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Near-infrared spectroscopy (NIRS) is susceptible to signal artifacts caused by relative

motion between NIRS optical fibers and the scalp. These artifacts can be very damag-

ing to the utility of functional NIRS, particularly in challenging subject groups where motion

can be unavoidable. A number of approaches to the removal of motion artifacts from NIRS

data have been suggested. In this paper we systematically compare the utility of a variety of

published NIRS motion correction techniques using a simulated functional activation signal

added to 20 real NIRS datasets which contain motion artifacts. Principle component analy-

sis, spline interpolation, wavelet analysis, and Kalman filtering approaches are compared

to one another and to standard approaches using the accuracy of the recovered, simulated

hemodynamic response function (HRF). Each of the four motion correction techniques

we tested yields a significant reduction in the mean-squared error (MSE) and significant

increase in the contrast-to-noise ratio (CNR) of the recovered HRF when compared to

no correction and compared to a process of rejecting motion-contaminated trials. Spline

interpolation produces the largest average reduction in MSE (55%) while wavelet analy-

sis produces the highest average increase in CNR (39%). On the basis of this analysis,

we recommend the routine application of motion correction techniques (particularly spline

interpolation or wavelet analysis) to minimize the impact of motion artifacts on functional

NIRS data.

Keywords: near-infrared spectroscopy, functional near-infrared spectroscopy, NIRS, motion artifact, hemodynamic

response

INTRODUCTION

Near-infrared spectroscopy (NIRS) is a burgeoning neuro-

investigatory technique that uses measures of the intensity of

diffusely scattered near-infrared light to calculate changes in oxy-

hemoglobin concentration (HbO) and deoxy-hemoglobin con-

centration (HbR) in cortical tissues (Obrig et al., 2000; Obrig and

Villringer, 2003; Lloyd-Fox et al., 2010). The majority of NIRS

studies are performed using a back-reflection geometry, with near-

infrared light carried to and from the head via optical fibers (Obrig

et al., 2000). Although the methods of coupling optical fibers to

the scalp have improved since the inception of NIRS technolo-

gies (Lloyd-Fox et al., 2010), movement of the head of the subject

will invariably cause motion between each optical fiber and the

scalp. This relative motion will cause a rapid shift in the optical

coupling between the fiber and the scalp, which typically results

in a period of high-frequency noise in the recorded NIRS data.

Even after the motion has subsided, the optical coupling is often

irrevocably altered, causing a shift in the baseline measurements

of HbO and HbR. Because the magnitude of this motion-induced

noise is typically far greater than the changes associated with tissue

hemodynamics, any changes in hemoglobin concentrations in the

cerebral cortex which coincide with motion artifacts are usually so

heavily contaminated that they are indiscernible.

Motion artifacts in NIRS data are usually relatively easy to iden-

tify using a combination of observation of the subject during NIRS

recording and visual inspection of the resulting data. There are also

a number of approaches to the automated detection of motion

artifacts, using algorithms which identify changes in NIRS signals

which are of a scale, rate or nature that are unlikely to be physiolog-

ical (Cui et al., 2010; Scholkmann et al., 2010; Cooper et al., 2011).

However, once motion artifacts have been identified, there is no

well-established approach to their removal or correction. Instead,

the standard approach to motion artifacts in functional NIRS data

is to either attempt to insure that there are enough stimulus trials

to minimize the average impact of the artifacts or simply to remove

any stimulus trials that coincide with identified artifacts. Both of

these approaches have limitations. Subject groups that tend to

exhibit extensive motion are often also the groups for whom the

duration of NIRS recording is limited. In such cases the number

of stimulus trials is also limited. This can make it impossible for

motion artifacts to be removed by a process of averaging, while

trial rejection can reduce the effective number of stimulus trials
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Cooper et al. Motion artifact correction in fNIRS

even further, reducing the contrast-to-noise ratio (CNR) of the

estimated hemodynamic response function (HRF).

