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Abstract

Proteome balance is safeguarded by the proteostasis network (PN), an intricately regulated
network of conserved processes that evolved to maintain native function of the diverse
ensemble of protein species, ensuring cellular and organismal health. Proteostasis imbal-
ances and collapse are implicated in a spectrum of human diseases, from neurodegeneration
to cancer. The characteristics of PN disease alterations however have not been assessed in
a systematic way. Since the chaperome is among the central components of the PN, we
focused on the chaperome in our study by utilizing a curated functional ontology of the
human chaperome that we connect in a high-confidence physical protein-protein interaction
network. Challenged by the lack of a systems-level understanding of proteostasis alterations
in the heterogeneous spectrum of human cancers, we assessed gene expression across
more than 10,000 patient biopsies covering 22 solid cancers. We derived a novel customized
Meta-PCA dimension reduction approach yielding M-scores as quantitative indicators of dis-
ease expression changes to condense the complexity of cancer transcriptomics datasets into
guantitative functional network topographies. We confirm upregulation of the HSP90 family
and also highlight HSP60s, Prefoldins, HSP100s, ER- and mitochondria-specific chaperones
as pan-cancer enriched. Our analysis also reveals a surprisingly consistent strong downregu-
lation of small heat shock proteins (sHSPs) and we stratify two cancer groups based on the
preferential upregulation of ATP-dependent chaperones. Strikingly, our analyses highlight
similarities between stem cell and cancer proteostasis, and diametrically opposed chaper-
ome deregulation between cancers and neurodegenerative diseases. We developed a web-
based Proteostasis Profiler tool (Pro?) enabling intuitive analysis and visual exploration of
proteostasis disease alterations using gene expression data. Our study showcases a com-
prehensive profiling of chaperome shifts in human cancers and sets the stage for a system-
atic global analysis of PN alterations across the human diseasome towards novel
hypotheses for therapeutic network re-adjustment in proteostasis disorders.
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Author summary

Protein homeostasis, or proteostasis, is maintained by the proteostasis network (PN), an
intricately regulated modular network of interacting processes that evolved to balance the
native proteome, supporting cellular and organismal health throughout lifespan. Imbal-
ances and collapse of cellular proteostasis capacity, the capacity to buffer against cytotoxic
damage and stress, is increasingly implicated in some of the most challenging diseases of
our time, including neurodegeneration and cancers. The systems-level PN alterations in
these diseases are not understood to date. Here, we address this challenge, focussing on
the human chaperome, the ensemble of chaperones and co-chaperones, which represents
a central conserved PN functional arm. We devised a novel data dimensionality reduction
approach enabling quantitative contextual visualization of chaperome alterations in the
heterogeneous spectrum of cancers based on gene expression data from thousands of
patient biopsies. We developed Proteostasis Profiler (Pro?), a new web-tool enabling intui-
tive visualisation of cancer chaperome deregulation maps. We stratify two cancer groups
based on diverging chaperome deregulation and highlight similarities between cancer and
stem cell proteostasis. Our study also exposes drastically opposed shifts between cancers
and neurodegenerative diseases. Collectively, this study sets the stage for a systematic
global analysis of PN alterations across the human diseasome.

Introduction

Eukaryotic proteomes comprise a complex repertoire of diverse protein species that are orga-
nized in a modular interactome network in order to execute native function in support of pro-
teostasis and a healthy cellular phenotype. Proteome balance is safeguarded by the proteostasis
network (PN), an intricately regulated network of conserved processes that have evolved to
safeguard the healthy folded proteome [1]. Cellular proteostasis capacity is limited within the
constraints of each cell’s proteostasis boundary [2]. Proteostasis imbalances, deficiency and
functional collapse are implicated in a broad and increasing spectrum of protein conforma-
tional diseases with loss of native function or gain of toxic function, ranging from metabolic
and neurodegenerative diseases to cancer [3, 4]. Increasing awareness of the fundamental role
of the PN in cellular health, its relevance in diseases and potential as a therapeutic target of
proteostasis regulator (PR) drugs call for a systematic and systems-level assessment of PN
deregulation throughout the human diseasome, towards improved understanding of diseases
of proteostasis deficiency and rationalized network-informed approaches to therapeutic pro-
teostasis re-adjustment.

Important progress has been made in our understanding of proteostasis biology, building
on fundamental insights on conserved proteostasis processes and their role in disease, such as
chaperone-assisted protein folding and quality control [5-8], clearance through autophagy [9-
13] and the ubiquitin-proteasome system (UPS) [14-16], followed by the appreciation of their
concerted action within a conserved tightly regulated PN [1, 17]. The identification, develop-
ment and first clinical evaluations of small molecule PR drugs for therapeutic re-adjustment of
proteostasis diseases such as cystic fibrosis represents a novel and powerful therapeutic para-
digm [1, 2, 18-23]. First investigations have started to explore systems-level quantitative and
functional approaches to assess the implications of PN functional arms such as the chaperome
in human tissue aging and disease [4, 24-26]. A precise understanding of the molecular mech-
anisms by which PN alterations contribute to disease could open novel therapeutic interven-
tion strategies in a wide spectrum of proteostasis-related diseases. Still, to date, there has been
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no systematic study addressing the characteristics and extent of PN alterations in human dis-
eases at a systems-level.

The folding functional arm, the human chaperome, is highly conserved and of central
importance in the PN, responsible for maintaining the native folded proteome. In cancers,
mutations and genomic instability inevitably entail alterations of proteome composition and
balance that are far less well explored than the consequences of nucleic acid sequence alter-
ations. Post-translational alterations at the proteomic level are beyond the reach of DNA repair
mechanisms and cancer cells are constantly challenged by the need to accommodate large
amounts of proteotoxic stress in consequence of increased translational flux and proliferation
as well as proteotoxic stressors. Proteome instability and pathological alterations in the abun-
dance of key signalling or housekeeping molecules such as kinases, metabolic enzymes or
molecular transporters have to be buffered by the PN to ensure cellular survival. The cancerous
state poses characteristic requirements on the PN, such as high chaperone levels and elevated
proteasome activity in order to ensure for sufficient correction or elimination of aberrant pro-
tein species in light of increased translational flux and metabolic stress [27]. This chronic chal-
lenge ultimately drives cancer cells into a dependency on quality control and stress response
mechanisms, a phenomenon previously described as non-oncogene addiction [28, 29]. Several
individual chaperones and heat shock proteins such as HSP90 have consistently been found
upregulated in cancers [27]. However, the profile and extent of chaperome differential expres-
sion has not been assessed systematically across the human cancer landscape.

Challenged by the genetic complexity and heterogeneity, collective prevalence and unmet
medical need of the wide spectrum of human cancers as well as the lack of a systems-level
understanding of proteostasis alterations during carcinogenic transformation, we developed a
novel integrated analytical pipeline and software toolkit for the quantitative profiling of cha-
perome changes across the human cancer landscape (Fig 1). We utilized an expert-curated
functional chaperome ontology comprising the ensemble of 332 human chaperone and co-
chaperone genes [4] (Fig 1A). In order to apply our analytical workflow on a recent and com-
prehensive cancer gene expression dataset with clinical relevance, we turned to The Cancer
Genome Atlas (TCGA) compendium [30]. We started with a customized genomic analysis
pipeline in order to map chaperome functional family expression changes across TCGA solid
cancers compared to matching normal tissue (Fig 1B). The resulting top-level view on cancer
chaperome deregulation revealed a broad chaperome upregulation throughout the majority of
cancers. This consistent and high overall chaperome upregulation prompted us to zoom in on
functional sub-families. This analysis surfaced clusters of chaperome functional family up- and
downregulation signatures that enabled further stratification of cancers. In summary, our anal-
ysis of the 10 major chaperome functional families reveals pronounced tissue differences of
cancer chaperome deregulation. The preferential upregulation of ATP-dependent chaperone
families such as HSP90s and HSP60s, while ATP-independent chaperones, co-chaperones,
and small heat shock proteins (sHSPs) are consistently downregulated, is opposed to chaper-
ome alteration patterns observed in brain tissues during aging and in neurodegenerative dis-
eases [4]. These characteristic chaperome-wide differences further justify our approach and
need for systematic maps of PN deregulation across the human diseasome.

