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Abstract

Background: Several genome-scale metabolic reconstruction software platforms have been developed and are

being continuously updated. These tools have been widely applied to reconstruct metabolic models for hundreds

of microorganisms ranging from important human pathogens to species of industrial relevance. However, these

platforms, as yet, have not been systematically evaluated with respect to software quality, best potential uses and

intrinsic capacity to generate high-quality, genome-scale metabolic models. It is therefore unclear for potential users

which tool best fits the purpose of their research.

Results: In this work, we perform a systematic assessment of current genome-scale reconstruction software

platforms. To meet our goal, we first define a list of features for assessing software quality related to genome-scale

reconstruction. Subsequently, we use the feature list to evaluate the performance of each tool. To assess the

similarity of the draft reconstructions to high-quality models, we compare each tool’s output networks with that of

the high-quality, manually curated, models of Lactobacillus plantarum and Bordetella pertussis, representatives of

gram-positive and gram-negative bacteria, respectively. We additionally compare draft reconstructions with a model

of Pseudomonas putida to further confirm our findings. We show that none of the tools outperforms the others in

all the defined features.

Conclusions: Model builders should carefully choose a tool (or combinations of tools) depending on the intended

use of the metabolic model. They can use this benchmark study as a guide to select the best tool for their research.

Finally, developers can also benefit from this evaluation by getting feedback to improve their software.

Keywords: Genome-scale metabolic reconstruction, Systematic evaluation, Genome-scale metabolic models,

Bordetella pertussis, Lactobacillus plantarum, Pseudomonas putida

Background

Genome-scale metabolic models (GSMMs) have been a

successful tool in Systems Biology during the last de-

cades [1, 2], largely due to the wide range of areas for

which the scientific community has found an applica-

tion. GSMMs, for example, predict cellular behavior

under different biological conditions, or can be used to

design drug targets for important pathogens; they help

to design improved strains through metabolic engineer-

ing strategies or to predict metabolic interactions in mi-

crobial communities; they have been used to study

evolutionary processes or to give a rationale to lab ex-

periments (see excellent reviews [3, 4]).

The reconstruction process that forms the basis of a

GSMM is very time-consuming. Usually, this process

starts with the annotation of a genome and the predic-

tion of candidate metabolic functions at a genome-scale.

The draft reconstruction is then refined by the user in

an iterative manner through an exhaustive review of

each reaction, metabolite, and gene in the network. After

curation, the genome-scale metabolic reconstruction is

transformed into a mathematical structure, an objective

function is given, constraints are set to account for spe-

cific media conditions and the resulting GSMM is evalu-

ated to try to reproduce the experimental data. This

iterative process of manual refinement is the limiting
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step of the whole process because it continues until the

GSMM achieves the desired performance determined by

the model builder. Hundreds of GSMMs have been re-

constructed using this procedure, for which protocols

have been described [5] and reviews are available [6, 7].

Several genome-scale reconstruction tools have been

developed over the last 15 years to assist researchers in

the reconstruction process [8, 9]. These tools are de-

signed to speed up such process by automating several

tasks that otherwise should be performed manually, such

as draft network generation or gap-filling, and/or by

providing useful information to the user to curate the re-

construction. There has been an outstanding increase in

the number of new tools for genome-scale reconstruc-

tion which reflects the increasing interest to create high-

quality GSMMs [10]. Consequently, there is a need for a

systematic assessment of the performance of these tools,

as many researchers are uncertain which tool to choose

when they want to reconstruct their favorite organisms.

In this work, we installed and applied the most prom-

ising genome-scale reconstruction tools to provide a sys-

tematic evaluation of their performance and outputs.

With each tool we reconstructed draft networks for

Lactobacillus plantarum [11] and Bordetella pertussis

[12], representatives of gram-positive and gram-negative

bacteria, respectively, and for which high-quality

GSMMs already exist. We used high-quality manually

curated GSMMs as a benchmark to assess the features

of the tool-generated draft models. In addition, we also

reconstructed draft networks for Pseudomonas putida to

confirm our findings.

Current state of genome-scale reconstruction tools

Here, we provide a brief description of the current re-

construction tools (see also Additional file 1: Table S1).

AutoKEGGRec (2018)

AutoKEEGRec [13] is an easy-to-use automated tool

that uses the KEGG databases to create draft genome-

scale models for any microorganism in that database. It

runs in MATLAB and is compatible with COBRA Tool-

box v3 [14]. One of the advantages of this tool is that

multiple queries (microorganisms) can be processed in

one run making it appropriate for cases where several

microorganisms need to be reconstructed. The main

limitation of this tool, which is directly related to the use

of the KEGG database, is the lack of a biomass reaction,

transport and exchange reactions in the draft genome-

scale models.

AuReMe (2018)

AuReMe [15] (Automatic Reconstruction of Metabolic

Models) is a workspace that ensures good traceability of

the whole reconstruction process, a feature that makes

this tool unique. A Docker image is available for AuR-

eMe, so users are easily able to run AuReMe in any plat-

form without having to pre-install required packages

(Windows, Linux or Mac). AuReMe creates GSMMs

with a template-based algorithm [16] but it is also de-

signed to incorporate information from different data-

bases such as MetaCyc [17] and BIGG [18].

CarveMe (2018)

CarveMe [19] is a command-line python-based tool de-

signed to create GSMMs, ready to use for Flux Balance

Analysis (FBA), in just a few minutes. Its unique top-

down approach involves the creation of models from a

BIGG-based manually curated universal template. The

implementation of its own gap-filling algorithm allows

this tool to prioritize the incorporation into the network

of reactions with higher genetic evidence. The authors of

this tool showed that the performance of the generated

models is similar to the manually curated models.

MetaDraft (2018)

MetaDraft [20, 21] is a Python-based user-friendly soft-

ware designed to create GSMMs from previously manu-

ally curated ones. It contains in its internal database

BIGG models ready to be used as templates although

any other model can be used as a template. Users can

define a specific order of templates in order to prioritize

the incorporation of information related to reactions if

there is a reaction match in two or more templates. One

of the advantages of Metadraft is that it supports the lat-

est features of the current SBML standards, i.e., SBML

Level 3 [22] including the FBC Version 2 [23] and

Groups packages [24].

RAVEN version 2 (2018)

RAVEN [25] (Reconstruction, Analysis and Visualization

of Metabolic Networks) is a tool for genome-scale meta-

bolic reconstruction and curation that runs in MATLAB

is compatible with COBRA Toolbox v3 [14]. In contrast

to the first version which only allowed reconstruction

using the KEGG database [26], this evaluated version

also allows the novo reconstruction of GSMMs using

MetaCyc and from template models. Additionally, algo-

rithms to merge network from both databases are pro-

vided inside RAVEN. The addition of MetaCyc allows

the incorporation of transporters and spontaneous reac-

tions to the reconstructed networks.

ModelSEED version 2.2 (2018)

ModelSEED [27] is a web resource for genome-scale re-

construction and analysis. This tool allows the creation

of GSMMs, not only for microorganisms but also for

plants. The first step of its pipeline for genome-scale re-

construction is the genome annotation which is
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performed by RAST [28]. Users can select or even create

a medium to be used for gap-filling. In contrast to the

first version, the second version allows the creation of

models in less than 10 min (including annotation) and it

provides aliases/synonyms of reactions and metabolites

in other databases.

Pathway Tools version 22.0 (2018)

Pathway tools [29] is a software environment that sup-

ports the creation and curation of organism-specific da-

tabases. One of the most useful features is that users can

interactively explore, visualize and edit different compo-

nents of the created databases such as genes, operons,

enzymes (including transporters), metabolites, reactions,

and pathways. Also, visualization of the whole network

is possible by using Cellular Overview diagrams, in

which experimental data such as gene expression can be

mapped using different colors depending on the expres-

sion level.

Merlin version 3.8 (2018)

Merlin [30] is a java application for genome-scale recon-

struction based on the KEGG database. One of the most

useful resources of Merlin is the re-annotation of ge-

nomes through the online service of BLAST (EBI) or

HMMER. Several parameters in the annotation algo-

rithms such as the expected value threshold and the

maximum number of hits can be changed by the user if

required, which makes this tool very flexible. The inter-

face allows to compare gene function agreement be-

tween the annotation and UniProt providing

information to the user for manual curation.