Motion artifacts are typically observable in multiple NIRS

channels and have a scale and frequency composition that are

distinct from the background NIRS signal. For these reasons, a

variety of signal processing approaches have emerged that attempt

to reduce or remove motion artifacts from functional NIRS data,

in order that the corrected data can contribute to the estimated

HRF. In the context of NIRS experimental design, these motion

correction methods fall in to two distinct categories: those which

require some additional input beyond the standard NIRS dataset

(and therefore require an alteration of experimental design) and

those that do not.

The first category encompasses a variety of approaches which

require an input signal that is highly correlated with the NIRS

motion artifacts but not with the NIRS functional response. Such

an input signal can be obtained via an external measure of motion

[such as an accelerometer (Blasi et al., 2010; Izzetoglu et al., 2010;

Virtanen et al., 2011)] but will more commonly be a reference

NIRS signal (Robertson et al., 2010). A reference NIRS signal can

be acquired simultaneously with the standard functional NIRS

experiment using an additional NIRS channel which, (due to its

location or source-detector separation) is not sensitive to the func-

tional response of interest. This additional input signal can then

be used to cancel motion artifacts from NIRS channels via linear

regression, a variety of adaptive filtering approaches and Wiener

filtering (Izzetoglu et al., 2005; Zhang et al., 2009; Robertson et al.,

2010).

Although these approaches show great promise, we wish to

assess the utility of motion correction techniques which fall into

the second category, i.e., approaches which can be applied to

standard functional NIRS datasets without alteration of the exper-

imental paradigm. Such post-processing techniques typically take

advantage of the distinct amplitude and frequency characteris-

tics of motion artifacts in order to remove them. Perhaps the most

common example is an application of principle component analy-

sis (PCA). PCA is a process of orthogonal linear transformation

which can be used to isolate components corresponding to motion

artifact with minimal impact on the physiological components

present in the NIRS data. This approach was described by Zhang

et al. (2005) and similar approaches have been applied in a number

of functional NIRS studies (Wilcox et al., 2008, 2010).

In recent years, several other approaches to motion artifact

correction have been put forward which do not require addi-

tional input measurements. These include the spline interpolation

approach suggested by Scholkmann et al. (2010), in which periods

of motion are modeled using a cubic spline interpolation and this

model is then subtracted from the original signal. Signal filtering

based on a discrete wavelet transform has also been applied to the

removal of motion artifacts from NIRS data (Molavi and Dumont,

2012). Because motion tends to result in abrupt changes in the fre-

quency content of the NIRS signal, wavelet transformation can be

very effective in isolating motion artifacts. The coefficients which

correspond to motion artifacts in the wavelet domain can then

be removed before the NIRS data is reconstructed. Lastly, discrete

Kalman filtering has been applied to the removal of motion arti-

facts from NIRS data (Izzetoglu et al., 2010). A Kalman filter is a

recursive, state-space based approach to the recovery of signals that

are contaminated by noise and (assuming the NIRS time-course

contains some periods of data that are motion-free) can be applied

without the need for additional inputs.

Despite the prevalence and variety of motion artifact correction

techniques, there is little evidence to suggest that the application of

any of these approaches to functional NIRS actually improves the

accuracy or CNR of the recovered HRF. In previous reports, the

metrics applied to test the utility of a given motion correction tech-

nique have been varied but insufficient. In cases where real motion

artifact contaminated NIRS data has been used, the utility of a

correction technique has been quantified using some measure of

improvement in signal-to-noise ratio of the corrected NIRS time-

course (Izzetoglu et al., 2010; Scholkmann et al., 2010; Molavi

and Dumont, 2012). In some cases, motion artifacts themselves

have been simulated and added to real NIRS data and subse-

quently corrected, which allows the mean-squared error (MSE)

and Pearson’s correlation coefficient (R2) between the original

and corrected signals to be calculated (Scholkmann et al., 2010).

However, motion artifacts are complex and variable, and diffi-

cult to accurately simulate, particularly across multiple channels.

Scholkmann et al. (2010) did apply their spline motion correction

technique to real NIRS motion artifacts which occurred during a

functional activation experiment, but it was not possible to mean-

ingfully quantify the improvement because the true hemodynamic

response was unknown.