In order to enable comprehensive, contextual, and quantitative representations of the com-
plexity of chaperome alterations across a large number of patient biopsy disease datasets, we
developed a new custom data dimensionality reduction and visualisation approach. Combin-
ing Meta-PCA, a novel principal component analysis (PCA) based two-step dimension reduc-
tion algorithm and its resulting quantitative M-scores of chaperome functional family disease
alteration of gene expression with contextual polar plot visualisations, we provide intuitive
quantitative maps of cancer chaperome gene expression changes (Fig 1B).
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Fig 1. Chaperome cancer landscape profiling. A. The human chaperome is a central PN functional arm in charge of maintaining the cellular folding
environment. It comprises 332 chaperones and co-chaperones organized in 10 functional families [4]. B. Pipeline involving (1) Gene Set Analysis (GSA),
(2) Meta-PCA, a novel two-step principal component analysis (PCA)—based dimension reduction approach yielding M-scores for quantitative analysis of
chaperome functional family expression changes across a compendium of TCGA solid cancer biopsy RNA-seq expression data, and (3) Polar Plots
visualising contextual quantitative chaperome alterations. C. We connect 332 human chaperome genes (nodes) in a high-confidence literature-curated
physical protein-protein interactome network (edges) and collapse nodes within functional families and edges between families into meta-nodes and meta-
edges, respectively. The resulting optimized meta-networks serve as base-grid layout to enable interactome-guided chaperome landscape modeling. D.
We use the meta-interactome-guided base grid layout (X-Y dimensions) and Meta-PCA derived M-scores, indicating cancer expression change (Z
dimension), to chart 3-dimensional quantitative topographic chaperome maps. Heatmaps, polar plots, meta-networks and 3D topographic map
visualisations are accessible through the Proteostasis Profiler (Pro?) web-tool.

https://doi.org/10.1371/journal.pcbi.1005890.9001
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The mechanistic understanding of genotype-phenotype relationships in complex geneti-
cally heterogeneous diseases such as cancers requires the consideration of the cellular interac-
tome network [31]. To reduce complexity and to highlight contextual changes of chaperome
functional families, we first generated a custom curated high-confidence physical protein-pro-
tein interaction (PPI) chaperome network. We then collapsed proteins (nodes) and physical
PPIs (edges) into a meta-network, where meta-nodes represent respective functional family
members and meta-edges bundle the interactions between families (Fig 1C). This curated
high-quality chaperome meta-network base-grid enabled the contextual projection of cancer-
specific chaperome functional family differential gene expression (M-scores) onto the underly-
ing interactome. We integrated these dimensions into interactome-guided, three-dimensional
topographic maps visualising chaperome functional family cancer differential gene expression
changes in the context of interactome network proximity, intuitively providing quantitative
views of cancer chaperome deregulation (Fig 1D).

To make these resources easily available to the community, we developed Proteostasis Pro-
filer (Pro®), an integrated web-based suite of applications enabling intuitive quantitative analy-
ses and comparative visualisation of differential expression of complex PN alterations across
large disease dataset compendia such as the TCGA. Visualisation and analysis features include
heat map clustering and polar plot display. Integrated meta-networks and interactome-guided
3D topographic maps ease comparative exploration of cancer chaperome deregulation in the
context of interactome network wiring. Pro” is designed to serve the scientific community as a
user-friendly application for systems-level exploration of PN disease alterations, at reduced
complexity.

Opverall, this study represents a systematically derived systems-level atlas of chaperome
deregulation maps in cancers and neurodegenerative diseases, with a detailed focus on chaper-
ome functional family alterations. The integrated genomic analysis workflow, built into the
Pro” suite of visualisation tools, provides a resource and analytical platform for future charac-
terisation and exploration of PN deregulation patterns across the human diseasome, and as a
readout interface for network shifts induced by therapeutic regulation.

Results

Systematic differential gene expression profiling highlights functional
clusters of chaperome deregulation in human cancers

Homeostasis of the cellular proteome, or proteostasis, is fine-tuned by the proteostasis network
(PN), an intricately regulated network of conserved processes that have evolved to safeguard
the native functional proteome and cellular health. The human chaperome, an ensemble of
332 chaperones and co-chaperones, represents a central functional arm within the PN in
charge of maintaining the cellular folding landscape (S1A Table) [4]. Motivated by the genetic
heterogeneity of cancers, their prevalence and associated medical need as well as the lack of a
systems-level understanding of the role of proteostasis genomic alterations during carcinogen-
esis, we systematically assessed chaperome gene expression changes across the diverse spec-
trum of human cancers. We focused on an established resource of human cancer patient
biopsy RNA-seq datasets provided through The Cancer Genome Atlas (TCGA) [30, 32]. We
considered 22 human solid cancers with available corresponding healthy counterpart tissue
biopsy data. To obtain global views on chaperome commonalities or differences between can-
cers, we applied Gene Set Analysis (GSA) in order to quantify gene expression changes of the
chaperome and its functional families. GSA is an advanced derivative of Gene Set Enrichment
Analysis (GSEA) that methodologically differs primarily through its use of the maxmean statis-
tic, the mean of the positive or negative gene scores in each gene set, whichever is larger in
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absolute value, that has proven superior to the modified Kolmogorov-Smirnov statistic used in
GSEA [33]. Secondly, GSA uses a different null distribution for false discovery rate (FDR) esti-
mations, through a restandardization of genes in addition to sample permutation in GSEA.
This step is crucial, as it allows assessing statistical robustness of the expert-curated chaperome
functional ontology gene family groups. We obtained the GSA derived probability (p values)
for each functional gene group to be significantly up- or downregulated in cancer as AGSA
values in the interval [-1, +1] according to ((1—upregulation p value)—(1—downregulation

p value)).

Notably, the human chaperome is predominantly upregulated across the majority of TCGA
solid cancers with a AGSA group mean change of +0.50 as compared to 100 random sets of
non-chaperome genes (Fig 2A). This overall chaperome upregulation highlights cellular non-
oncogene addiction to chaperone-assisted folding and protein quality control mechanisms in
consequence of increased client load, further challenging cellular proteostasis and driving
“proteostasis addiction” in cancers [34]. Despite the diverse established knowledge about the
role of chaperone upregulation in cancer, the deregulation of the human chaperome has not
been assessed at a systems-level throughout the human cancer landscape. To functionally
resolve the general chaperome upregulation across cancers, we zoomed in on functional family
gene expression alterations. GSA followed by Euclidean clustering of chaperome functional
families revealed characteristic cancer differences. We found the key ATP-dependent HSP90
and HSP60 families, of which selected members have previously been shown to be upregulated
in cancers, amongst the most highly upregulated functional families with AGSA group mean
changes of +0.55 and +0.51, respectively, alongside ER-specific chaperone factors (+0.53), fol-
lowed by Prefoldins (PFDs, +0.40), HSP100 AAA+ ATPases (+0.32), and mitochondria-spe-
cific chaperones (MITOs, +0.09) (Fig 2B). These six functional families of predominantly
ATP-dependent chaperones represent an upregulation cluster with an overall group mean
change of +0.40. Intriguingly, the HSP70-HSP40 system and the large family of TPR-domain
containing co-chaperones are overall repressed, with less consistent and largely cancer-specific
alterations. HSP40 co-chaperones (-0.09) cluster closest with HSP70s (-0.10), indicative of the
functional relationship they engage in during the HSP70 chaperone cycle. While HSP40 co-
chaperones are overall weakly downregulated (-0.09), also the second group of co-chaperones,
the TPR-domain containing proteins, clustered with the HSP70-HSP40 system and were over-
all downregulated (-0.18). Strikingly, sHSPs (-0.74) were overall very consistently and strongly
downregulated. Overall, sHSPs, TPRs, and the HSP70-HSP40 system clustered in a downregu-
lation cluster with an overall group mean change of -0.28 across cancers.

Besides marked differences in the pattern of cancer functional family changes, Euclidean
clustering of cancer groups (rows) revealed two major clusters (Fig 2B)(with a p-value equal to
0.016 via multiscale bootstrap resampling). The vast majority of cancers is characterised by the
consistent upregulation of HSP90s, ER-specific chaperones, HSP60s, PFDs, HSP100s and
MITOs, opposed by a very consistent downregulation of sHSPs and a more cancer-specific
overall downregulation of the HSP70-HSP40 system an TPR-domain co-chaperones. This
group comprises Cluster I, representing ~91% of cancers, while Cluster IT comprises ~9% of
cancers with largely opposed chaperome deregulation signatures, in this set namely skin cuta-
neous melanoma (SKCM), and pheochromocytoma and paraganglioma (PCPG).