Kbase (2018)

Kbase [31] (The US Department of Energy Systems Biol-

ogy Knowledgebase) is an open-source software that al-

lows, among a variety of functions, the reconstruction,

and analysis of microbes, plants, and communities. Kbase

is a platform that integrates several tasks such as annota-

tion, reconstruction, curation, and modeling, making suit-

able for the whole process of reconstruction. One of the

unique features of this software is the use of narratives

which are tutorials where users can interactively learn par-

ticular topics and reproduce previous results.

CoReCO (2014)

CoReCo [32] (Comparative Reconstruction) is a novel

approach for the simultaneous reconstruction of mul-

tiple related species. The pipeline of CoReCo includes

two steps: First, it finds proteins homologous to the in-

put set of protein-coding sequences for each species.

Second, it generates gapless metabolic networks for each

species based on KEGG stoichiometry data. Thus,

CoReCo allows a direct comparison between the recon-

structed models, e.g., to study evolutionary aspects.

MEMOSys version 2 (2014)

MEMOSys [33] (Metabolic Model Research and devel-

opment System) is a database for storing and managing

genome-scale models, rather than a reconstruction tool.

This tool allows tracking of changes during the develop-

ment of a particular genome-scale model. Twenty gen-

ome-scale models are publicly available for exporting

and modifying. Child models can be created from the 20

available models and then modified and compared with

parent models. All the differences between different ver-

sions of the models can be listed to track changes in the

networks.

FAME (2012)

FAME [34] (Flux Analysis and Modeling Environment)

is a web-based application for creating and running

GSMMs. This tool can reconstruct genome-scale models

for any microorganism in the KEGG database. One of

the most interesting features of FAME is that analysis

results can be visualized on familiar KEGG-like maps. It

is foremost a tool for running and analyzing models and

is used -by us- for educational purposes. One of the lim-

itations of FAME is that models cannot be generated for

microorganisms which are not in the KEGG database.

GEMSiRV (2012)

GEMSiRV [35] (Genome-scale Metabolic Model Simula-

tion, Reconstruction and Visualization) is a software

platform for network drafting and editing. A manually

curated model is used as a template to generate a draft

network for the species under study. Among the tools

inside the toolbox, MrBac [36] can be used to generate

reciprocal orthologous-gene pairs which are then used

by GEMSiRV to generate the draft model. One of the

limitations of this tool is that only one template can be

used per run.

MetExplore (2018)

MetExplore [37] is a web-based application for sharing

and curating in a collaborative way previously recon-

structed draft metabolic networks. FBA, FVA, gene, and

reaction essentiality analyses can also be performed in

the same environment to compare predictions with ex-

perimental data. One of the main features of this soft-

ware is that networks can be automatically visualized

using the lightest paths algorithm which reduces the

complexity of the network.

rBioNet (2011)

This tool [38] allows assembling a metabolic reconstruc-

tion. Rather than automatically generating a draft
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metabolic network from its genome, it allows the user to

either create a reconstruction from scratch or load an

existing one for curation. In both cases, reference data-

bases are used to facilitate the import of metabolite and

reactions into the network. Several tests, such as dead-

end metabolite detection and mass and charge reaction

balances, can be run to ensure high quality of the recon-

struction. Finally, this tool is part of the COBRA toolbox

and a tutorial of use is available for beginners.

Other tools

Microbes Flux (2012) [39], Subliminal (2011) [40], and

GEMSystem (2006) [41] are no longer maintained, as

confirmed by the authors of the corresponding articles.

Results
To assess the reconstruction tools, we performed both a

qualitative and quantitative evaluation. As a first step,

we created a list of relevant features for genome-scale

reconstruction and software quality and we scored each

tool depending on the performance (1: poor, 5: outstand-

ing). These features are related to software performance,

ease of use, similarity of output networks to high-quality

manually curated models and adherence to common

data standards. In addition, we evaluated 18 specific fea-

tures related mostly with the second stage (refinement)

of the protocol for generating high-quality genome-scale

metabolic reconstructions [5]. The criteria to assign a

particular score in each feature is specified in Add-

itional file 1: Table S2. Note that not all the tools were

designed for the second stage, so they scored poorly on

quite some features. Many of these features have not

been assessed in previous reviews [8, 9].

Subsequently, to assess how similar the generated draft

networks are to high-quality models, we reconstructed

with different reconstruction tools the metabolic net-

works of two bacteria for which high-quality manually

curated genome-scale models already were available. We

chose to reconstruct the metabolic network of Lactoba-

cillus plantarum and Bordetella pertussis, representa-

tives of gram-positive and gram-negative bacteria,

respectively. These microorganisms were selected be-

cause of three reasons. First, the corresponding GSMMs

are not stored in the BIGG database, so tools that are

able to use the BIGG database (AuReMe, CarveME,

MetaDraft, RAVEN) in the reconstruction process can-

not use the specific information for these microorgan-

isms. If Escherichia coli or Bacillus subtilis would have

been chosen instead we would have favored these tools

because high-quality models for E. coli or B. subtilis

already exist in the BIGG database and they would have

been used as templates or inputs. Second, we chose

these microorganisms because we were fully informed of

the quality of the reconstructions as we built them

ourselves and they have proven to be able to accurately

replicate experimental data [11, 12, 42, 43], even by in-

dependent researchers [44, 45]. Third, these networks

were reconstructed almost entirely in a manual way, so

we do not expect any bias for any particular tool.

In addition to the two previous species, we also recon-

structed with all the tools draft networks for Pseudo-

monas putida, for which four lab-independent genome-

scale models have been reconstructed. We compared the

draft reconstructions with iJP962 [46], a model that is

not in the BiGG database, that has been proven to ac-

curately replicate experimental data and to be absent of

inconsistencies [47].

The networks were generated using seven tools: AuR-

eMe, CarveMe, Merlin, MetaDraft, ModelSEED, Path-

way Tools and RAVEN. These cover most of the freely

available software platforms. The general features of

these tools are listed in Table 1.

General assessment overview

None of the tools got a perfect score for all of the evalu-

ated features and usually, strengths in some tools are

weaknesses in others (Fig. 1, Additional file 1: Figure S3,

Tables S25 and S26 to see detailed evaluation). For ex-

ample, on the one hand, ModelSEED and CarveMe were

evaluated as outstanding when we checked whether the

whole reconstruction process is automatic; Merlin was

evaluated as poor because users should interfere more to

get a network ready to perform FBA. On the other hand,

we consider Merlin as outstanding with respect to a

workspace for manual refinement and information to as-

sist users during this step; CarveMe and ModelSEED do

not provide further information for manual refinement

nor a workspace for manual curation, so they were eval-

uated as poor in this category.

In some cases, all the tools got the maximum score

possible. For instance, all the tested tools are properly

supported by specialist teams and also maintain up-

to-date databases. In other cases, none of the tools

got the maximum score. This was the case for auto-

matic refinement of networks using experimental

data. Some of the tools, such as ModelSEED and Car-

veMe, can use media composition to gap-fill the net-

work. AuReMe and Pathway Tools also can use, in

addition to media composition, known metabolic

products to gap-fill the network. In spite of that,

none of the tools can also use Biolog phenotype ar-

rays, knockout experiments and different types of

omics data (transcriptomic, proteomic, metabolomic,

etc.) to automatically curate the network. Although

some efforts have been done in this area [48–51], this

seems like a major challenge for future tool

development that should lead to improved metabolic

reconstructions.
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Compliance with the latest SBML standards has been

pointed as one of the critical points to share and repre-

sent models [52]. Consequently, we evaluated if the tools

use the latest SBML features in the import (inputs) and

export (outputs) of networks. For inputs, we checked if

the tools were able to read networks in SBML level 3

[22]. We additionally checked if the output networks sat-

isfy the following three features: use of SBML level 3

[22] with FBC annotations [23], SBML groups [24], and

MIRIAM compliant CV annotations [22, 53]. These fea-

tures are used, for example, for models in the BIGG

database and they ensure that the information is stored

in a standard way. For inputs, we found that among the

tools that are able to import and use networks (AuR-

eMe, MetaDraft, RAVEN) all of them are able to use

SBML level 3 but AuReMe generated slightly different

networks when using SBML level 2. For outputs, Meta-

Draft and Merlin and RAVEN were the only ones that

exported the networks with all the three features. Be

aware that networks created with RAVEN have to be

exported to SBML using the specific functions of

RAVEN (not COBRA functions as a regular COBRA

user would expect) because otherwise there will be no

MIRIAM annotations in the SBML files. In addition,

AuReMe and CarveMe lack MIRIAM compliant CV an-

notations and SBML Groups, and Pathway Tools and

ModelSEED exported the networks in SBML level 2.