In this paper we present a systematic comparison of four

recently promoted motion correction algorithms by applying them

to real motion artifact contaminated NIRS data. By adding a num-

ber of synthetic HRFs to each dataset and then attempting to

recover the average HRF, we are able to simulate a functional NIRS

study and assess each motion correction technique in terms of the

improvement in the accuracy of the recovered HRF. The accuracy

of this recovery can then be compared to that achieved without

motion correction and by simply removing motion-contaminated

trials entirely.

MATERIALS AND METHODS

NIRS DATA

Twenty NIRS datasets were selected from a clinical study of adult

stroke patients at Glostrup Hospital in Copenhagen, Denmark.

Each dataset consists of 10 min of resting-state NIRS recording

using eight dual-wavelength, 3 cm separation channels positioned

across the forehead and fronto-central areas of the head. These

datasets were obtained using a TechEn Inc. CW6 system (Medford,

MA, USA) which employs frequency multiplexed sources at 690

and 830 nm with a sample rate of 25 Hz. This system is described

in detail by Franceschini et al. (2003).

The clinical condition of the patients meant that motion arti-

facts were common, despite the patients being asked to lie still

during recording. These 20 datasets were chosen on the basis that

they all contained motion artifacts as determined on visual inspec-

tion by two investigators (Robert J. Cooper, Juliette Selb). The

motion artifact identification algorithm hmrMotionArtifact from

the HOMER2 NIRS processing package1 (Huppert et al., 2009)

1www.nmr.mgh.harvard.edu/optics
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Cooper et al. Motion artifact correction in fNIRS

was applied to determine periods of motion artifact in each of the

20 NIRS datasets. This algorithm provides reliable identification

of motion artifacts based on changes in signal amplitude and/or

standard deviation and is similar to the approach described by

Scholkmann et al. (2010) and Cooper et al. (2011). If the standard

deviation increases by a factor exceeding SDThresh, or the peak-

to-peak amplitude exceeds AMPThresh, both within a window of

length tMotion, then data from the beginning of that window to

tMask seconds later is defined as motion. Values of SDThresh = 20,

AMPThresh = 0.5, tMotion = 0.5 s and tMask = 2 s are effective

in most cases. However, as we did not wish to test the validity

of this detection approach here and simply needed to identify

motion as accurately as possible, SDThresh was fixed individually

for each dataset (at values between 12 and 20) in order to maxi-

mize the accuracy of motion identification as determined by visual

inspection. (Note that the output of this algorithm is not channel-

specific, i.e., signal changes which are determined to be artifact in

one channel are marked as motion in all channels; this relies on

the reasonable assumption that motion artifacts affect multiple

channels).

Across the 20 datasets, an average of 10.6% of each NIRS dataset

was identified as motion, ranging from 1.9 to 28.6%. The average

duration of a given period of artifact was 4.2 s (though note that

tMask = 2 s determines the minimum length of each motion arti-

fact). This suggests that the majority of artifacts are brief, and

likely take the form of transient spikes. This is consistent with our

experimental experience.

MOTION CORRECTION TECHNIQUES

Principle component analysis

The application of PCA transforms an N -measurement NIRS

dataset into N linearly uncorrelated components, ordered by their

contribution to the variance of the data. The magnitude of motion

artifacts is typically much larger than the background NIRS signal.

Motion artifacts are also typically present on multiple NIRS chan-

nels. The application of PCA to the filtering of NIRS data makes the

assumption that motion artifacts provide the dominant contribu-

tion to the variance of the NIRS data, and that therefore the first

r principle components will account purely for motion artifact.