In summary, systematically assessing gene expression data derived from a total of 10,456
patient samples uncovers broad differences in chaperome-scale deregulation across the variety
of human solid cancers. While the vast majority of cancers shows consistent and strong upre-
gulation of chaperome genes, this analysis reveals marked clusters of chaperome functional
family expression signatures that further stratify cancers by differential chaperome expression.
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Fig 2. Chaperome gene expression alterations in human cancers. Chaperome as compared to permutations of non-chaperome genes
(A) and chaperome functional family (Level 2) (B) gene expression states in human cancer RNA-seq datasets from The Cancer Genome Atlas
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(TCGA) explored by Gene Set Analysis (GSA). Heatmaps indicate significance of up or down-regulation of cancer versus healthy gene
expression as AGSA values in the interval [-1, +1], where ‘+1’ indicates significant upregulation (p value = 0), while ‘-1’ indicates significant
downregulation (p value = 0). Chaperome functional families (B) are clustered by Euclidean distance (dendrograms). Bar graphs in A and B
indicate functional family GSA group mean changes. Order of TCGA cancer groups (rows) in A is according to Euclidian distance of
chaperome differential expression clustering (dendrogram) in B. Turquoise box highlights the human chaperome broken down into functional
families in B. Yellow borders indicate marked clusters of chaperome functional family expression and separation of clusters | and Il as
separated by Euclidean distance clustering of TCGA cancer groups. TCGA cancer group acronyms: THYM (thymoma), ESCA (esophageal
carcinomay), BRCA (breast invasive carcinoma), LUAD (lung adenocarcinoma), LUSC (lung squamous cell carcinoma), KICH (kidney
chromophobe), STAD (stomach adenocarcinoma), CHOL (cholangiocarcinoma), LIHC (liver hepatocellular carcinoma), PRAD (prostate
adenocarcinoma), HNSC (head and neck squamous cell carcinoma), KIRP (kidney renal papillary cell carcinoma), SARC (sarcoma), UCEC
(uterine corpus endometrial carcinoma), BLCA (bladder urothelial carcinoma), PAAD (pancreatic adenocarcinoma), CESC (cervical
squamous cell carcinoma and endocervical adenocarcinoma), GBM (glioblastoma multiforme), KIRC (kidney renal clear cell carcinoma),
SKCM (skin cutaneous melanoma), PCPG (pheochromocytoma and paraganglioma), THCA (thyroid carcinoma).

https://doi.org/10.1371/journal.pcbi.1005890.9002

Preferential upregulation of ATP-dependent chaperones in cancers

The major ATP-dependent chaperone functional families are consistently upregulated across a
majority of cancers, while co-chaperones and sHSPs are consistently repressed (Fig 2B). In
order to quantify this trend, we assessed the 22 differentially regulated cancer chaperomes for
functional characteristics.

First, we compared expression of 88 chaperones against 244 co-chaperones represented in
the human chaperome [4]. Projecting TCGA cancer groups by their chaperone and co-chaper-
one differential expression highlights a significant preponderance of cancer chaperome upre-
gulation, including both chaperones and co-chaperones, while only a minor fraction of each is
downregulated (S2A and S2B Fig). Overall, chaperones tend to be more upregulated than co-
chaperones (S2B Fig). Consistently, within the group of chaperones, we find an overall prepon-
derance of upregulation of both ATP-dependent and ATP-independent chaperones, while
only small fractions each are downregulated (S2C and S2D Fig). The 50 ATP-dependent chap-
erones are more upregulated than the 38 ATP-independent chaperones, while ATP-indepen-
dent chaperones are more downregulated than ATP-dependent chaperones (S2D Fig).

This analysis exposes a sub-group of cancers as notable exceptions to these trends, suggest-
ing fundamental differences in chaperome deregulation. Projection of TCGA cancer groups
by chaperone and co-chaperone up- and downregulation lends support for two groups of can-
cers, Group 1 and Group 2 (Fig 3A). These groups are recapitulated when projecting cancers
by up- and downregulation of ATP-dependent versus ATP-independent chaperones (Fig 3C).
K-means clustering confirms the significant separation of the Group 2 cancers pheochromocy-
toma and paraganglioma (PCPG), thyroid carcinoma (THCA), and the three kidney cancers
kidney chromophobe (KICH), kidney renal papillary cell carcinoma (KIRP), and kidney renal
clear cell carcinoma (KIRC) from Group 1 cancers, with a median silhouette width of s = 0.63
(Fig 3A) and s = 0.68 (Fig 3C). Group 1 cancers (red) represent the majority of cancers, charac-
terized by strong overall chaperome upregulation, with low chaperone and co-chaperone
repression, and a trend for upregulation of ATP-dependent chaperones (Fig 3B and 3D). Five
Group 2 cancers however partition more distantly, with a lack of chaperome upregulation (Fig
3A and 3C). These cancers include three different kidney cancers, KICH, KIRP, and KIRC,
which consistently lack chaperome upregulation (Fig 3A and 3B). Also, ATP-dependent chap-
erones are not preferentially upregulated in kidney cancers. Rather, an inverse trend is
observed with increased downregulation of ATP-dependent chaperones (Fig 3C and 3D).
Notably also, pheochromocytoma and paraganglioma (PCPQG), rare related tumors of ortho-
sympathetic origin, similarly show an even more prominent inverse alteration, with a prepon-
derance of overall chaperome downregulation and preferential downregulation of ATP-
dependent chaperones. Pheochromocytomas originate in the adrenal medulla, with close spa-
tial association to the kidney, whose cancers are also Group 2 cancers. THCA is similar to

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005890 January 2, 2018 8/30


https://doi.org/10.1371/journal.pcbi.1005890.g002
https://doi.org/10.1371/journal.pcbi.1005890

COMPUTATIONAL
BIOLOGY

O PLOS

Chaperome deregulation topologies in cancer

Chaperone (Up)

01

0.57

0471

0.31

0.2t

Co-chaperone (Up)

0.1+

0.0

0.2 0.3 0.4
Co-Chaperone (Down)

0.0 0.1

c ATP-dependent (Up)

0.54

0.41

031

Group 1

PCPG/

0.2¢

ATP-independent (Up)

0.1+¢

0.0

04 02 03 04
ATP-dependent (Down)

0.0

0.5

0.5
0,40&&
03 . O
&
0.2 &
)
0.1 629

&
¥0.0
vn

Fraction Differentially Expressed

Fraction Differentially Expressed

Group 1 vs. Group 2 Cancers

B Group1 [ Group2
(]
0.5+
) : | .
0.3 : '
: | .
0.2 0 ’_1
T [s] ——— H
0.1_ | _ .
— ;
0.0 T T T I
CHAP CHAP Co-CHAP Co-CHAP
(Up) (Down) (Up) (Down)
Group 1 vs. Group 2 Cancers
I Group1 [ Group2
0.5+ :
- c |
0.3- "
0.2- i o :
o —
0.1+ . i |
T T T T
ATP-dep. ATP-dep. ATP-indep. ATP-indep.
(Up) (Down) (Up) (Down)

Fig 3. Preferential upregulation of ATP-dependent chaperones in group 1 cancers. Analysis of differential cancer gene expression of chaperome
functional subsets. A. Comparing upregulation and downregulation of gene expression (AGSA) of chaperones (n = 88) and co-chaperones (n = 244)
reveals general chaperome upregulation for the majority of cancers (Group 1), while a small group of Group 2 cancers do not follow this trend. Colour code
indicates chaperone up-regulation of gene expression, axes represent chaperone downregulation, co-chaperone upregulation and down-regulation of gene
expression. s =median silhouette width (k-means clustering). B. Box-and-whisker plots highlight fractions of differentially expressed genes in each
chaperome subset for Group 1 (red) and Group 2 (blue) cancers separately (see A). Differentially expressed genes in each set were obtained by linear
modelling (Limma package in R), considering genes with p value < 0.05 (Benjamini-Hochberg corrected). Box boundaries, 25% and 75% quartiles; middle
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horizontal line, median; whiskers, quartile boundaries for values beyond 1.5 times the interquartile range; small circle, outlier. C. Assessing differential
expression of ATP-dependent (n = 50) vs. ATP-independent (n = 38) chaperones highlights preferential upregulation of ATP-dependent chaperones in
Group 1 cancers. Group 2 cancers do not follow this trend. s =median silhouette width (k-means clustering). D. Box-and-whisker plots (as in B.) show
fractions of differentially expressed genes in the two sets of ATP-dependent and ATP-independent chaperones, partitioned by Group 1 and Group 2

cancers (see C).

https://doi.org/10.1371/journal.pcbi.1005890.9003

PCPG, with a preferential downregulation of the chaperome and both PCPG and THCA rep-
resent tumors forming from cells of neuroendocrine origin.

Collectively, the data point to a preferential upregulation of ATP-dependent chaperones in
the majority of cancers, which we refer to as Group 1 cancers, with general differences in cha-
perome deregulation in Group 2 cancers, comprising kidney cancers and cancers of neuroen-
docrine origin, such as PCPG and THCA.

Proteasome and TRiC/CCT upregulation in cancers reminisces
enhanced stem cell proteostasis

