelations coincide with the weak top cycle. Note the departure from
the structure of the above results, most notably in that coincidence with
the weak top cycle holds for all maximal negatively transitive subrelations:
taking unions is not needed.

Theorem 6 Let P̂ ∈ PN be any negatively transitive subrelation. Then

WTC ⊆ M(P̂ ).

If P̂ ∈ P∗
N is a maximal negatively transitive subrelation, then

WTC = M(P̂ ).

To prove the theorem, let P̂ ∈ PN , and take any x ∈ WTC. If x /∈
M(P̂ ), then there is some y ∈ X such that y P̂ x. Since x ∈ WTC, we have
x T(R) y, so there exist a natural number n and alternatives x1, . . . , xn ∈ X
such that

x = x1 R x2 · · ·xn−1 R xn = y.

By negative transitivity, y P̂ x implies that either y P̂ xn−1 or xn−1 P̂ x.
The former case, however, implies xn = y P xn−1, which does not hold.
Therefore, xn−1 P̂ x. Similarly, we have xn−2 P̂ x, and an induction argu-
ment based on this logic yields x2 P̂ x = x1. But this implies x2 P x1, a
contradiction. Therefore, x ∈ M(P̂ ).

7Given an asymmetric, negatively transitive subrelation P̂ of P , the corresponding
weak preference relation R̂ is complete and transitive, and the corresponding indifference
relation is transitive.
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Now let P̂ ∈ P∗
N be maximal, take any y ∈ M(P̂ ), and suppose y /∈

WTC. Then there exists x ∈ X such that x T(R) y and not y T(R) x.
Define P ′ as follows:

P ′ = P̂ ∪ {(z, w) | z ∈ T(R)(x), w /∈ T(R)(x)}.
Clearly, (x, y) ∈ P ′. And given z ∈ T(R)(x) and w /∈ T(R)(x), we must
have zPw, so P ′ ⊆ P . To see that P ′ is negatively transitive, take any
s, t ∈ X such that s P ′ t, and take any u ∈ X. If (s, t) ∈ P̂ , then, by
negative transitivity of P̂ , we have x P̂ u or u P̂ t. This implies x P ′ u or
u P ′ t, as required. If (s, t) ∈ P ′ \ P̂ , then s ∈ T(R)(x) and t /∈ T(R)(x),
and there are two possibilities: u ∈ T(R)(x) and u /∈ T(R)(x). In the former
case, we have u P ′ t by construction; in the latter, we have s P ′ u, as
required. Therefore, P ′ is negatively transitive, contradicting maximality of
P̂ . Therefore, y ∈ WTC, which completes the proof of the theorem.

6 Other Procedures

We have considered the choices generated by subrelations belonging to sev-
eral classes isolated by the standard rationality properties of acyclicity, tran-
sitivity, and negative transitivity. I end by considering the choices generated
by two polar classes of subrelations that, in a sense, bound the properties
analyzed above. We will see that these two routes to non-empty choice sets
fail to yield useful results. I first consider the choices generated by maxi-
mal subrelations possessing maximal elements — in the finite setting, this
weakens the requirement of acyclicity. Let

PK = {P̂ ⊆ P | M(P̂ ) 6= ∅}
denote the subrelations of P possessing maximal elements, and let P∗

K de-
note the elements of PK that are maximal with respect to set inclusion.
Though it may seem that the difference between acyclicity and non-empty
maximal sets is slight, the next proposition establishes that the latter ap-
proach is no help: unless a P -maximal alternative already exists, this choice
procedure fails to reject any alternative.

Proposition 3 If M(P ) = ∅, then

X =
⋃

P̂∈P∗K

M(P̂ ).
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The proof is trivial. Take any alternative x, and define P̂ by removing
all strict preferences over x, i.e.,

P̂ = {(z, w) ∈ P | w 6= x}.

Clearly, x is P̂ -maximal. Assuming M(P ) = ∅, we actually have M(P̂ ) =
{x}. Thus, P̂ is maximal with respect to set-inclusion in PK , as required.

At the polar extreme, we might consider strengthening negative tran-
sitivity by adding the requirement that the subrelation be total. In other
words, we might consider the choices generated by maximal elements of all
“linear order” subrelations of P . But it is clear that P possesses a linear
subrelation if and only if P itself is a linear order, in which case the only
such subrelation is P itself. In this case, the existence of a P -maximal al-
ternative reduces to the existence of an alternative ranked atop the linear
ordering P , and, in the absence of such an alternative, the attempt to go to
a linear subrelation fails to solve the non-existence problem.