These r components can then be removed before the data is ana-

lyzed further. For a NIRS dataset Y, of dimensions time × channel,

the PCA motion correction consists of first performing singular

value decomposition on the spatial correlation matrix YTY such

that:

Y T Y = UΩU T

where U is the orthogonal matrix of spatial eigenvectors and Ω is a

diagonal matrix of the associated eigenvalues, both of dimensions

N × N (Zhang et al., 2005). The first r eigenvectors can then be

removed from the data, such that:

Ycorrected = Y
(

I − U Ar U T
)

where Ar is a N × N matrix with the first r diagonal elements

equal to 1, and all other elements equal to zero. The performance

of PCA in removing motion artifacts from NIRS data is heavily

dependent on two factors: the number of NIRS measurements in

a dataset [as this defines the number of components (N )] and the

number of components that are removed (r). Note that the num-

ber of NIRS measurements is twice the number of channels as we

define them: each channel consists of measurements at two dif-

ferent wavelengths, in our case therefore, N = 16. The optimum

value of the parameter r will clearly depend on the total num-

ber of components (N ) and on how many of those components

constitute artifact, which will change from dataset to dataset.

A simple way to approach the selection of r is to normalize the

diagonal elements of the matrix Ω by their sum to produce the

vector Ω̃. The nth element of Ω̃ then provides a measure of the

proportion of the NIRS data variance that is accounted for by the

nth component. By fixing the proportion of data variance that is

to be removed (referred to from herein as σ_PCA), the number of

components to remove (r) can be defined by finding the lowest

value of r for which:

r∑

n=1

Ω̃n ≥ σ_PCA.

Spline interpolation

The spline interpolation approach applied here is that described

by Scholkmann et al. (2010). Once periods of motion artifact

have been defined (performed here using hmrMotionArtifact from

HOMER2) each of those periods is modeled one by one, through-

out each NIRS time-course using the MATLAB™ cubic spline

interpolation function csaps. Each period of modeled data is then

subtracted from that period of the original data. In order to pro-

duce a continuous signal all the data points after the start of the

corrected motion segment after shifted by a constant value. This

value is defined as the difference between the mean of the signal

at the start of the corrected motion period and the mean of the

signal prior to the corrected motion period. The durations over

which these means are calculated must be variable, as the length

of motion artifacts and the length of the data prior to each motion

artifact is also variable. These durations were defined using the

framework set out in Scholkmann et al. (2010).

The spline interpolation depends on the interpolation para-

meter p_Spline. This parameter is defined in MATLAB™ such

that if p_Spline = 0, the motion artifact is modeled with a least-

squares straight-line fit. If p_Spline = 1, the motion artifact is

modeled via a natural cubic spline interpolation. Therefore, per-

forming motion correction with p_Spline = 0 will remove only a

straight-line fit from the artifact while a p_Spline = 1 model will

approximate the artifact very accurately and on subtraction leave

a near-constant value. Scholkmann et al. (2010) define their para-

meter as (1−p_Spline) and suggest that a value corresponding

to p_Spline = 0.99 is reliably effective in the removal of motion

artifacts.

Wavelet analysis

We employed the discrete wavelet analysis and filtering approach

described by Molavi and Dumont (2012). While a detailed descrip-

tion of wavelet decomposition is not provided here (see Strang and

Nguyen, 1996; Molavi and Dumont, 2012) in summary each NIRS
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Cooper et al. Motion artifact correction in fNIRS

data time-course, y(t ), is transformed into the wavelet domain

using the general discrete wavelet transformation:

y(t ) =
∑

k

vj0kφj0k(t ) +

∞∑

j=j0

∑

k

ωjkψjk(t ).

Here, φjk(t ) and ψjk(t ) are the scaling and wavelet functions

and vj0k and ωjk are the approximation and detail coefficients

respectively. Indices j and k are the wavelet dilation and translation

parameters with j0 the coarsest decomposition. After decom-

position, the model assumes that the NIRS signal consists of

meaningful physiological signals f(t ) plus artifact terms e(t ) such

that y(t ) = f(t ) + e(t ) and assumes the wavelet coefficients (ωjk)