Human embryonic stem cells (hESCs) are characterized by their capacity to replicate infinitely
in culture, while maintaining a pluripotent state [35]. This immortal, undifferentiated pheno-
type resembles hallmark features of cancer cells such as an elevated global translational rate [36]
and is expected to demand increased PN capacity capable of buffering imbalances to maintain
proteostasis. Given the “stemness” phenotype of cancer cells and their resemblances with plu-
ripotent stem cells we hypothesized that the consistent chaperome upregulation in cancers acts
to mimic an enhanced stem cell PN setup. Increased proteasome activity [37] and elevated over-
all levels of the TRiC/CCT complex [38], representatives of the clearance and folding functional
arms of the PN, respectively, have recently been associated with the intrinsic PN of pluripotent
stem cells that acts to support their identity and immortality. It can be hypothesized that
increased levels of central PN processes in stem cells exemplify characteristics of an enhanced
PN setup. We thus assessed to which extent this stem cell PN setup is recapitulated in cancers.
First, we assessed differential changes of the proteasome across TCGA cancers and
observed an overall consistent upregulation of the 43 proteasomal genes (HGNC Family ID
690) in > 70% of cancers (Fig 4A, S1B Table) [39], matching the role of increased proteasomal
activity for proteome maintenance in stem cells [37]. Notably, Group 1 and Group 2 cancers,
which are specifically defined based on chaperome differential expression signatures (Fig 3),
do not co-partition with cancer clusters obtained by proteasome differential expression (Fig
4A). Next, we assessed cancer differential expression of the eukaryotic chaperonin TRiC/CCT,
a hetero-oligomeric complex of two stacked rings with each eight paralogous subunits repre-
senting the cytoplasmic ATP-driven HSP60 chaperones in charge of folding approximately
10% of the proteome [40]. TRiC/CCT is highly conserved and essential for cell viability [40].
Loss of complex subunits induces cell death and a decline of pluripotency of hESCs and
induced pluripotent stem cells (iPSCs) [38]. Within the PN, TRiC/CCT mediated folding and
autophagic clearance act in concert to prevent aggregation [41]. TRiC/CCT levels decline dur-
ing stem cell differentiation, and CCT8 acts as complex assembly factor [38]. Intrigued by the
finding that CCT8 is the most highly elevated subunit in stem cells and likely acting as assem-
bly factor [38], we assessed differential expression of individual TRiC/CCT subunits across
cancers. Hierarchical clustering of subunit expression across solid cancers highlighted CCT8
as highly consistently upregulated across all cancers (mean change = 0.76, t test), and as overall
second most highly upregulated subunit besides CCT6A (mean change = 0.786, ¢ test) (Fig
4B). Consistent with the overall preferential downregulation of ATP-dependent chaperones
observed in Group 2 cancers (Fig 3), we found these cancers to cluster together with overall
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Fig 4. Proteasome and TRiC/CCT increase in human cancers reminisces stem cell proteostasis. A. Heatmap indicates overall gene expression
changes (AGSA) of the human proteasome (43 genes, HGNC Family ID 690) throughout 22 TCGA solid cancers. Heatmap AGSA values are in the
interval [-1, +1], where ‘+1’ indicates significant upregulation (p value = 0), while ‘-1’ indicates significant downregulation (p value = 0) as in Fig 2. B.
Heatmap highlights HSP60 gene level differential expression of TRiIC/CCT complex subunits throughout 22 TCGA solid cancers. Heatmap indicates
significance of up- or downregulation of gene expression (ttest) in cancer compared to matching healthy tissue (1—signed p value) in the interval [-1, +1],
where ‘+1’ indicates significant upregulation (p value = 0), while ‘-1’ indicates significant downregulation (p value = 0). Blue highlights indicate Group 2
cancers (KICH, KIRC, KIRP, PCPG, and THCA).

https://doi.org/10.1371/journal.pchi.1005890.9004

lowest TRiC/CCT expression, where PCPG stands out with a consistent downregulation of all
subunits (Fig 4B).

Together these findings suggest that proteostasis shifts in cancer cells add to an altered,
enhanced PN state that mimics the immortal and resilient stem cell phenotype, buffering
genome instability and ensuing proteomic imbalances in support of sustained and increased
cellular proliferation throughout cancerogenesis.
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Opposing chaperome deregulation in cancers and neurodegenerative
diseases

Overall chaperome upregulation in cancers, with preferential enrichment for upregulation of
ATP-dependent chaperones, alongside consistent downregulation of sHSPs, is diametrically
opposed to chaperome deregulation trends previously observed in a study of chaperome alter-
ations in human aging brains and in patient brains with age-onset neurodegenerative diseases
[4]. While sHSPs were the only chaperome family found significantly induced in brain aging
and the age-onset neurodegenerative diseases Alzheimer’s (AD), Huntington’s (HD), and Par-
kinson’s (PD) disease, this family is consistently downregulated across cancers (Fig 2B). This
opposed chaperome deregulation points towards characteristic and fundamental differences
in PN deregulation between disease families.

To investigate this disease group difference further, we applied the analysis outlined for
cancers above also on the gene expression datasets that had earlier revealed global chaperome
repression in AD, HD, and PD [4]. Our analysis reproduced the human chaperome as overall
downregulated across AD, HD, and PD as compared to random permutations of non-chaper-
ome genes (-0.20 AGSA group mean change, Fig 5A). Delving deeper into chaperome func-
tional subfamilies, we reproduce earlier findings reporting broad repression of the major
chaperome functional families except for sHSPs, the only family found strongly upregulated
(+0.76) accompanied by slight upregulation of ER-specific chaperones (+0.21) and TPRs
(+0.13) (Fig 5B). Thereby, our analytical workflow reproduces previously observed trends
obtained in independent analyses, with different methods. With strong sHSP repression and
upregulation of the HSP90, ER, HSP60, PFD, HSP100 and MITO chaperone families, cancers
and neurodegenerative diseases display markedly diametrically opposed chaperome deregula-
tion, not only at the overall chaperome-level (Fig 5C), but also with respect to alteration trends
of chaperome functional families, where 70% of functional groups are altered in opposite
directions (Fig 5D).

These opposing chaperome deregulation signatures are in line with differing implications
of proteostasis alterations in these diseases. While broad chaperome repression and proteosta-
sis functional collapse is associated with aggregation and cytotoxicity of chronically expressed
misfolding-prone proteins in neurodegenerative diseases [4], enhanced proteostasis buffering
capacity is associated with “stemness”, immortality and proliferative potential of both stem
and cancer cells [27]. Indeed, epidemiological evidence suggests an inverse correlation
between cancers and neurodegenerative diseases [45-48], supportive of a potential mechanis-
tic link between opposed chaperome deregulation and the molecular underpinnings of the two
disease groups. These global differences in chaperome deregulation call for a systematic and
quantitative assessment of PN deregulation dynamics in human diseases.

A multi-step dimension-reduction approach enables quantitative
visualisation of chaperome shifts in cancers

In light of the diverse signatures of differential chaperome deregulation observed across can-
cers (Fig 2), and motivated by the increasing amount of genomics datasets available for cancers
and other human diseases, we aimed at reducing data complexity by extracting quantitative
indicators of chaperome differential cancer gene expression alterations, in order to gain
insights through reduced complexity while retaining maximum information content.

We devised Meta-PCA, a novel principal component analysis (PCA) based semi-supervised
two-step dimension reduction approach that facilitates stratification of cancer patient and nor-
mal control samples within heterogeneous gene expression datasets (Fig 1B). Based on previ-
ous work on dimensionality reduction of heterogeneous gene expression datasets [49, 50], we
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Fig 5. Opposing chaperome deregulation in cancers and neurodegenerative diseases. A—B. Heatmaps indicate significance of up or down-
regulation of gene expression (AGSA) of chaperome vs. non-chaperome genes (A) and chaperome functional families (B) in Alzheimer’s (AD),
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Huntington’s (HD), and Parkinson’s disease (PD) compared to age-matched healthy controls. Datasets: GSE5281 (AD, superior frontal gyrus) [42],
GSE3790 (HD, nucleus caudatus) [43], and GSE20295 (PD, substantia nigra) [44]. AGSA values are in the interval [-1, +1], where ‘+1’ indicates
significant upregulation (p value = 0), while -1” indicates significant downregulation (p value = 0) as in Fig 2. Functional families (columns) are
ordered by increasing AGSA group mean change (bar graphs). Turquoise box highlights the human chaperome. C—D. Side-by-side comparison of
gene expression changes (AGSA) of chaperome vs. non-chaperome (C), and chaperome functional families (D) in cancers versus
neurodegenerative diseases (NeuroD). Bar graphs show AGSA group mean changes in cancers (black) compared to NeuroD (grey).