Network comparison

We reconstructed draft networks for Lactobacillus plan-

tarum WCFS1, Bordetella pertussis Tohama I and

Pseudomonas putida KT2440 with each reconstruction

tool. L. plantarum is a lactic acid bacterium (LAB), used

in the food fermentation industry and as a probiotic

[54–56]. Its GSMM comprises 771 unique reactions, 662

metabolites, and 728 genes, and it has been used to de-

sign a defined media for this LAB [43], to explore

interactions with other bacteria [57] and as a reference

for reconstructing other LAB [58]. In contrast to this

LAB, B. pertussis is a gram-negative bacterium, and the

causative agent of the Whooping cough, a highly conta-

gious respiratory disease [59]. The metabolic network of

this pathogen was recently reconstructed, and it com-

prises 1672 unique reactions, 1255 metabolites, and 770

genes. As B. pertussis, Pseudomonas putida is also a

gram-negative bacterium but the interest in this species

relies on its capability as a cell factory to produce a wide

variety of bulk and fine chemicals of industrial import-

ance [60]. Its metabolic network comprises 1069 unique

reactions, 987 metabolites, and 962 genes. While L.

plantarum and B. pertussis are the main subject in the

network comparisons, P. putida was used, as a model

developed independently from us, to validate the ten-

dencies obtained with the two previous species.

In total, 29 networks were created for L. plantarum,

27 for B. pertussis, and 27 for P. putida. The specific in-

puts and parameters for creating each network can be

found in Additional file 1: File S1. Genes, metabolites,

and reactions were extracted from the SBML files and

compared with those in the manually curated model.

For convenience, the manually curated model of L. plan-

tarum, B. pertussis, and P. putida will be called hereafter

iLP728, iBP1870, and iJP962, respectively.

Comparison of gene sets

Genes are the basis from which the genome-scale model

is reconstructed. When a gene is included in a metabolic

reconstruction, there is at least one biochemical reaction

associated with that gene. When a gene is not in the re-

construction, either the reconstruction tool could not

find an orthologous gene in the reference database or an

orthologous gene was found but no biochemical reaction

is associated with that gene. Gene sets are interesting to

compare because if a gene present in the manually

Table 1 List of selected genome-scale metabolic reconstruction tools and their main features

Reconstruction
tool

Mapping method Reactions are inherited
from

Associated
databases

Version Type of software

AuReMe Pantograph (Inparanoid and OrthoMCL) Template model(s) BIGG-MetaCyc 1.2.4 Command line

CarveMe Diamond, eggNOG-mappera Template model BIGG 1.2.1 Command line

Merlin Mapping from annotation with BLAST or HMMER Database KEGG 3.8 Standalone
interface

MetaDraft Autograph (Inparanoid) Template model(s) BIGG 0.9.2 Standalone
interface

ModelSEED Annotation ontology map from RAST data Template model ModelSEED 2.2–2.4 Online service

Pathway Tools Pathologic Database MetaCyc 22.0 Standalone
interface

RAVEN Autograph-type method from BLASTP and Bidirectional
BLASTPb

Database- Template
model(s)

KEGG-MetaCyc 2.0.1 Command line

aeggNOG-mapper should be run externally by the user
bBidireactional BLASTP is used with template models and BLASTP with databases (KEGG and Metacyc)
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Fig. 1 (See legend on next page.)
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curated model is absent in a draft reconstruction, that

could explain why some biochemical reactions are miss-

ing in the draft. Alternatively, if a gene is absent in the

manually curated model but present in a draft recon-

struction, that could explain the presence of reactions

that should not be in the reconstruction. Moreover, gene

sets are simple to compare among reconstructions be-

cause gene identifiers in all the cases are the same (the

locus tag in the genome annotation) and so, in contrast

to metabolites and reactions, there is no mapping-re-

lated bias in the comparison.

To assess how similar the draft networks were to the

corresponding manually curated networks we calculated

the Jaccard distance (JD) as well as the ratio between the

percentage of covered genes and the percentage of add-

itional genes (R) (Additional file 1: Tables S4–S7). The

JD has been used before to measure the distance be-

tween genome-scale metabolic reconstructions, based on

reaction sets [61]; here, we also applied it to compare re-

constructions in terms of genes and metabolites. We

called JDg, JDr, and JDm to the JD between two recon-

structions when they are compared in terms of genes,

reactions and metabolites, respectively. Analogously, we

called Rg, Rr, and Rm to the R when reconstructions are

compared in terms of genes, reactions and metabolites,

respectively. In general terms, a value of 0 in the JD

means that the networks are identical and a value of 1

means that the networks do not share any element. For

the R, higher values reflect a higher similarity to the ori-

ginal network and lower values reflect a lower similarity

with the original network.

The values in the JDg ranged from 0.38 to 0.60 in L.

plantarum and from 0.43 to 0.67 in B. pertussis (Add-

itional file 1: Tables S4 and S5), while values in the Rg

ranged from 1.18 to 13.16 in L. plantarum and from

0.84 to 3.52 in B. pertussis (Additional file 1: Tables S6

and S7). Although the similarity of the generated draft

networks seems slightly better for L. plantarum than for

B. pertussis, we found that it depends on which metric is

analyzed. With the exception of one network, the Rg

showed that all the draft networks of L. plantarum were

more similar to iLP728 than the draft networks of B.

pertussis to iBP1870, using the analog parameter set-

tings. In contrast, the JDg showed that AuReMe, Model-

SEED, RAVEN, and Merlin generated draft networks of

L. plantarum which are more similar to iLP728 than the

draft networks of B. pertussis with regard to iBP1870,

and that CarveMe, MetaDraft, and Pathway Tools gener-

ated draft networks slightly more similar for B. pertussis.

In general, similar values of JDg and Rg were obtained

for P. putida (Additional file 1: File S3).

Additionally, when sorting the values of both metrics,

we noticed that the JDg order does not correspond to

that made with the Rg. The lowest JDg among the draft

reconstructions for L. plantarum was obtained in the

network generated with AuReMe when the gram-posi-

tive set of templates was used; for B. pertussis, it was ob-

tained with MetaDraft. In contrast, the highest Rg

among the draft reconstructions for L. plantarum was

obtained in the network generated with AuReMe when

only Lactococcus lactis was used as template; for B. per-

tussis, it was obtained with MetaDraft when Escherichia

coli template was used.

Although the similarity scores for both metrics are not

entirely consistent, some trends were observed. The net-

works more similar, in terms of genes, to the manually

curated models were generated by MetaDraft, AuReMe,

and RAVEN (Fig. 2). However, since parameters settings

and inputs have a big effect on the similarity scores, the

usage of these tools does not automatically ensure

obtaining a draft network similar, in terms of genes, to a

manually curated model. This is particularly true for

RAVEN which also generated some networks with high

JDg and low Rg scores. The same trends were obtained

for P. putida (Additional file 1: Figure S2).