exhibit a Gaussian probability distribution. Because the physiolog-

ical hemodynamic signal is generally smooth compared to motion

artifact, the distribution of the wavelet coefficients that represent

the physiological components of the NIRS signal will be centered

around zero and have a low variance, whereas those correspond-

ing to motion artifact will appear as outliers in the probability

distribution. In order to remove these motion artifact coefficients

before performing the inverse wavelet transformation to recon-

struct the NIRS time-course, we apply a probability threshold to

remove outlying wavelet coefficients. For a given wavelet coeffi-

cient ωjk, if the probability of observing values greater than ωjk is

less than a threshold value α_Wav, then we assume that the coef-

ficient corresponds to motion artifact and it is set to zero. The

probability threshold α_Wav is a tunable parameter and a cor-

rect choice of its value is essential to the performance of wavelet

analysis in the removal of motion artifacts from NIRS data. This

analysis employed the Wavelab 850 toolbox for MATLAB™2.

Discrete Kalman filtering

The approach described by Izzetoglu et al. (2010) was the basis for

our Kalman filtering of NIRS motion artifacts. Kalman filtering is

a state-based recursive technique that acts on noisy data to pro-

vide a statistically optimal estimate of the underlying signal and is

essentially a two-step process. The first is to use prior knowledge

of a state to make a prediction of a future state and its uncertainty.

This prediction step models the state x at time = k, based on the

state at time = k−1 such that:

xk = Axk−1 + γk

where A is the transition model (which uses knowledge of the

prior state to predict the current state) and γk is the system noise.

This prediction is then compared to the actual measured state at

time = k, zk, which is modeled as a function of the true state x :

Zk = H xk + δk

where H is the observation model that maps the true state-space

into the measurement space and δk is the measurement noise. The

second step is to use the prediction xk, the measurement zk, and

their error covariances to produce an updated estimate of the true

2www-stat.stanford.edu/∼wavelab

state, which is determined by the Kalman gain. The resulting opti-

mal estimator is then fed back in to the prediction step as the prior

state and the process is repeated to find the optimal estimator of

the (k+1)th state. For more details see Grewal and Andrews (2003)

and Izzetoglu et al. (2010).

For the application of the Kalman filter to the reduction of NIRS

motion artifacts, the translation model was an auto-regressive

model based on the Yule–Walker method, with a model order

M = 4. This was the highest model order that remained stable on

application to our data, and is also that recommended by Izzetoglu

et al. (2010). The M Yule–Walker coefficients were calculated on

a measurement-by-measurement basis by taking the correlation

between the longest period of motion-free data and itself, offset

by 1 to M data points. Prior to Kalman filtering, the NIRS data

was down-sampled to 1 Hz. The system and measurement noise

were taken to be the variance of the motion-free NIRS data and

the variance of the entire time-course respectively for each NIRS

measurement. As throughout this paper, periods of motion were

determined by the algorithm hmrMotionArtifact.

Figure 1 shows an example of a single motion artifact in a

period of NIRS data, and the results of the correction of that

motion artifact using a band-pass filtering, PCA, spline interpo-

lation, wavelet analysis, and Kalman filtering (all also in combi-

nation with the same band-pass filter, applied after the motion

correction).

SIMULATED FUNCTIONAL NIRS STUDY, HRFs AND DATA PROCESSING

The simulation paradigm, performed using the MATLAB™ com-

puting environment, proceeded as follows: First, all raw optical

intensity measurements for each of the 20 datasets were converted

into changes in optical density (OD). A timing vector, which pro-

vides 25 trial onset positions spaced randomly throughout the

FIGURE 1 | A single motion artifact from one of our 20 NIRS datasets

and the effect of band-pass filtering (between 0.01 and 0.5 Hz), PCA,

spline interpolation, wavelet analysis, and Kalman filtering on that

artifact. Note that the same band-pass filter is also applied after each

motion correction technique.
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Cooper et al. Motion artifact correction in fNIRS

10 min dataset but with a minimum separation of 20 s was then

constructed. This vector mimics the experimental design of a

typical functional NIRS experiment, with each onset position cor-

responding to the beginning of a functional task. A simulated

HRF was then designed that consisted of a gamma function with

a time-to-peak of 7 s, a duration of 20 s and an amplitude defined

so as to produce a 15 µM increase in HbO concentration and a

5 µM decrease in HbR concentration [these figures include a par-

tial volume correction factor of 50 (Strangman et al., 2003)]. Such

amplitudes are consistent with those observed in real NIRS studies

and have also been used in previous functional NIRS simulations

(Gagnon et al., 2011, 2012). These amplitudes are approximately

equivalent to an intensity change of 0.9% from baseline for the

690 nm channels and 2% from baseline for the 830 nm channels.