A related approach is to consider subrelations that are linear but only
on their domain. Such relations are “chains,” and the approach would be to
unify the maximal elements of maximal chains. This is proposed by Banks
(1985) and produces what is known as the Banks set. In finite settings, this
yields a subset of the uncovered set with a close connection to sophisticated
voting in agendas: the Banks set consists of all outcomes of sophisticated
voting in amendment agendas for all orders of alternatives. A distinction
of the procedures I have considered, which are based on more conventional
rationality conditions, is that the choices produced by them have simple
binary representations: for example, the alternatives chosen by a maximal
transitive subrelation are just those that are not covered. Due to the struc-
ture of the class of maximal chains, such a simple binary representation does
not appear to be available for the Banks set.

A Proof of Lemma

Lemma 1 For each x ∈ X, there exists an acyclic subrelation P̃ ⊆ P on
T(P )−1(x) ∪ {x} such that T(P̃ )

−1
(x) = T(P )−1(x) \ {x}.

Let Y = T(P )−1(x) ∪ {x}. Let P̃ denote the set of acyclic subrelations
P̃ ⊆ P such that P̃ ⊆ Y × Y and, for all y, z ∈ Y , if y P̃ z, then x = y
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or x T(P̃ ) y. Note that x is necessarily P̃ -maximal in Y . Since the empty
relation lies in P̃, this set is non-empty. Let Q be a chain in P̃, and let
Q =

⋃
Q. Clearly, Q ⊆ P ∩ (Y × Y ), and since the class of acyclic relations

is closed upward, Q is acyclic. Take any y, z ∈ Y such that y Q z. Thus,
there exists Q ∈ Q such that y Q z, and therefore x = y or x T(Q) y, which
implies x = y or x T(Q) y. Therefore, Q ∈ P̃. By Zorn’s lemma P̃ possesses
an element, say P̃ , that is maximal with respect to set-inclusion. To show
that T(P̃ )

−1
(x) = Y \ {x}, suppose there exists y ∈ (Y \ {x}) \ T(P̃ )

−1
(x).

Since y ∈ Y , there exist a natural number n and alternatives x1, . . . , xn ∈ Y
such that

x = x1 P x2 · · ·xn−1 P xn = y,

and, since x 6= y, we may assume that the elements x1, . . . , xn are distinct.
Now define

P ′ = P̃ ∪ {(x1, x2), . . . , (xn−1, xn)}.
Clearly, P ′ ⊆ P ∩ (Y × Y ). Furthermore, for all w, z ∈ Y , if w P ′ z, then
x = w or x T(P ′) w. Therefore, by maximality of P̃ , it must be that P ′

contains a cycle, so there exists s ∈ Y such that s T(P ′) s. Thus, there exist
a natural number m and alternatives z1, . . . , zm ∈ Y such that

s = z0 P ′ z1 · · · zm−1 P ′ zm = s.

Since P̃ is acyclic, there must exist k = 1, . . . , n− 1 and ` = 0, 1, . . . , m− 1
such that (xk, xk+1) = (z`, z`+1). Consider the largest k for which there exist
such s, m, z0, . . . , zm, and `. It follows that there is no j = 1, . . . , n− 1 such
that (z`+1, zmod(`+2,m)) = (xj , xj+1), for suppose otherwise: since xk = z` P
z`+1 = xj , we cannot have j = k; and so j < k, but then xk+1 = z`+1 = xj

contradicts distinctness of x1, . . . , xn. Thus, from z`+1 P ′ zmod(`+2,m), we
have z`+1 P̃ zmod(`+2,m). Since P̃ ∈ P̃, we have x = z`+1 or x T(P̃ ) z`+1. As
x is P̃ -maximal in Y , this leaves the latter case. Using z`+1 = xk+1, we have

x T(P̃ ) xk+1 P xk+2 · · ·xn−1 P xn = y.

Now define

P ′′ = P̃ ∪ {(xk+1, xk+2), . . . , (xn−1, xn)},
so that x T(P ′′) y. Clearly, P ′′ ⊆ P ∩ (Y × Y ). Moreover, P ′′ is acyclic,
by choice of k. And for all w, z ∈ Y , if w P ′′ z, then x = w or x T(P ′′) w.
Therefore, P ′′ ∈ P̃, contradicting maximality of P̃ . Therefore, we must have
T(P̃ )

−1
(x) = Y \ {x}, completing the proof.
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