https://doi.org/10.1371/journal.pchi.1005890.g005

hypothesized that the underlying information contained in each chaperome functional group
has a low dimensionality (meaning the functionality of each chaperome group can be quantified
using only few, possibly one, variable) and could be surfaced using PCA, if there were sufficient
samples available to represent the complete heterogeneity of chaperome alterations in cancers.
Compared to conventional PCA, our method can deal with the effect of different group sizes,
which as a confounder would negatively affect PCA results. Compared to simply calculating
mean expression values of each functional group’s genes, Meta-PCA considers a wider range of
gene expression information inherent to each functional group, resulting in scores with higher
resolution. This could also be achieved by fully supervised methods such as Linear Discriminant
Analysis. However, this case requires use of a method, which is blind to sample annotations so
that these can later be used for validation, such as the unsupervised classification of cancer tissue
type. Meta-PCA first uses tissue-wise PCA analyses to separate cancerous from control samples
for individual tissues and maps functional family group gene expression changes to the global,
or “meta”, mean expression change across cancers in order to obtain M-scores as quantitative
indices of relative disease gene expression change (Eq 1). Inherent to the Meta-PCA method,
patient-specific genomic variability is averaged out through the use of Meta-PCs derived from
the TCGA collection of cancer biopsy samples, yielding mean reference boundaries. Assessing
quantitative M-scores obtained through Meta-PCA against differential gene expression (AGSA)
obtained via GSA (Fig 2), we observed an overall significant Pearson correlation of 0.61 (S1
Fig). In addition to general comparability between results obtained through both methods,
Meta-PCA analysis reduces complexity while retaining genomic information. Therefore, we
focus on Meta-PCA for quantitative representation of proteostasis alterations in human dis-
eases. We plot differential chaperome changes as M-scores for all cancer samples and chaper-
ome functional families simultaneously using polar plots, such that axes represent functional
families or sub-groups (Fig 2B). We obtain the mean of all biopsy samples as reference bound-
aries for healthy (blue line) and cancer groups (red line) and include the 90% confidence inter-
val (CI) (red and blue halos) (Fig 6). This quantitative visualisation reduces complexity and
highlights relativity of disease gene expression changes at a chaperome-scale. The polar maps
recapitulate characteristic chaperome deregulation signatures in GSA-derived clusters of func-
tional family upregulation and downregulation signatures, for instance in Cluster I cancers such
as lung adenocarcinoma (LUAD) (Figs 2 and 6A), or the inverse trend with overall chaperome
downregulation in Cluster II cancers such as pheochromocytoma and paraganglioma (PCPG)
(Figs 2 and 6B). Concordantly, chaperome polar maps reveal characteristic patterns of cancer
groups stratified based on differential expression of ATP-dependent chaperones versus ATP-
independent co-chaperones, Group 1 versus Group 2 cancers (Figs 3 and 6). In LUAD, repre-
sentative of Group 1 cancers, most functional chaperome families, with a preferential enrich-
ment of ATP-dependent chaperones, are upregulated, while sHSPs are reduced (Fig 6A). On
the contrary, in Group 2 cancers such as PCPG, gene expression of most chaperome functional
families is downregulated (Fig 6B). Inconsistencies between these broad clusters exist, suggest-
ing differences in tissue of origin and molecular underpinnings of respective cancers. However,
broad commonalities between distinct cancers originating from the same organ are revealed.
For instance, lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) share
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Fig 6. Polar maps of chaperome shifts in human cancers. Polar plot visualization as novel quantitative and contextual representation of M-scores,
new Meta-PCA derived quantitative indices of relative disease gene expression shifts of chaperome functional processes compared to normal tissue
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95%). LUAD (lung adenocarcinoma), PCPG (pheochromocytoma and paraganglioma).

https://doi.org/10.1371/journal.pcbi.1005890.9006

overall similarity, revealing only subtle differences, for instance in HSP40 expression (Figs 2
and S3). The kidney cancers KICH, KIRP, and KIRC also show similar patterns. As Group 2
cancers, they share and stand out against other cancers with a lack of preferential upregulation
of ATP-dependent chaperones (Fig 3), and overall reduced upregulation, or downregulation, of
HSP60s (Figs 2, 3, 4B and S3). A recent study indeed implicated HSP60 downregulation in
tumorigenesis and progression of clear cell renal cell carcinoma (KIRC) by disrupting mito-
chondrial proteostasis [51].

Opverall, these contextual quantitative representations enable an appreciation of the complex
chaperome shifts in different cancer tissues derived from > 10,000 patient biopsy samples. The
resulting compendium of differential cancer chaperome polar plots (S3 Fig) is also available
online through the Proteostasis Profiler (Pro’) tool associated to this study.

Interactome-guided topographic maps highlight relative changes of
chaperome functional families in cancers

The integration of disease-related differential transcriptomic changes with the cellular protein
interactome network, or the edgotype, is instrumental to our understanding of genotype—
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phenotype relationships [31]. Towards integrated quantitative views of cancer chaperome
deregulation, we curated a high-confidence physical chaperome protein-protein interactome
network (CHAP-PPI) to serve as coordinate base grid layout for the analysis of differential
chaperome topographies (Fig 1C).

We started with 328,244 unique human PPIs (edges) between 16,995 proteins (nodes)
downloaded from the BioGRID, IntAct, DIP, and MINT databases [52],[53],[54],[55]. Zoom-
ing in on cancer chaperome alterations in the context of physical interactome wiring, we
extracted the CHAP-PPI considering the 332 human chaperome genes as previously described
[4]. Considering edges with the PSI-MI annotation *physical association’ we obtained 272,367
unique physical edges, of which 666 unique edges connect 220 chaperome nodes. We devel-
oped a custom script to curate the high-confidence physical CHAP-PPI, considering edges
with multiple pieces of evidence, either experimental methods or publications (PMIDs), as
more reliable than those supported by only a single piece of evidence. The curation script
resolves ambiguous database annotation of methods terms through up-propagation within the
PSI-MI ontology tree, only accepting uniquely different or rejecting identical experimental evi-
dence. Automated interactome curation results in eight curation levels (L1—L8), through
which we obtain three interactomes of increasing confidence level (see Methods). All 666
unique physical edges between 220 chaperome nodes, without curation for type or number of
evidence, represent the single evidence chaperome interactome (SE-CHAP). Curating for
high-confidence interactions, we obtained a multiple evidence chaperome (ME-CHAP) com-
prised of 222 unique physical chaperome edges between 128 chaperome nodes, of which a sub-
set of 132 interactions between 96 nodes is supported by multiple different experimental
methods (MM-CHAP) (S2 Table).

In order to enable focussed views on transcriptomic alterations of top-level chaperome
functional families, we collapsed individual nodes onto functional family meta-nodes, and
edges shared between families were collapsed as meta-edges such that meta-node sizes corre-
spond to the number of family members and meta-edge thickness represents the number of
shared interactions between families. We considered the meta-interactome derived from the
curated high-confidence ME-CHAP interactome (S2 Table), where all meta-nodes corre-
sponding to the 10 functional chaperome families are fully inter-connected in a single network
component. We set node colour to visualize cancer gene expression changes (M-scores) and
applied a force-directed spring layout algorithm to optimize graph layout [56]. The resulting
integrated cancer chaperome meta-interactomes visualize relative chaperome differential
changes at reduced complexity across diverse human cancers in the context of physical interac-
tome connectivity (Figs 7A and S4). Next, we extract x-y coordinates of the chaperome meta-
nodes in the optimized meta-network graph to serve as a 2-dimensional base grid (x-y coordi-
nates) guiding the spatial layout of 3-dimensional chaperome topographic maps of differential
chaperome gene expression changes (M-scores) between cancerous and healthy biopsies (z
coordinate) (Figs 7B and S5).

This interactome-guided topographic display of differential chaperome alterations enables
dimensionality and complexity reduction for the coherent display and comparative analysis of
functional network shifts that can serve to compare differential changes i) in disease versus
controls, ii) between diseases and disease classes, and iii) between perturbed or unperturbed
states across large numbers of heterogeneous genomic datasets. Furthermore, this visualization
lends itself for a systems-level assessment of PN deregulation topologies and their readjust-
ment in human disease and therapeutic intervention. We implemented topographic map visu-
alisations into the Proteostasis Profiler (Pro®) suite of tools, to improve accessibility and
applicability by the scientific community.
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Fig 7. Interactome-guided topographic maps of cancer chaperome shifts. A. Cancer-specific chaperome meta-interactome networks, collapsing
network nodes and edges onto meta-nodes and meta-edges, highlight cancer-specific gene expression changes of chaperome functional families in context
of connectivity within the high-confidence physical interactome network (ME-CHAP) at reduced complexity. Node size and edge thickness correspond to the
number of functional family member nodes and the sum of inter-family edges, respectively. Node colour indicates combined cancer gene expression
changes based on Meta-PCA derived M-scores. LUAD = lung adenocarcinoma. B. Projecting differential changes between cancer and normal counterpart
biopsy gene expression based on Meta-PCA derived M-scores (z dimension) onto the ME-CHAP interactome derived meta-network (see A) serving as
base-grid layout (x-y dimensions), we derive cancer-specific interactome-guided 3D topographic maps. LUAD = lung adenocarcinoma. Both visualisations,
meta-networks (A) and 3D-topographic maps (B) are accessible through the Proteostasis Profiler (Pro?).

https://doi.org/10.1371/journal.pcbi.1005890.g007

Proteostasis Profiler (Pro?)—An integrated online resource and
toolbox for the analysis and visualization of proteostasis disease
alterations

Here we exemplify a systematic analysis of differential chaperome gene expression alterations
in cancers and neurodegenerative diseases. We reduce complexity through the focus on top-
level chaperome functional families. The challenge in this analysis is in the complexity and het-
erogeneity of available samples for disease groups such as cancers, combined with the multi-
tude of diverse biological processes interconnected within the PN and within its functional
processes, as highlighted here at hands of the human chaperome.

To date, there has been no systematic interactome-guided analysis of the implications and
alterations of cellular proteostasis biology at a systems-level, in a comprehensive set of diseases,
such as cancers. Here, we showcase an integrated analytical workflow for the dimension reduc-
tion, analysis and visualization of chaperome differential alterations in a representative set of
human solid cancers. Our approach focuses on the visualisation of a confined set of Meta-PCA
derived quantitative M-scores as descriptors of top-level chaperome functional families. We
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have developed “Proteostasis Profiler” (Pro?) as an integrated web-based resource and suite of
tools, for interactive dimensionality-reduction, analysis and visualisation of disease-specific
alterations of proteostasis functional arms, such as the chaperome, in the context of the inter-
actome network. In this study we highlight Pro” use-cases for the human chaperome across
TCGA solid cancers in comparison to the three major neurodegenerative diseases using differ-
ential gene expression heat maps (AGSA) (Figs 2 and 5), Meta-PCA derived quantitative polar
plots (M-scores) (Figs 6 and S3), meta-interactomes and interactome-guided 3-D topographic
maps (Figs 7, $4 and S5). Pro” provides an integrated online suite for the application of the
underlying algorithms. Pro” is accessible directly at http://www.proteostasys.org.