Three of the eight NIRS channels from each of the 20 NIRS

datasets were randomly selected and the simulated HRF was added

to the OD time-course of these channels at the 25 onset posi-

tions defined by the timing vector. Lastly, the automatic motion

detection algorithm hmrMotionArtifact was applied to each NIRS

dataset to define periods of motion after the simulated HRFs had

been added to the data.

Once the simulated functional dataset had been completed,

it was then passed through six different processing streams. The

first was the recovery of the HRF without motion correction or

the rejection of trials. The data was band-pass filtered (a third

order Butterworth filter between 0.01 and 0.5 Hz) to remove low-

frequency drift and cardiac oscillations before being converted into

HbO and HbR using the modified Beer–Lambert law (Obrig et al.,

2000). The periods of data around each of the 25 stimulus trials

were then block-averaged to produce the mean HRF. The second

processing stream was a standard trial rejection NIRS processing

approach. After band-pass filtering the output of hmrMotionArti-

fact (calculated previously) was applied such that if a stimulus trial

coincided with a defined period of motion, then that stimulus was

rejected. The remaining stimuli periods were then block-averaged

in order to recover the mean HRF.

The first step of the remaining four processing streams con-

sisted of the implementation of each of the four motion correction

techniques: PCA, spline, wavelet, and Kalman respectively. The

resulting corrected data was then subjected to the same band-pass

filter as the standard processing approaches, followed by conver-

sion to HbO and HbR. All stimulation trials, irrelevant of how

effective the motion correction process may have been, were then

included in the block-average calculation of the mean HRF.

This entire process was repeated five times for each dataset using

a different random selection of channels and a different stimulus

timing vector in order to improve the robustness of the results.

METRICS FOR COMPARISON

The result of the simulation process described above was 300 HRFs

(20 datasets × 3 channels × 5 repetitions) for each of the six pro-

cessing streams (no correction, trial rejection, PCA, spline, wavelet,

Kalman). Three metrics were then calculated for each processing

stream. These consisted of the MSE between each recovered HRF

and the true (simulated) HRF, the Pearson’s correlation coefficient

(R2) between the recovered and true HRF and finally the CNR of

the recovered HRF. The CNR was calculated by taking the mean

of the 2 s of recovered HRF data centered at the true HRF peak

time (7 s after onset) and dividing by the standard deviation of the

5 s of data prior to onset. These three metrics allow a direct com-

parison of the accuracy of the HRFs recovered via standard NIRS

processing approaches and via each motion correction method.

All metrics are calculated on the basis of the recovered HbO signal

only for computational simplicity.

SENSITIVITY ANALYSES

Several of the motion correction techniques applied here require

the selection of an input parameter that can significantly affect

the performance of the technique. For PCA, spline, and wavelet

approaches, these parameters are the percentage variance to

remove (σ_PCA), the interpolation parameter (p_Spline) and

the probability threshold (α_Wav) respectively and are described

above. In order to optimize the performance of each of these meth-

ods, it was first necessary to perform a sensitivity analysis for each

of these three techniques. The simulation described above was

repeated, in full, for a variety of values for each input parameter.

Guided by the values of these parameters applied in previous pub-

lications, σ_PCA was varied from 50 to 99.9%, p_Spline was varied

from 0 to 1, and α_Wav was varied from 0.01 to 0.8.