We further analyzed the percentage of genes covered

in the manually curated models and the percentage of

genes not in the manually curated models to explain dif-

ferences in Rg. For all the species we observed a wide

variation in both variables (Figs. 3, 4 and Additional file

1: Figure S7). Among the five networks of L. plantarum

with the highest coverage, two were created with AuR-

eMe and three with RAVEN; for B. pertussis, four were

created with RAVEN and one with CarveMe. However,

the networks created with RAVEN that recovered the

highest percentages of genes also added a large number

of genes which were not present in the manually curated

models, decreasing the values in the Rg. In addition,

AuReMe and MetaDraft created conservative draft net-

works with the lowest number of additional genes,

which explains the higher values in the Rg. Finally, tools

such as ModelSEED, Pathway Tools, and Merlin consist-

ently created reconstructions with gene coverages not

ranging in the highest values (in comparison with other

(See figure on previous page.)

Fig. 1 Qualitative assessment of the studied genome-scale metabolic reconstruction tools. We evaluated each of the tools (AU: AuReMe. CA:

CarveMe. MD: MetaDraft. ME: Merlin. MS: ModelSEED. PT: Pathway Tools. RA: RAVEN) from an unsatisfactory (red) to an outstanding performance

(dark green). In some categories such as continuous software maintenance and proper support, on the top of the figure, all the tools got the

maximum score while in others such as automatic refinement using experimental data, none of the tools got the maximum. In most of the cases,

strengths in some tools are weaknesses in others
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networks) and adding a relatively large number of genes

not present in the manually curated models, which ex-

plains why they had lower values in the Rg.

For L. plantarum we found 1613 different genes in

total with all the tools, of which 885 were not present in

iLP728. For B. pertussis, 1888 different genes were

found, of which 1118 were not present in iBP1870. In

addition, 79 genes were correctly predicted in all the

draft networks for iLP728; for iBP1870, this was 131

genes. The distribution of metabolic pathways associated

to those genes is wide for both species, with carbohy-

drate metabolism and amino acid metabolism account-

ing for more than 50% of the metabolic processes

(Additional file 1: Tables S8 and S9). Additionally, 35

and 39 genes were not recovered in any network for

iLP728 and iBP1870, respectively. The metabolic func-

tions associated to those genes were very specific, with

polysaccharide biosynthesis (63%) and transport (22%)

top in the list for L. plantarum and with transport (41%)

and ferredoxin/thioredoxin related reactions (30%) for B.

pertussis. Finally, one gene in L. plantarum, which was

associated with riboflavin biosynthesis, was recovered by

all the networks but it was not present in iLP729. For B.

pertussis, three such genes were found. These genes

were associated with alternate carbon metabolism and

cell envelope biosynthesis.

Comparison of reaction sets

Genes and biochemical reactions are connected within a

reconstruction through gene-protein-reaction (GPR)

associations. However, genes and reactions relationships

are ultimately represented in reconstructions as boolean

rules known as gene-reaction rules. With the exception of

exchange, sink, demand, spontaneous and some transport

reactions (e.g., those governed by diffusion), each reaction

has a defined gene-reaction rule in the reference database

used by each reconstruction tool. During the process of

reconstruction, if orthologous genes are found that satisfy

the gene-reaction rule of a particular reaction, that reac-

tion is included in the draft reconstruction. Other reac-

tions may be added to the draft reconstruction based on

others criteria, such the probability of a particular pathway

to exist in the microorganism under study or the need to

fill particular gaps in the network in order to produce bio-

mass. Nonetheless, we expect that networks which are

more similar in terms of genes will also be more similar in

terms of reactions.

In contrast to genes, however, reactions are labeled

with different identifiers in different databases. Thus, the

same reaction can be stored with two different identi-

fiers in two different databases. During the reconstruc-

tion process, reactions are added from the reference

database to the draft reconstruction and tools using

different databases will generate reconstructions com-

prising reactions with different identifiers. We, therefore,

used MetaNetX [62] to map reactions among recon-

structions built with different databases. In this

approach, reactions were compared using their identi-

fiers (case sensitive string comparison). In addition, we

compared networks using reaction equations, i.e., we

Fig. 2 Jaccard distance versus the ratio between coverage and additional genes for draft reconstructions. We used the Jaccard distance and the

ratio to measure the similarity between the draft reconstructions and the corresponding manually curated models, in this case, when the

networks are analyzed in terms of genes. Draft reconstructions for Lactobacillus plantarum and Bordetella pertussis are represented in panels a and

b, respectively. For both cases, the networks more similar to the manually curated models are located on the top left side of each plot. Thus, the

draft reconstructions more similar to the manually curated models were created by AuReMe, MetaDraft, and RAVEN
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compared reactions using their attributes instead of their

identifiers. In this second approach, we considered that

two reactions were the same if they had the same metab-

olites with the same stoichiometric coefficients. Some

exceptions were made to also match reactions that differ

only in proton stoichiometry (due to differences in me-

tabolites charge) or to catch reactions which are written

in the opposite direction (reactants in the side of prod-

ucts). We decided to include exchange reactions in the

network comparison for completeness because CarveMe

and ModelSEED automatically generate them; as they

are non-gene associated reactions, this automatically

lowers the scores for the other tools that do not add ex-

change reactions. For most networks, comparison

through reaction identifiers resulted in a lower percent-

age of coverage than through reaction equation compari-

son (Additional file 1: Tables S10 and S11). This lower

coverage was due to some missing relationships between

different databases in MetaNetX, which we discovered

when comparing with the reaction equations. In total,

220 new unique reaction synonyms pairs were automat-

ically discovered for both species with the second ap-

proach (Additional file 1: Table S12). To further

overcome the missing relationships in MetaNetX, a

semi-automatic algorithm was developed to assist the

discovery of new metabolite synonyms. In total, 187 new

metabolites synonyms were discovered (Additional file 1:

Table S13) which led to the discovery of 282 additional

reaction synonyms (Additional file 1: Table S14).

The comparison through reaction equations showed a

wide variation in reaction coverage and percentage of add-

itional reactions for all the species (Figs. 5 and 6 and Add-

itional file 1: Figure S8). In addition, for those networks

created with RAVEN (KEGG), ModelSEED, and Merlin, we

observed a considerable number of reactions with a partial

match with the manually curated model. These partial

matches emerge from differences in proton stoichiometry,

which indicates the existence of metabolites with different

charge than those found in the manually curated models. In

contrast to the gene sets comparison, where the coverage

Fig. 3 Overlap of genes in draft reconstructions for Lactobacillus plantarum with those in the manually curated model. In total, 29 networks were

reconstructed with 7 tools (CarveMe: CA; MetaDraft: MD; AuReMe: AU; Pathway Tools: PT; ModelSEED: MS; RAVEN: RA; Merlin: ME). Several

reconstructions, which are represented with different sub-indices, were generated for each tool using different parameters settings. Numbers

inside bars represent percentages with respect to the total number of genes in iLP728. The coverage (blue bars) ranged from 49.7 to 87.8% while

the percentage of additional genes (yellow bars) ranged from 4.3 to 65.0%. Most of the genes that were not recovered (dark green bars) are

related to very specific metabolic functions that were carefully incorporated during the manual curation of iLP728 such as polysaccharide

biosynthesis and transport
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was as high as 88% and 83%, we only observed a maximum

coverage of 72% and 58%, for L. plantarum and B. pertussis,

respectively, even when considering partial matches. We

classified the reactions that were not recovered in different

categories (Additional file 1: Figures S3–S6) and we found

that the low reaction coverage can be explained mainly by

three reasons.

First, both manually curated models contain a consid-

erable amount of reactions without gene-associations,

including spontaneous, transport, exchange reactions,

reactions added during the manual gap-filling and bio-

mass-related reactions. For L. plantarum and B. pertus-

sis, there are 241 and 657 of such reactions, representing

31% and 39% of the network, respectively. With the ex-

ception of CarveMe and ModelSEED, which can per-

form automatic gap-filling, all the rest of the tools are

not able to recover most of the non-gene associated re-

actions, mainly because all the tools predict reactions

based on genomic evidence. Thus, for both species,

around, 50% of the reactions that were not recovered do

not have gene-reaction associations in the manually cu-

rated model. Without considering exchange reactions,

the coverage roughly increased by 15% and 12% for L.

plantarum and B. pertussis, respectively, except for Car-

veMe and ModelSEED. Second, in around 30% of the re-

actions that were not recovered, there are at least 50% of

the associated genes missing in the draft reconstructions.