Discussion

Cancer prevalence, genetic complexity and heterogeneity represent unmet medical need and a
significant challenge to personalized medicine, calling for genome-informed therapeutic inter-
vention strategies [57]. While important progress has been made in the elucidation of proteos-
tasis alterations in human diseases, revealing numerous alterations of PN functional processes
not only in neurodegenerative or metabolic diseases but also in cancers, paradoxically the
characteristics and extent of PN alterations in cancers are largely unexplored and not under-
stood at a systems-level. Cancer cell line global transcriptional characteristics have been ex-
tensively studied [58] and numerous individual studies have assessed alterations of various
chaperone and co-chaperone expression levels in specific cancers [27, 59]. In light of limita-
tions in the clinical translation of hypotheses derived from cell lines and the lack of a systems-
level understanding of proteostasis alterations in human disease, we argue that precise quanti-
tative maps of proteostasis deregulation in human disease derived directly from clinical biopsy
data will enable precise understanding of the role of PN alterations in pathogenesis towards
testable hypotheses and rationalised approaches of PR therapy [1, 60].

Here, we focused on the human chaperome, a central PN component, and highly conserved
facilitator and safeguard of the healthy folded proteome using an expert-curated human cha-
perome functional gene ontology comprising an ensemble of 332 chaperone and co-chaperone
genes [4] to systematically characterize chaperome alterations in a representative clinically rel-
evant dataset of 22 human solid cancers with matching healthy tissue, corresponding to over
10,000 patient biopsy samples provided through the TCGA consortium [30]. We found the
human chaperome to be consistently highly upregulated across the vast majority of cancers
assessed. While numerous individual chaperones and co-chaperones have previously been
found upregulated in individual cancers [27, 59], this knowledge has not been coherently
derived from consistent data resources or systematic genome-wide analyses in biopsy tissue
before. Here, we provide systematic quantitative maps of chaperome deregulation in cancers
that highlight the relevance, characteristics and extent of chaperome upregulation in cancers.
Our analysis revealed chaperome deregulation signatures that not only feature broad upregula-
tion of ATP-dependent chaperones but also consistent repression of ER-specific chaperones
and the ATP-independent sHSPs. The data also suggest two cancer groups that can be strati-
fied specifically by their chaperome deregulation patterns. Overall chaperome upregulation
across cancers is in agreement with existing evidence on individual chaperones that has been
previously reviewed [59, 61, 62]. For instance, elevated heat shock protein expression levels
have been reported for HSP90 in breast and lung cancers [63, 64], HSP70 was found increased
in breast, oral, cervical and renal cancers [65-68], and HSP60 showed increased expression in
Hodgkin’s disease [69]. The cellular safeguarding functions of chaperones are subverted dur-
ing oncogenesis to facilitate malignant transformation in light of increased translational flux
and aberrant protein species in cancer cells [27]. Increased chaperone levels have previously
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been correlated with poor prognosis and cancer survival [59, 63, 70]. Chronic dependency on
stress response and quality control mechanisms drives cancer cells into a phenotype of non-
oncogene addiction [28]. The observed extent of chaperome alterations suggests a broader
state of cancer “chaperome addiction”, beyond the dependency on individual chaperones.

Evidence points towards functional associations between increased proteostasis buffering
capacity and maintenance of “stemness”, immortality and proliferative potential in both can-
cer cells and pluripotent stem cells [27]. For instance, autophagy was found to maintain “stem-
ness” by preventing senescence through sustained proteostasis [71]. Increased proteasomal
activity and elevated levels of the HSP60 chaperonin complex TRiC/CCT have recently been
linked to stem cell identity by conferring proteostasis robustness [37, 38]. Fundamental simi-
larities between stem cells and cancer raise the question to the extent of similarity between can-
cer and stem cell PN states and capacity. Our data suggest that cancers consistently display
signatures of elevated proteostasis functional processes such as the chaperome and protea-
some-mediated clearance, and are in agreement with the hypothesis that upregulated clearance
mechanisms such as the proteasome and increased chaperome topologies, particularly
increases in ATP-driven chaperones such as the HSP60 chaperonin complex TRiC/CCT, con-
fer increased proteostasis capacity and survival benefits to cancer cells just like they are essen-
tial to stem cell biology. Precise knowledge of systems-level network deregulation therefore
sheds light on fundamental processes at play from stem cell biology to cancerogenesis. Chaper-
one upregulation is largely regulated through heat shock factor 1 (HSF1) [29]. Overexpression
of the TRiC/CCT subunit CCT8 protects against hsf-1 knockdown in C. elegans [38], consis-
tent with a regulatory connection between TRiC/CCT and HSF1 [72]. Connecting processes at
the PN level, this evidence suggests a connection between TRiC/CCT and HSF1 stress
response signalling also in cancers [38, 73]. While increased expression of TRiC/CCT subunits
has been observed in cancer cell lines [74], and increases in CCT8 expression are linked to
individual cancers [75, 76], we describe consistent TRiC/CCT upregulation within global can-
cer chaperome signatures throughout the majority of TCGA solid cancers, or Group 1 cancers,
whereas Group 2 cancers lack chaperome and, to large extent, TRiC/CCT upregulation.

Contrary to stem cell proteostasis, which is set up to maintain pluripotency and proliferative
capacity, neurodegenerative diseases such as Alzheimer’s (AD), Huntington’s (HD), and Par-
kinson’s disease (PD) display signs of proteostasis functional collapse. Misfolding diseases fea-
ture overexpression of aggregation—prone proteins such as Ap in AD, a-synuclein in PD, or
huntingtin in HD that entail a “toxic-gain-of-function” resulting in chaperome overload, gradu-
ally exceeding proteostasis capacity [77], while “loss-of-function” misfolding diseases feature
specific perturbations such as dysfunctional AF508-CFTR in cystic fibrosis [78]. Functionally
deficient steady-state dynamics of the folding environment affect cellular protein repair capacity
and proteome maintenance [79]. Most cancer cells however harbour manifold genetic aberra-
tions even at the karyotype level that likely entail dramatic effects on proteome balance [80].
The collective damage caused by oncoprotein expression, compromised DNA repair, genomic
instability, reactive oxygen species (ROS), elevated global translation and chaperome overload
triggers stress response mechanisms in light of a challenged cellular proteostasis capacity [81].
Chaperome deregulation dynamics observed in cancers indeed display concordantly opposed
trends as compared to alterations in the major neurodegenerative diseases.

A recent study linked repression of ~30% of the human chaperome in aging brains and in
neurodegenerative diseases to proteostasis functional collapse and pointed to the role of a cha-
perome sub-network as a conserved proteostasis safeguard [4]. Intriguingly, while only ~8% of
the human orthologous chaperome had protective phenotypes upon functional perturbation
in C. elegans models of amyloid B (AB) and polyQ proteotoxicity, chaperones and co-chaper-
ones far less well studied than HSP90 had equally strong protective effects [4]. Similarly, an
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overlap between the chaperome and the “essentialome” set of 1,658 core fitness genes in K562
leukemia cells [82] found only 55 overlapping with the 332 chaperome genes [83]. Interest-
ingly, HSP60s showed the highest fraction of essential chaperones in agreement with their
function as a highly conserved folding complex that hosts ~10% of the proteome’s clients [40].
Collectively, these findings suggest a highly functionally redundant and robust role of the cen-
tral conserved chaperome within the PN [84].

In summary, our study showcases a systematic profiling of the extent of chaperome deregu-
lation, as a central PN functional arm, in a panel of human cancers and three major neurode-
generative disorders, accompanied by a resource of quantitative multi-dimensional maps with
reduced complexity. Therapeutic PN regulation for increased or restored proteostasis capacity
may be beneficial in both loss-of-function and gain-of-toxic-function diseases of protein mis-
folding [2]. Attenuating the PN on the other hand, such as inhibiting chaperones like HSP70
and HSP90 or the UPS clearance machinery, are widely acknowledged as promising therapeu-
tic avenues in cancers [27, 83, 85, 86]. While this manuscript was in preparation, Rodina and
co-workers reported findings on a highly integrated chaperome subnetwork, or ‘epichaper-
ome’, as a classifier of cancers with high sensitivity to HSP90 inhibition, while cancers with a
less interconnected chaperome are less vulnerable by HSP90 inhibition [26]. Several HSP90
inhibitors have shown encouraging results in clinical trials [87]. Our study further supports
the central role of the chaperome in PN biology, justifying particular focus on understanding
chaperome alterations in human diseases at a systems level. The characteristic signatures of
cancer chaperome alterations revealed in this study suggest broad commonalities and differ-
ences that could serve as testable hypotheses for therapeutic chaperome targeting strategies in
cancer. Our results underline the value of charting quantitative systems-level maps and pro-
vide a resource towards an improved functional understanding of proteostasis biology in
health and disease. A systems-level understanding of contextual PN alterations throughout the
human diseasome will be instrumental for charting a clearer picture of the PN as a therapeutic
target space, and as a resource for clinical biomarkers, including the chaperome. In face of
increasing amounts of genome-scale disease data we are confronted with tremendous chal-
lenges of data complexity. Therefore, our study provides Proteostasis Profiler (Pro®), an inte-
grated web-based suite of tools enabling processing, analysis and visualisation of proteostasis
alterations in human diseases at reduced dimensionality, towards hypotheses-building for
mechanistic understanding and clinical translation.