RESULTS

TRIAL REJECTION VS. NO CORRECTION

As described above, the two standard approaches to motion arti-

facts in functional NIRS data are to perform no correction, or

to simply reject those trials which coincide with motion and

not include them in the calculation of the mean HRF. Which

of these two approaches produces the best recovered HRF will

clearly depend on the nature and extent of the motion artifacts

in each dataset and the number of stimulus trials. In our simu-

lation the number of trials rejected (out of a possible 25) varied

from 7 to 23 and averaged 13.9 across the 20 NIRS datasets and 5

repetitions. Figure 2 provides a scatter plot of the MSE between

the 300 recovered HRFs and the simulated HRF for trial rejection

(y-axis) vs. no correction (x-axis). In 62% of cases, trial rejec-

tion actually increases the MSE. However in this simulation the

difference between the MSE for the trial rejection and no cor-

rection approaches is not significant in a two-tailed paired t -test

(p = 0.18).

SENSITIVITY ANALYSES

The sensitivity analyses for input parameters σ_PCA, p_Spline, and

α_Wav allowed us to determine the values that minimized MSE

and maximized R2 and CNR. In all three cases, a single value of

each parameter produced the best result for all three metrics. These

were σ_PCA = 97%, p_Spline = 0.99, and α_Wav = 0.1. The opti-

mized parameter value for wavelet analysis, α_Wav = 0.1, is close

to the figure of 0.15 calculated by Molavi and Dumont (2012). The

optimized value of p_Spline is equal to that suggested by Scholk-

mann et al. (2010) in their own analysis. These three optimized

parameter values were employed in all remaining analyses.

PCA, SPLINE, WAVELET, AND KALMAN VS. NO CORRECTION

Figure 3 shows the result of three individual HRF simulations. The

true HRF and the HRFs recovered by all six processing streams are
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FIGURE 2 |The MSE between the recovered and true HRF for 300

simulations using trial rejection (y -axis) and no correction (x -axis). Trial

rejection produces an increase in MSE in 62% of cases, but there is no

statistically significant difference between the MSE achieved by trial

rejection and that of no correction. The red asterisks indicate the

simulations corresponding to the HRFs shown in Figure 3.

shown for a case where the uncorrected HRF appears very poor

(Figure 3A), a case where the uncorrected HRF appears reasonable

(Figure 3B), and a case where the uncorrected HRF is very close

to the true HRF (Figure 3C). In Figures 2, 4, and 5 these three

simulation examples are marked in red for comparison.

Figure 4 shows scatter plots of the MSE of the 300 HRFs recov-

ered via PCA (Figure 4A), spline (Figure 4B), wavelet (Figure 4C),

and Kalman (Figure 4D), plotted against those achieved with no

correction. In all cases, the MSE decreases significantly (p < 0.01,

one-tailed paired t -test). Note that the decrease is also signifi-

cant for all four techniques when compared to the trial rejection

approach. All four techniques produce an increase in MSE in a

subset of cases (32, 20, 23, and 36% for PCA, spline, wavelet, and

Kalman respectively). All four techniques also show a trend which

indicates that motion correction is much more likely to have a

detrimental effect if the initial (no correction) HRF has a low

MSE, i.e., if the HRF is already very accurate. This is particularly

clear for wavelet analysis, where an increase in MSE is common if

the uncorrected value was below 10 µM2, while a decrease in MSE

is assured if wavelet analysis is applied when the uncorrected MSE

is greater than 20 µM2.

Figure 5 shows the corresponding scatter plots for the CNR of

the 300 HRFs recovered via PCA (Figure 4A), spline (Figure 4B),

wavelet (Figure 4C), and Kalman (Figure 4D), plotted against

those achieved with no correction. Again, all four techniques pro-

duce a significant improvement (p < 0.01, one-tailed t -test). This

is also the case when compared to the trial rejection approach.

The distributions shown in Figures 5A–D indicate that the effect

of motion correction in cases where the initial CNR is high is

extremely variable. By contrast, cases where the initial CNR was

between approximately 5 and 15 show a consistent improvement,

particularly for wavelet and Kalman filtering.