Third, even when all the genes associated with a particu-

lar reaction are recovered, specific substrate and cofactor

usage is difficult to predict. Many times, the tools pre-

dict the correct metabolic activity but they fail in pre-

dicting the specific substrate used in the manually

curated models. We created a collection of plain text

files containing hundreds of examples where the associ-

ated genes were recovered by the tool but the reaction

does not correspond to the one in the manually curated

model because of different substrates (see section avail-

ability of data for details).

We again calculated the JDr and the Rr to assess how

similar the networks were, in this case in terms of

Fig. 4 Overlap of genes in draft reconstructions for Bordetella pertussis with those in the manually curated model. In total, 27 networks were

reconstructed with 7 tools (CarveMe: CA; MetaDraft: MD; AureME: AU; Pathway Tools: PT; RAVEN: RA; Merlin: ME). Several reconstructions, which

are represented with different sub-indices, were generated for each tool using different parameters settings. Numbers inside bars represent

percentages with respect to the total number of genes in iBP1870. The coverage (blue bars) ranged from 49.4 to 83.0% while the percentage of

additional genes (yellow bars) ranged from 18.6 to 99.0%. The genes that were not recovered (dark green bars) are related to very specific

metabolic functions that were carefully incorporated during the manual curation of iBP1870 such as transport and

ferredoxin/thioredoxin-related reactions
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reactions. The first observation we made is that, inde-

pendent of the metric and for both species, each recon-

struction was less similar in terms of reactions than in

terms of genes, which is consistent with the decrease in

coverage. In addition, as in the gene comparison, the

order of scores for the Rg and the Rr by magnitude was

not the same. If we compare the similarity scores for re-

action sets with the ones for gene sets, we see almost

the same trend but with one difference. AuReMe and

MetaDraft are still the tools with the best similarity

scores but now CarveMe goes up in the list of scores

and RAVEN goes down (Fig. 7, Additional file 1: Tables

S4–S7). This was particularly true for B. pertussis where

two networks reconstructed with CarveMe got the two

first places in the JDr list. Almost the same trend was

observed for P. putida (Additional file 1: Figure S2) be-

ing the higher scores for RAVEN instead of CarveMe

the main difference.

Although RAVEN generated some reconstructions

with high gene sets similarity to the manually curated

models, it did not for reaction sets similarity. We,

therefore, analyzed one of the networks reconstructed

with RAVEN in more detail, one that was consistently in

the top 5 list for both species for both metrics. We

found one main reason for the decrease in performance.

The analyzed network was created based on KEGG, so

metabolites were not labeled as intracellular or extracel-

lular. Hence, no transport or exchange reactions were

present. Although there are functions to incorporate this

kind of reactions in RAVEN, that is considered as man-

ual curation because users must specify which com-

pounds should be transported, and we here only tested

how much work would it take to transform these draft

networks into high-quality reconstructions.

We further analyzed reactions that were present and

absent in all the reconstructions to understand which

kind of metabolic processes they were related. Sixty-six

reactions in iLP728 and 98 in iBP1870 were always

found in all the draft networks. In agreement with the

gene sets analysis, the associated metabolic processes are

mainly amino acid metabolism, nucleotide metabolism,

and carbohydrate metabolism (Additional file 1: Tables

Fig. 5 Overlap of reactions in draft reconstructions for Lactobacillus plantarum with those in the manually curated model. In total, 29 networks

were reconstructed with 7 tools (CarveMe: C, MetaDraft: D, AuReMe: A, Pathway Tools: P, ModelSEED: S, RAVEN: R, Merlin: E). Several

reconstructions, which are represented with different sub-indices, were generated for each tool using different parameters settings. Numbers

inside bars represent percentages with respect to the corrected number of reactions in iLP728, which is the total number of reactions in iLP728

minus the biomass-related reactions (light green). We observed a wide variation in the coverage (blue bars) and the percentage of additional

reactions (yellow bars). In addition, a considerable number of reactions in the networks build with ModelSEED, RAVEN (KEGG), and Merlin

contained different stoichiometry for protons than those in iLP728 (dark green bars)
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S15 and S16). Additionally, 165 reactions in iLP1870 and

598 in iBP1870 were not found by any tool. In both spe-

cies, around 10% of those reactions were biomass-related

reactions and from the rest, most of them were ex-

change reactions, transport reactions without gene asso-

ciations and reactions in other categories that were not

in the BIGG database (Additional file 1: Tables S17 and

S18). Only one reaction, associated to amino acid metab-

olism, was found in all the draft networks of L. plan-

tarum but not in iLP728; four reactions, associated

mainly to carbohydrate metabolism, were found in all

the draft networks but not in iBP1870.

Comparison of metabolite sets

Other important elements within metabolic reconstruc-

tions are metabolites. When a biochemical reaction is

added to the draft network during the reconstruction

process, all the reactants and products are added to the

network too. As the draft metabolic networks were cre-

ated with different tools, each of which using its own set

of databases, they had different identifiers for the same

metabolite. For those networks whose identifiers were

different from BIGG, we again used MetaNetX and our

own additional dictionary to map metabolites.

We calculated the JDm and the Rm to assess the me-

tabolite sets similarity. For almost all the draft networks

in both species, the values in the JDm were between the

JDg and the JDr; we found the same for the Rm (Add-

itional file 1: Tables S4–S7). Again, when sorting the net-

works according to their metric scores, we found the

same trends than for reaction sets. The first position in

the lists were networks either reconstructed with Meta-

Draft, AureMe, or CarveMe. Moreover, independently of

the metric and the species, MetaDraft reconstructed

40% of the networks among those in the top 5.

Two hundred six metabolites in iLP728 and 271 in

iBP1870 were correctly predicted in all the draft net-

works. These metabolites were in both cases mainly as-

sociated with carbohydrate metabolism and amino acid

metabolism (Additional file 1: Tables S19 and S20).

Eighty-one metabolites in iLP728 and 278 in iBP1870

were not recovered in any network. Of those, 16 were

Fig. 6 Overlap of reactions in draft reconstructions for Bordetella pertussis with those in the manually curated model. In total, 27 networks were

reconstructed with 7 tools (CarveMe: C, MetaDraft: D, AuReMe: A, Pathway Tools: P, ModelSEED: S, RAVEN: R, Merlin: E). Several reconstructions,

which are represented with different sub-indices, were generated for each tool using different parameters settings. Numbers inside bars represent

percentages with respect to the corrected number of reactions in iBP1870, which is the total number of reactions minus the biomass-related

reactions (light green). We observed a wide variation in the coverage (blue bars) and the percentage of additional reactions (yellow bars). In

addition, a considerable number of reactions in the networks build with MODELSEED, RAVEN (KEGG), and Merlin contained different

stoichiometry for protons than those in iBP1870 (draft green bars)
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related to the biomass of L. plantarum and 16 others

were not in the BIGG database. For iBP1870, 44 were

biomass-related and 47 others were not in the BIGG

database. Finally, 9 and 11 metabolites were recovered in

all the networks but they were not present in iLP728

and iBP1870, respectively. Mainly, they were associated

to the metabolism of cofactors and vitamins and amino

acid metabolism in the case of L. plantarum and carbo-

hydrate metabolism and glycan biosynthesis in the case

of B. pertussis (Additional file 1: Tables S21 and S22).

Topological analysis

To compare the topological features of each network, we

calculated the number of dead-end metabolites, the number

of orphan reactions, the number of unconnected reactions

and other metrics (Additional file 1: Tables S23 and S24).

iLP728 has 113 dead-end metabolites while iBP1870

has 59. This is consistent with the observation that many

pathways are disrupted in L. plantarum leading for ex-

ample to well-known auxotrophies for many amino acids

[42, 43]. With the exception of CarveMe, all the tools

generated networks with a high number of dead-end

metabolites, ranging from 244 and 999, and from 379 to

976, for L. plantarum and B. pertussis, respectively. The

low number of dead-end metabolites in CarveMe is

caused by the use of a manually curated universal model

as a template which lacks dead-end metabolites.