Materials and methods
Gene expression data preparation

Focussing on pan-cancer analysis of the human chaperome, we chose The Cancer Genome
Atlas (TCGA) as the main source for our analyses, as an established dataset that is widely used
and adopted by the scientific community. The Broad Institute TCGA GDAC Firehose was
accessed to download TCGA RNAseqv2 raw counts data followed by application of the voom
method for the transformation of count data to normalized log2-counts per million (logCPM)
[88]. Each of these logCPM values were centered gene-wise for sample normalization and
comparability and used for all analyses. Considering TCGA clinical data annotation, we
extracted those 22 tissue biopsy group datasets that provide both “primary solid tumor” and
“solid tissue normal” sample type annotations.

Gene set analysis (GSA) and heatmap representation

We applied Gene Set Analysis (GSA) [33], an advanced derivative of Gene Set Enrichment
Analysis (GSEA) [89], in order to assess chaperome gene family expression changes between
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cancerous and corresponding healthy tissue samples. When applying GSA, we implemented
100 permutations of chaperome genes contained in each functional family in order to allow
for statistical assessment of differential expression upon re-standardization of gene groups for
more accurate inferences. When applying GSA to the chaperome as one set in comparison to
the whole genome (non-chap set), we randomly sampled 332 genes from the whole genome,
excluding chaperome genes, and compared them to the 332 chaperome genes in order to ex-
clude bias on group sizes in the comparisons. We applied this random sampling process 100
times in addition to 100 permutations we had on each GSA calculation. We calculated the
mean value of all results as a robust measure of chaperome changes with respect to the ge-
nome. Results are displayed as heatmaps indicating significance of up or down-regulation

of gene expression as AGSA values derived from the difference of (1—upregulation p value)—
(1—downregulation p value) in disease compared to matching healthy tissue for TCGA cancer
datasets, or control patient biopsies for neurodegenerative disease datasets (AD, HD, PD).
AGSA values are normalized within the interval [-1, +1], where ‘+1” indicates significant upre-
gulation (upregulation p value = 0), while ‘-1” indicates significant down-regulation (downre-
gulation p value = 0), accordingly. Bar graphs represent group mean changes of each
chaperome functional family gene group over all diseases.

Linear modeling of chaperome functional subsets

We subdivided the human chaperome into functional subsets of chaperones and co-chaper-
ones, and further divided chaperones into two sets of ATP-dependent and ATP-independent
chaperones according to the annotations provided by Brehme et al. 2014 [4]. We performed
linear modelling using the Limma package in R. Genes with p values < 0.05 following Benja-
mini-Hochberg correction are considered in the fraction of differentially expressed genes cor-
responding to each functional subset.

Meta-principal component analysis (Meta-PCA)

Gene Set Analysis (GSA) is a statistical hypothesis testing method that is by definition limited
to confirmatory data analysis with respect to pre-existing hypotheses. In order to serve the
goal of quantitative exploratory pan-cancer chaperome analysis, while retaining a maximum
information content during model reduction, we devised Meta-PCA, a novel quantitative
multi-step dimension reduction model fitting strategy based on principal component analysis
(PCA). Principal component analysis (PCA) uses orthogonal transformation to convert a set
of variables to linearly uncorrelated variables, such that they are ordered by their information
content, which allows for removal of dimensions with lowest information content for di-
mensionality reduction in complex heterogeneous datasets. In order to stratify cancer from
healthy biopsy gene expression samples based on chaperome functional family gene expression
in highly convoluted datasets comprising multiple different cancer types, we designed Meta-
PCA as a novel two-step method capable of handling this type of heterogeneous data. We
hypothesized that each chaperome functional family or process can be described by a low
number of variable dimensions, considering that genes within each group are either related or
act together in molecular complexes. Therefore, we used a PCA-based approach for quantita-
tive assessment and dimensionality reduction of functional chaperome alterations based on
disease gene expression data. Challenged by highly varying sample counts in the different
TCGA cancer group datasets, where datasets (tissues) with high sample numbers are at risk of
dominating PCA results as compared to cancer groups with low sample numbers, we devel-
oped a custom approach that is not limited by a lack of underlying models for interpolation or
undesirable loss of information, such as in up- or down-sampling, respectively, allowing us to
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consider all samples in the included TCGA cancer groups. Assuming distinct roles for each
chaperome functional group we define

MCHAPx =F, (G,) (1)

where M denotes the M-score of chaperome (CHAP) family x, G, is the vector of gene expres-
sion values corresponding to genes in CHAP family x, and F, is the function we want to fit.
For simplicity, we considered a linear first degree model as follows: F, is a vector of weights
W, with identical length as the vector G,, and we aim to find W, for all x using PCA. Assuming
equivalent biological function of each CHAP, among all tissues, we first calculate F, for each
tissue in order to separate disease from healthy samples for each tissue, and then combine all
“relevant” PCs in order to obtain the main underlying PC, or ‘Meta-PC’, of the corresponding
CHAP group. We outline the ‘Meta-PCA’ algorithm as follows:

Step 0: For each CHAP group and tissue we assume a model

My, = F. (G)) (2)

CHAP,

Where M{,,,, is the M-score of CHAP group x in tissue ¢, F! is the unknown function map-

ping gene expression values for CHAP group x in tissue ¢ to an M-score value, and G is the
gene expression vector of all genes in CHAP group x in tissue ¢.

Step 1: Assuming M,,,, can be approximated using PC1, we assume F, is equal to W ‘o
which is the vector of weights for CHAP group x and tissue t. Then we calculate PCA on the
gene expression matrix (GEX) comprising all genes in CHAP group x, and all samples of tissue
t, including ‘solid tissue normal” and ‘primary solid tumors’. So in this step we have F! ~ W
as loadings of PCI.

Step 2: The F. ~ W! assumption in Step 1 is not necessarily true; PCA extracts the most
variable direction in GEX, but in case CHAP group x does not change drastically between
healthy and cancer, PC1 will represent an unwanted variable or even noise. So we have to filter
out the F! that did not fit well to the data. For this we use Student’s ¢-test. For each tissue, we

test the separation of M, between ‘solid tissue normal’ and ‘primary solid tumor’ samples,

HAP,
and discard all F! with p values > 107",

Step 3: We combine all W to obtain W,, which is the universal mapping of gene expres-
sions in CHAP group x to its corresponding M-score, regardless of tissue type. Therefore, we
calculate W, as

W, ~M' (3)

where the loading of each gene in the universal mapping is the mean value of all the loadings
of the same gene on different tissues. Importantly, prior to calculating mean loadings, we
set all W! to be uni-directed in order preserve directionality of change from healthy to cancer,
yielding final Meta-PCs. W, can be used as the universal function F, (Eq 1) in order to map a
query sample to the corresponding M-score of CHAP group x.

Step 3’: In order to validate F, and resulting M-scores we performed random forest regres-
sion using 80% of M-scores and their annotation labels as training set and 20% as test set.

Quantitative visualisation of chaperome alterations in diverse cancers

In order to visually represent quantifications of chaperome functional family differential can-
cer gene expression, we used Meta-PCA fitted functions in order to calculate disease-specific
M-scores for each chaperome functional gene group as described. We then plotted relevant
M-scores using polar plots, such that radial axes represent functional processes.
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L1
L2
L3:
L4
L5:
L6:
L7:
L8:

Physical protein-protein interactome network assembly and curation

Human physical protein—protein interactions (PPIs), hereafter referred to as ‘edges’, were down-
loaded on 23 Dec 2016 from the BioGRID [52], IntAct [53], DIP [54], and MINT [55] databases.
In order to obtain a high confidence chaperome physical protein—protein interactome network,
we developed a custom Python script to curate raw interactome pairs, or edges, as downloaded
from the above databases, considering edges detected by multiple experimental methods as more
reliable than those detected by only a single method. Similarly, edges supported by multiple publi-
cations are considered at higher confidence than edges supported by only one study. Edges sup-
ported by multiple methods and / or multiple studies are collectively referred to as ‘multiple
evidence’ (ME), of which those identified by multiple different methodologies represent a subset
of highest confidence (MM). The Python script processes the interactome raw data as follows:
UniProt IDs are mapped to NCBI Entrez Gene IDs and for each human PPI between any two cha-
perome members (nodes), interacting partners are mapped to Gene IDs. Only edges annotated
with PSI-MI term ’physical association’ type are considered. Eight different curation levels exist:

met_single_pub_multiple: 1 method (not binary), > 1 PubMed
met_single_binary_pub_multiple: 1 method (binary), > 1 PubMed
met_pub_single_binary: 1 method (binary), 1 PubMed
met_pub_single: 1 method (not binary), 1 PubMed
met_pub_multiple: > 1 method (not binary), > 1 PubMed

met_multiple:

> 1 method (not binary), 1 PubMed

binary_met_pub_multiple: > 1 method (> 1 binary), > 1 PubMed
binary_met_multiple: > 1 method (> 1 binary), 1 PubMed

https://doi.org/10.1371/journal.pchi.1005890.t001

Considering these curation levels, three physical chaperome (CHAP) interactomes of
increasing confidence level are obtained (S2 Table):

1. SE-CHAP: 666 unique physical edges between 220 nodes without curation for type or num-
ber of evidence (single evidence SE-CHAP)

2. ME-CHAP: 222 unique physical edges between 128 nodes with multiple pieces of evidence
detected by > 2 different experimental methods OR reported by > 2 independent studies
(PMIDs) (multiple evidence ME-CHAP)

3. MM-CHAP: 132 unique physical edges between 96 nodes detected by > 2 different experi-
mental methods only (multiple method MM-CHAP).