Without considering exchange and demand/sink re-

actions, 127 and 449 reactions without gene associa-

tions (called orphan reactions) were found in iLP728

and iBP1870, respectively. These reactions are mainly

associated with transport amino acid metabolism, and

biomass formation. MetaDraft, AuReMe, and RAVEN

returned metabolic networks with no orphan reac-

tions. These tools only include reactions with gen-

omic evidence and others lacking this support are not

included. ModelSEED returned networks with a low

amount of orphan reactions, which are related to ex-

change reactions. In contrast, CarveMe, Pathway

Tools, and Merlin returned networks with a signifi-

cantly larger number of orphan reactions (ranging

from 66 to 491 in L. plantarum and from 115 to 736

in B. pertussis). For CarveMe, this is due to the inclu-

sion of transport and spontaneous reactions as well

as reactions needed to create biomass (from gap-fill-

ing); for Pathway tools, it is because of the addition

of reactions to complete probable pathways and spon-

taneous reactions; and for Merlin, this is solely due to

spontaneous reactions.

Discussion
In this work, we reviewed the current state of all the re-

construction tools we could find in the literature and

performed a systematic evaluation of seven of them.

None of the tools performed well in all the evaluated

categories so users should carefully select the tool(s) that

suit the purpose of their investigation. For example, if a

high-quality draft is required and models are available

for a phylogenetically close species, MetaDraft or AuR-

eMe could be selected, reducing thus the time needed to

obtain a high-quality manually curated model. Of these,

MetaDraft was the most robust for handling models and

Fig. 7 Jaccard distance versus the ratio between coverage and percentage of additional reactions for draft reconstructions. We used the Jaccard

distance and the ratio to measure the similarity between the draft reconstructions and the corresponding manually curated model, in this case,

when the networks are analyzed in terms of reactions. Draft reconstructions for Lactobacillus plantarum and Bordetella pertussis are represented in

panels a and b, respectively. For both cases, the networks more similar to the manually curated models are located on the top left side of the

plot. Thus, the draft reconstructions more similar, in terms of reactions, to the manually curated models were created by AuReMe, MetaDraft,

and CarveMe
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since it has a graphical user interface, it is also suitable

for non-specialists. AuReMe, on the contrary, offered a

command-line workspace where the traceability is the

priority. Although we were not able to use RAVEN in

the template mode (for details, see error messages in

supplementary files), this tool allowed us to automate

the generation of several reconstructions, it had a high

flexibility with parameters and it offered integration with

the KEGG and MetaCyc databases which makes it very

appropriate for less-studied species. ModelSEED, Car-

veMe, and Pathway Tools were the fastest tools to gen-

erate reconstructions having a great potential for large-

scale studies how it has been proven in previous works

[61, 63]. The first two tools provided networks which

are ready to perform FBA, however presumably because

of the automatic gap-filling procedure, too many reac-

tions that should be manually verified must be expected.

Pathway Tools and Merlin provided platforms suitable

for manual curation which nicely guide the user through

the whole reconstruction process.

The list of features that we defined not only can be used

by model builders to select the best tool(s) but also by de-

velopers as a guide for improving them. We highlight four

features, which are in accordance with the FAIR guiding

principles for scientific data management and stewardship

[64], that should be considered as a priority by developers

to ensure management of reconstructions in a standard

way: (1) To be findable: all the genes, metabolites and re-

action in a reconstruction should be assigned with unique

and persistent identifiers, and synonyms or aliases in other

databases should be provided whenever possible. (2) To

be accessible: exhaustive control of versions should be im-

plemented so users will be able to submit small but sig-

nificant changes to draft reconstructions, to trace changes

made during the reconstruction process, or to retrieve a

particular version if desired. (3) To be interoperable: out-

put (and input if applied) reconstructions should be writ-

ten with the latest features of the SBML standards. (4) To

be reusable: in relationship with providing a detailed prov-

enance, transparency of decisions through the whole re-

construction process should be ensured so users can see

why a particular reaction was added and at which stage

(draft network generation, gap-filling, refinement, etc.).

Genome-scale reconstructions are usually evaluated

after they are converted into genome-scale models [5],

i.e., mathematical structures where simulations can be

performed under constraints that describe specific ex-

perimental conditions. Thus, GSMMs are tested by their

accuracy to predict experimental data such as knock-

outs, nutritional requirements and growth rates on dif-

ferent conditions. However, most of the drafts we

generated were not suitable to perform FBA, mainly due

to the lack of biomass-related, transport and exchange

reactions. Thus, we limited the evaluation of the drafts

to the comparison with manually curated, genome-scale

reconstructions. The latter are valuable by themselves as

knowledgebases because they contain extensive informa-

tion from the literature. Here, we prescribed that the

manually curated reconstructions are the gold standard,

which implies that they cannot be improved and that is

obviously not true. Many reconstructions of, for ex-

ample, E. coli, S. cerevisiae, and H. sapiens have gone

through multiple rounds of improvements during the

years [65–67]. As reference databases used by recon-

struction tools increase in size and quality, so will the re-

constructions which are based on them. Therefore, some

of the reactions which were suggested by the tools and

which are not in the manually curated models could in-

deed be reactions which would improve the quality of

the reconstructions. Whether one of those reactions

should be in the reconstruction or not will depend not

only on the genomic evidence but also on the scope and

context of the reconstruction. Many reactions are usu-

ally not incorporated because they are not needed for

modeling purposes [5]. Thus, similarity scores should

not be taken alone to assess the quality of draft recon-

structions. Indeed, additional reconstructions of Lacto-

bacillus plantarum that we made with CarveMe and

ModelSEED and which were gap-filled using a modified

version of CDM (Additional file 1: File S2), a media that

support the growth of this microorganism in vivo [43],

showed a general performance close to the manually cu-

rated model, suggesting that although the networks are

not so similar as others created with different tools, the

core metabolism remains similar. Despite that, the per-

formance of these networks is dependent on the media

composition which is used for the gap-filling (Add-

itional file 1: Figure S1), and therefore if there is no ex-

perimentally determined media, some false positive and

false negative predictions could emerge. For example, if

very accurate predictions regarding nutritional require-

ment are needed to design a microbial community, auto-

matic reconstructions for which an experimentally

determined media composition is not provided during

gap-filling could result in false predictions.

A correct mapping of identifiers among different data-

bases is crucial to perform a proper comparison between

metabolic networks. Important efforts such as Meta-

NetX [62] and Borgifier [68] have been done to facilitate

this titanic task. The first of those tools allowed us to

map most of the metabolites and reactions among the

different reconstructions but naturally, some relation-

ships were missing. To overcome this limitation, we fully

mapped metabolites in the manually curated models to

known databases namely BiGG, KEGG, MetaCyc, and

SEED. Second, we implemented an algorithm to search

reaction equations, even when they have differences in

proton stoichiometry due to different protonation states
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or even if the reactions are written in the opposite direc-

tion. As a third step to further reduce the fraction of

metabolites which were not mapped and through a

semi-automatic and iterative process, we determined

187 new relationships. In spite of our efforts, some rela-

tionships were still missing which evidence the complex-

ity of the problem. Since recent efforts have made

clearer the type of issues arising in different databases

[69], we emphasize the importance of standards, which

could make easier the identification of synonyms be-

cause of the presence of high-quality information, and

the need of an outstanding mapping system.

Systematic assessments of tools for systems biology

have become very popular [70, 71] due to the great im-

pact they have in the community of potential users who

certainly are searching the best tool to apply in their re-

search. Knowing the strengths and limitations of each

tool allow users to select the best tool(s) for their case,

to save time in preliminary tests and to focus more on

the analysis and modeling using those reconstructions.

Moreover, to provide genome-scale models of high qual-

ity, in terms of usability and standards, has become a

priority during the last years. Efforts such as those done

by Memote [52] highlight the need for suites that test

the quality of genome-scale models to ensure high-qual-

ity outputs, not only in terms of their content as knowl-

edgebases but also in terms of standards.

Conclusions

All the assessed reconstruction tools showed strengths

and weaknesses in different areas and none of the tools

outperformed the others in all the categories. In particu-

lar, template-based reconstruction tools such as AuR-

eMe, MetaDraft, and CarveMe generated networks with

a higher reaction sets similarity to manually curated net-

works than other tools. In addition, tools such as Path-

way Tools and Merlin provide a proper workspace and

useful information for manual refinement which could

be suited for cases where much time can be dedicated to

this step. RAVEN provides a platform in which biochem-

ical information from different databases and approaches

can be merged, which could be useful for less character-

ized species. Finally, tools such as CarveMe and Model-

SEED provide ready-to-use metabolic networks which

can be useful for a fast generation of model-driven hy-

pothesis and exploration but users will have to be aware

of potential false results.

There seems to be a trade-off between coverage and

similarity, and it remains to be seen how much room for

improvement there is. We see three clear features that

would improve any tool: better standards that would

allow easier integration of the best of tools, exhaustive

version control during the reconstruction process, and

algorithms that can use experimental data for inclusion

of genes and reactions into the models.

Materials and methods
Protein sequences

We used the protein sequences or the GenBank files of

the different microorganisms as input to generate the

genome-scale metabolic reconstructions with each of the

selected tools. All the protein sequences were down-

loaded from NCBI. For Lactobacillus plantarum strain

WCFS1, Bordetella Pertussis strain Tohama I, and

Pseudomonas putida KT2440 we used the protein se-

quences deposited under the NCBI accession numbers

NC_004567.2 [72, 73], NC_002929.2 [74, 75] and NC_

002947.4 [76, 77] respectively.

Reconstruction

The specific parameters and inputs used to reconstruct

the draft networks with each tool can be found in Add-

itional file 1: File S1.

AuReMe

We used AuReMe version 1.2.4, which was downloaded

using Docker Toolbox, to generate the draft

reconstructions.

To generate the genome-scale metabolic reconstruc-

tions of Lactobacillus plantarum we used three different

set of templates from the BIGG database: (1) Lactococcus

lactis (iNF517). (2) Lactococcus lactis (iNF517), Bacillus

subtilis (iYO844), Staphylococcus aureus (iSB619), Clos-

tridium ljungdahlii (iHN637) and Mycobacterium tuber-

culosis (iNJ661). 3) Lactococcus lactis (iNF517), Bacillus

subtilis (iYO844), Staphylococcus aureus (iSB619), Clos-

tridium ljungdahlii (iHN637), Mycobacterium tubercu-

losis (iNJ661), Escherichia coli (iML1515), Klebsiella

pneumoniae (iYL1228), Shigella flexneri (iSFxv_1172),

Shigella boydii (iSbBs512_1146), Shigella sonnei

(iSSON_1240), Pseudomonas putida (iJN746), Yersinia

pestis (iPC815), Helicobacter pylori (iIT341), Geobacter

metallireducens (iAF987), Salmonella entérica (STM_

v1_0), Thermotoga marítima (iLJ478), Synechocystis sp

(iJN678), and Synechococcus elongatus (iJB785).

For Bordetella pertussis we used Escherichia coli as a

template (iML1515).

For Pseudomonas putida we used Pseudomonas putida

as a template (iJN746).

CarveMe

We used CarveMe version 1.2.1 (downloaded from

https://github.com/cdanielmachado/carveme on Au-

gust 1st, 2018) to generate the draft reconstructions.

Two genome-scale metabolic reconstructions were

generated for Lactobacillus plantarum using the uni-

versal bacterial template and the gram-positive
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bacterial template, respectively. For B. pertussis, the

universal bacterial template and the gram-negative

bacterial template were used. For P. putida, the uni-

versal bacterial template and the gram-negative bac-

terial template were used.

Merlin

We used Merlin version 3.8 (downloaded from https://

merlin-sysbio.org/index.php/Downloads on August 1st,

2018) to generate the draft reconstructions. For all the

networks, we first annotated the genomes with EBI

through MERLIN using default parameters. Then, we

loaded KEGG metabolic data and integrated the annota-

tion with the model. Finally, we created gene-reaction-

protein associations and removed unbalanced reactions

to be able to export the network to SBML format.

MetaDraft

We used MetaDraft version 0.9.2, which was obtained

from https://systemsbioinformatics.github.io/cbmpy-

metadraft/.

To generate the genome-scale metabolic reconstruc-

tions of Lactobacillus plantarum we used three different

set of templates from the BIGG database: (1) Lactococcus

lactis (iNF517). (2) Lactococcus lactis (iNF517), Bacillus

subtilis (iYO844), Staphylococcus aureus (iSB619), Clos-

tridium ljungdahlii (iHN637) and Mycobacterium tuber-

culosis (iNJ661). (3) Lactococcus lactis (iNF517), Bacillus

subtilis (iYO844), Staphylococcus aureus (iSB619), Clos-

tridium ljungdahlii (iHN637), Mycobacterium tubercu-

losis (iNJ661), Escherichia coli (iML1515), Klebsiella

pneumoniae (iYL1228), Shigella flexneri (iSFxv_1172),

Shigella boydii (iSbBs512_1146), Shigella sonnei

(iSSON_1240), Pseudomonas putida (iJN746), Yersinia

pestis (iPC815), Helicobacter pylori (iIT341), Geobacter

metallireducens (iAF987), Salmonella entérica (STM_

v1_0), Thermotoga marítima (iLJ478), Synechocystis sp

(iJN678), and Synechococcus elongatus (iJB785).

To generate the genome-scale metabolic reconstruc-

tions of Bordetella pertussis we used three different set

of templates from the BIGG database: (1) Escherichia

coli (iML1515). 2) Escherichia coli (iML1515), Klebsiella

pneumoniae (iYL1228), Shigella flexneri (iSFxv_1172),

Shigella boydii (iSbBs512_1146), Shigella sonnei

(iSSON_1240), Pseudomonas putida (iJN746), Yersinia

pestis (iPC815), Helicobacter pylori (iIT341), Geobacter

metallireducens (iAF987), Salmonella entérica (STM_

v1_0), Thermotoga marítima (iLJ478), Synechocystis sp

(iJN678), and Synechococcus elongatus (iJB785). 3)

Escherichia coli (iML1515), Klebsiella pneumoniae

(iYL1228), Shigella flexneri (iSFxv_1172), Shigella boydii

(iSbBs512_1146), Shigella sonnei (iSSON_1240), Pseudo-

monas putida (iJN746), Yersinia pestis (iPC815), Helico-

bacter pylori (iIT341), Geobacter metallireducens

(iAF987), Salmonella entérica (STM_v1_0), Thermotoga

marítima (iLJ478), Synechocystis sp (iJN678), Synechococ-

cus elongatus (iJB785), Lactococcus lactis (iNF517), Ba-

cillus subtilis (iYO844), Staphylococcus aureus (iSB619),

Clostridium ljungdahlii (iHN637), and Mycobacterium

tuberculosis (iNJ661).

To generate the genome-scale metabolic reconstructions

of Pseudomonas putida, we used three different set of

templates from the BIGG database: (1) iJN746. (2) iJN746 -

iML1515 - iYL1228 - iSFxv_1172 - iSbBS512_1146 -

iSSON_1240 - iPC815 - STM_v1_0 - iIT341 - iAF987 -

iLJ478 - iJN678 - iJB785 iJN746 - iML1515 - iYL1228 -

iSFxv_1172 - iSbBS512_1146 - iSSON_1240 - iPC815 -

STM_v1_0 - iIT341 - iAF987 - iLJ478 - iJN678 - iJB785 -

iNF517 - iYO844 - iSB619 - iHN637 - iNJ66.

ModelSEED

We used ModelSEED version 2.2 web service on August

16st of 2018 to generate the draft reconstructions of

Lactobacillus plantarum and B. pertussis. Version 2.4

was used to generate the draft reconstructions for

Pseudomonas putida. Models were created using differ-

ent template models. No media was specified to create

the models.

Pathway Tools

We used Pathway Tools version 22.0 to generate the draft

reconstructions. Four networks were created with the

Desktop mode using different cutoff values for pathways

prediction and one was made with the Lisp-console with

default parameters. All the networks were exported manu-

ally with the Desktop mode.