Different PPI source databases may annotate an identical reported PPI to different PSI-MI
terms situated at different depth of the same branch within the PSI-MI ontology tree. In these
cases, PPIs that are actually only supported by one piece of evidence can unintentionally be
mislabelled as multiple evidence PPIs. Our automated quality curation script resolves this
problem through up-propagation within the PSI-MI—ontology tree. Assume one PPI is anno-
tated with two different interaction detection methods, A and B, then 1) if PSI-MI ontology
tree levels of method A and method B are identical but their PSI-MI terms (IDs) are different,
then the methods are considered as different, otherwise A and B are considered the same and
the interaction is eliminated from the MM-CHAP interactome, 2) if the level of method A is
higher (deeper in the ontology tree) than the level of method B, then the code searches for its
parent situated at the same level as method B and compares the parent method ID with B to
determine if the methods are identical or different.
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Interactome-guided 3-D topographic maps

We considered 2-dimensional physical interactome information to guide the spatial layout (x-
y coordinates) of human chaperome functional ontology families in a 3-dimensional (x-y-z
coordinates) topographic representation of chaperome M-score changes between disease and
healthy tissue (z coordinate). Physical chaperome protein-protein interactome network data
(PPIs) was obtained and curated as described above. We considered a network involving only
high quality curated interactions supported by multiple pieces of evidence (ME-CHAP). We
used the R package iGraph in order to collapse nodes corresponding to each level 1 functional
ontology family into meta-nodes, and edges shared between all members of any two different
level 1 functional families into meta-edges, such that meta-node size corresponds to the num-
ber of family members and meta-edge thickness represents the number of shared interactions
between two families. Meta-node colour is set to reflect gene expression changes of each
respective functional family in disease. We then applied a force-directed network graph layout
algorithm to the meta-network according to Kamada and Kawai [56] and extracted resulting
x-y coordinates of each family meta-node in the network. We used Python to draw the meta-
network according to the parameters obtained in iGraph to serve as interactome-guided base
grid for disease-specific quantitative 3-dimensional topographic network representations. To
this end we expanded the 2-dimensional network landscape with Meta-PCA derived chaper-
ome M-score values (z coordinate).

Proteostasis Profiler (Pro?) web-tool

We designed a web-based Proteostasis Profiler (Pro”) in order to enable visual exploration of
the data and results described in this manuscript, obtained through our algorithms and visuali-
sation tools. Pro” is accessible directly at http://www.proteostasys.org. Pro” is implemented
using Django (https://www.djangoproject.com/))), a web framework written in Python lan-
guage (https://www.python.org). All the charts in the tool are generated using the plotly plat-
form (https://plot.ly). The Pro” tool itself is hosted on the Heroku platform (https://www.
heroku.com).

Code availability

All R and Python scripts and code related to this manuscript are accessible through the Pro-
teostasis Profiler (Pro®) Github repository at https://github.com/brehmelab/Pro2.

Supporting information

S1 Fig. Correlation of chaperome GSA and meta-PCA scores. Correlation between GSA-
scores [33] and Meta-PCA T-statistic values derived using Limma linear modelling on all

TCGA cancer groups considered in this study indicates overall correlation (cor = 0.61).
(PDF)

S2 Fig. Preferential chaperome upregulation in cancers. Analysis of differential cancer

gene expression of chaperome functional subsets, comparing chaperones and co-chaperones
as well as ATP-dependent and ATP-independent chaperones [4]. See also Fig 3. A. Comparing
upregulation and downregulation of gene expression of chaperones and co-chaperones using
GSA reveals a general upregulation of chaperones and co-chaperones in cancer, with preferen-
tial upregulation of chaperones. Colour code indicates chaperone up-regulation of gene
expression. Axes represent chaperone downregulation, co-chaperone upregulation and down-
regulation of gene expression. B. Box-and-whisker plots highlight fractions of differentially
expressed genes in each chaperome subset for all TCGA cancers assessed, based on A.
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Differentially expressed genes in each set were obtained by linear modelling (Limma package
in R) and considering genes with p value < 0.5 following Benjamini-Hochberg correction.
Box boundaries, 25% and 75% quartiles; middle horizontal line, median; whiskers, quartile
boundaries for values beyond 1.5 times the interquartile range; small circle, outlier. C. Assess-
ing differential expression of ATP-dependent (n = 50) vs. ATP-independent (n = 38) chaper-
ones highlights a preferential upregulation of ATP-dependent chaperones across TCGA
cancers D. Box plots (drawn as in B.) show fractions of differentially expressed genes in the
two sets of ATP-dependent and ATP-independent chaperones for all TCGA cancers assessed,
based on C.

(PDF)

$3 Fig. Compendium of chaperome polar maps. Chaperome gene expression shifts between
healthy and cancer (pp. 1-22) or AD, PD and HD (pp. 23-25) tissue biopsy datasets are quan-
tified by Meta-PCA and visualized in context by plotting resulting M-scores on polar maps as
in Fig 6. Blue (healthy) and red (disease) lines represent means across all samples for each dis-
ease. Halos represent confidence interval at the 90% quantile range (5%-95%).

(PDF)

$4 Fig. Compendium of chaperome interactome meta-networks. Chaperome meta-interac-
tome networks for cancers (pp. 1-22) or AD, PD and HD (pp. 23-25) are shown as in Fig 7A.
Multiple-evidence chaperome (ME-CHAP) edges and nodes are collapsed onto meta-edges
and meta-nodes. Node size and edge thickness correspond to the number of functional family
member nodes and the sum of the number of inter-family edges, respectively. Node colour
indicates combined disease gene expression changes quantified via Meta-PCA.

(PDF)

S5 Fig. Compendium of chaperome 3-D topographic maps. 3D topographic maps of cancer
(pp. 1-22) or AD, PD and HD (pp. 23-25) chaperome alterations are obtained by projecting
gene expression changes between disease and healthy counterpart biopsy gene expression (z
dimension) onto the high-confidence chaperome meta-interactome (ME-CHAP) graph layout
(x-y dimensions).

(PDF)

S1 Table. Human chaperome and proteasome functional gene ontology. Tab S1A. List of
332 human chaperome genes, expert curated by functional ontology groups at six levels of
increasing detail (Level 1 = broad >> level 6 = detailed). For each entry, HGNC gene symbol,
EntrezID, and functional ontology annotation levels are indicated. Human chaperome as in
[4], Tab S1B. List of 43 proteasome genes. For each entry, HGNC gene symbol, EntrezID, and
functional ontology annotation levels are indicated. Proteasome complex annotation accord-
ing to HGNC [39].

(XLSX)

$2 Table. Human chaperome physical protein-protein interactions. Human physical pro-
tein-protein interactions (PPIs) were obtained for 332 human chaperome members from
curated public databases reporting human PPIs with PSI-MI method annotations (IntAct, Bio-
Grid, MINT, DIP). For each node, Entrez Gene ID and corresponding HGNC symbol, chaper-
ome functional ontology annotation levels 1 and 2, interaction detection method MI code as
annotated in the respective source database, and unique methods per PPI following curation,
curation evidence level, PMIDs with corresponding literature evidence for each interaction,
source databases, and respective MI method IDs are indicated. Tab S2A. 666 curated physical
human protein—protein interactions between 220 chaperome nodes supported by any
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number of evidence, including interactions reported only by one single study (PMID). Tab
S$2B. 222 curated high-confidence physical human protein—protein interactions between 128
chaperome nodes supported by multiple pieces of evidence, including interactions reported by
multiple methods or studies (PMIDs). Tab S2C. 132 curated high-confidence physical human
protein—protein interactions between 96 chaperome nodes supported by multiple pieces of
evidence, including only interactions reported by multiple methods.

(XLSX)

S1 Text. On the correlation between RNA-seq and protein abundance, and its effect on
studying the chaperome in cancer.
(DOCX)
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