RAVEN

We used RAVEN version 2.0.1, which was downloaded

from https://github.com/SysBioChalmers/RAVEN, to

generate the draft reconstructions. Different models

were created using different databases (KEGG and Meta-

Cyc) and different values in the parameters for orthology

searches.

Pre-processing of L. plantarum and B. pertussis network

We pre-processed the manually curated networks in

order to compare them with the draft networks. We

semi-automatically changed metabolite and reaction

identifiers to match those of the BIGG database. Also,

we removed duplicated reactions (those with the same

reaction equation). Before the deletion of a duplicated

reaction, the associated gene-reaction rule was trans-

ferred to or merged with the gene-reaction rule of the

reaction that was kept in the network.
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Comparison of gene sets

We define the union of all the unique genes found in a

particular metabolic network as the gene set in that net-

work. We compared gene sets from each draft network

with those in the corresponding manually curated model

by case sensitive string comparison.

Comparison of metabolite sets

Each metabolic network contains a set of metabolites.

For those networks generated with reconstruction tools

using the BIGG database (AuReMe, CarveMe, and

MetaDraft), we compared metabolites just by string

comparison. For other reconstruction tools (Merlin,

ModelSEED, Pathway Tools, and RAVEN), we mapped

the metabolites using MetaNetX version 3.0 [62]. As me-

tabolite identifiers in the manually curated models con-

tain at the end of the string a character describing the

specific compartment in which the metabolite is located

(for example glc_c for glucose in the cytoplasmic space)

and in MetaNetX they do not, we used the following

procedure to compare metabolites: For each metabolic

network and for each metabolite we removed the com-

partment char from the metabolite identifier. Then, if

the modified identifier is present in MetaNetX and if

there is a synonym for that identifier in the BIGG data-

base, we checked if some of the BIGG synonyms

concatenated with the before removed compartment

char match a metabolite in the manually curated model.

If so, we considered that the metabolite is present in the

manually curated model. Otherwise, we considered that

the metabolite is not present.

Comparison of reaction sets

Each metabolic network contains a set of reactions. Re-

action sets were compared using two complementary

methodologies. First, by using reaction identifier Meta-

NetX mapping and second, by using reaction equation

comparison.

In the first approach, as a pre-processing step, we re-

moved duplicated reactions (those reactions with the

same MetaNetX identifier even if the reaction equation

is different). For those networks generated with recon-

struction tools using the BIGG database (AuReMe, Car-

veMe, and MetaDraft) reactions identifiers were

compared by direct case sensitive string comparison. For

other reconstruction tools, MetaNetX was used to map

reaction identifiers, which also were compared by string

comparison.

In the second case, as a pre-processing step, we first

removed duplicated reactions (those with the same

equation even if they had different identifiers) and empty

reactions (those with an identifier but with no reactants

and products). Then, reaction equations were compared

by comparing each metabolite and its stoichiometry

individually. For those networks generated with recon-

struction tools using the BIGG database (AuReMe, Car-

veMe, and MetaDraft), we directly compared reaction

equations. For those networks generated with recon-

struction tools using a database different from BIGG

(Merlin, ModelSEED, Pathway Tools, and RAVEN), we

first converted metabolite identifiers to BIGG by using

MetaNetX version 3.0 and our own dictionary (Add-

itional file 1: Table S13). Then, reaction equations were

compared.

All the comparison was done in MATLAB and model

handling was performed using functions from Cobra

Toolbox v.3.0 [14].

Calculation of Jaccard distance

The Jaccard distance (JD) was calculated to compare re-

constructions in terms of genes, reactions and metabo-

lites. For two any sets of elements, Si and Sj, the JD is

calculated as JD = 1 − ∣ Si ∩ Sj ∣ / ∣ Si ∪ Sj∣. We called

JDg, JDr and JDm to the JD calculated in terms of genes,

reactions and metabolites, respectively. Thus, JDg, JDr,

and JDm were calculated as:

JDg = 1 − ∣Gi ∩Gref ∣ / ∣Gi ∪Gref∣, Gi being the genes

set of the generated draft network i and Gref being the

genes set of the reference network (manually curated

model).

JDr = 1 − ∣ Ri ∩ Rref ∣ / ∣ Ri ∪ Rref∣, Ri being the reac-

tions set of the generated draft network i and Rref being

the reactions set of the reference network (manually cu-

rated model).

JDm = 1 − ∣Mi ∩Mref ∣ / ∣Mi ∪Mref∣, Mi being the

metabolites set of the generated draft network i and Mref

being the metabolites set of the reference network

(manually curated model).

Calculation of ratio

The ratio (R) between the coverage and the percentage

of additional elements was calculated to assess how

similar a particular draft network was to the manually

curated reconstruction. We called Rg, Rr, and Rm to the

R calculated in terms of genes, reactions, and metabo-

lites, respectively. Thus, Rg, Rr, and Rm were calculated

as:

Rg = ∣Gi ∩Gref ∣ / ∣Gi −Gref∣, Gi being the genes set

of the generated draft network i and Gref being the genes

set of the reference network (manually curated model).

Rr = ∣ Ri ∩ Rref ∣ / ∣ Ri − Rref∣, Ri being the reactions

set of the generated draft network i and Rj being the re-

actions set of the reference network (manually curated

model).

Rm = ∣Mi ∩Mref ∣ / ∣Mi −Mref∣, Mi being the metab-

olites set of the generated draft network i and Mj being

the metabolites set of the reference network (manually

curated model).
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Evaluation of performance

We created three models of Lactobacillus plantarum

with CarveMe version 1.2.1 and ModelSEED version 2.4,

using different media compositions for the gap-filling

procedure that is carried out internally in these tools.

Since the models were not able to generate biomass with

the original media composition of CDM, PMM7, and

PMM5 [43], we modified these mediums to ensure

growth. The lack of growth was because of the presence

of some compounds in the biomass equation which were

not provided in the media. The modified mediums were

called CMM-like, PMM7-like, PMM5-like, respectively

(Additional file 1: File S2).

A set of 34 single-omission experiments [43] were used

to evaluate the performance of the models. True positive

were defined as growth in vivo and in silico; True negatives

as no growth in vivo and in silico; False positives as no

growth in vivo and growth in silico; False negatives as

growth in vivo but no growth in silico. CDM-like media

was used as a basal media for the single omission experi-

ments. For both in vivo and in silico experiments, growth

rates below 10% of the growth rate obtained in CDM-like

were considered as no growth.

Metrics to evaluate the performance were calculated as

follows:

Sensitivity ¼
TP

TPþ FNð Þ
ð1Þ

Specificity ¼
TN

TNþ FPð Þ
ð2Þ

Precision ¼
TP

TPþ FPð Þ
ð3Þ

Negative Predictive Value NPVð Þ ¼
TN

TNþ FNð Þ
ð4Þ

Accuracy ¼
TPþ TN

TPþ TNþ FNþ FPð Þ
ð5Þ

F score ¼ 2�
precision� sensitivityð Þ

precisionþ sensitivityð Þ
ð6Þ

Availability

All the reconstructions used as well as the MATLAB

functions to generate the models (when possible) and to

compare them are available at https://github.com/Sys-

temsBioinformatics/pub-data/tree/master/reconstruction-

tools-assessment [78]. In particular, the collection of

plain text files showing examples of reactions in the

manually curated models that were not recovered

even though the associated genes were present in the

draft reconstructions can be accessed in https://github.com/

SystemsBioinformatics/pub-data/tree/master/reconstruction-

tools-assessment/supplementary%20material/lpl and https://

github.com/SystemsBioinformatics/pub-data/tree/master/

reconstruction-tools-assessment/supplementary%20ma-

terial/bpe, for L. plantarum and B. pertussis, respectively.

The code is distributed under a General Public License

(GPL), an open-source license compliant with OSI (http://

opensource.org/licenses).

Additional files

Additional file 1: Supplementary figures, tables and files. (RAR 559 kb)

Additional file 2: Review history. (DOCX 2969 kb)
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