OVERALL SIMULATION RESULTS

Figure 6 provides box-plots of the results of each motion cor-

rection technique and allows for direct comparison. Figure 6A

shows the absolute MSE for no correction, trial rejection, PCA,

spline, wavelet, and Kalman techniques. Figure 6B shows the

pair-wise percentage change in MSE achieved by each motion

correction technique compared to that achieved by no correction.

Figures 6C,D show the measurements of R2 and CNR respectively.

In general, PCA, spline, and wavelet techniques all perform well,

Kalman filtering less so. PCA, spline, and wavelet approaches pro-

duce a median decrease in MSE of 38, 55, and 50% respectively,

compared to no correction. Kalman filtering produces a decrease

of only 21%. All four methods produce an increase in R2, but while

the increase produced by PCA, spline, and wavelet approaches are

highly significant (p < 0.01) the change due to Kalman filtering is

not significant (p > 0.05). All four methods also produced a signif-

icant increase in CNR, with wavelet filtering yielding the highest

median CNR at 10.9 compared to 6.9 for no correction. The pair-

wise percentage change in CNR (not shown) was also greatest for

wavelet analysis, which produced a median increase of 39%.

DISCUSSION AND CONCLUSION

Although many approaches to the correction or minimization

of motion artifacts in NIRS data have been put forward (Izze-

toglu et al., 2005, 2010; Zhang et al., 2005; Robertson et al., 2010;

Scholkmann et al., 2010; Molavi and Dumont, 2012), this is the

first time that the utility of these techniques have been explic-

itly and systematically tested for functional NIRS studies. This is

important because functional studies, in which obtaining an HRF

is the experimental goal, are by far the most common applica-

tion of NIRS. Furthermore, functional NIRS is becoming more

and more popular, in a variety of fields, and amongst users who

may not wish to investigate complex signal analysis techniques

themselves. One practical goal of this study was therefore to deter-

mine the motion correction techniques that can reliably improve

the recovered HRF, so that those techniques can be incorporated

into the open-source NIRS processing package HOMER23, and

disseminated to users.

The simulations performed here are designed to closely mimic

a real functional NIRS experiment, but they still have a number

of limitations, and our results will not apply to all datasets and all

experimental paradigms. For example, the performance of PCA is

heavily dependent on the number of NIRS channels in a dataset,

which we did not vary here. Another potential limitation is the

choice of dataset. It is possible that the types of motion artifact,

the background hemodynamic oscillations and the quality of NIRS

recording are different in these 20 stroke patients than in a stan-

dard functional NIRS study. However, we believe these effects are

likely to be negligible.

One surprising result is that trial rejection does not produce

a significant improvement in the recovered HRF compared to no

correction (Figure 2). This is almost certainly due to the range

of the number of trials rejected in these datasets. The minimum

number of trials rejected in our simulations was 7 out of 25,

3www.nmr.mgh.harvard.edu/optics
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FIGURE 3 | Examples of recovered hemodynamic response functions.

(A) Is a case where the initial (“no correction”) HRF is very poor and PCA,

spline, and wavelet approaches can be seen to improve it. (B) Is a case

where the initial HRF is reasonably accurate but likely contaminated by

motion. Here the HRF is improved by trial rejection and all four motion

correction techniques. (C) Shows a case where the initial HRF is very

accurate. Trial rejection is detrimental to the HRF as are PCA, spline, and

wavelet corrections.

FIGURE 4 | Scatter plots showing the MSE of each HRF recovered via

PCA (A), spline (B), wavelet (C), and Kalman (D) techniques, plotted

against that achieved by no correction. A clear trend is apparent for

wavelet analysis (and to a lesser extent PCA) that indicates a tendency for the

MSE to be increased in cases where the initial (no correction) value was low,

while a decrease in MSE is reliably achieved if the initial MSE is high.

which is a relatively high proportion. It is extremely likely that

trial rejection would provide a significant improvement compared

to no correction if only a small number of trials were initially

rejected. As the proportion of rejected trials increases, the more

likely it is that including those trials will produce a better HRF

than rejecting them, as motion artifacts will be minimized simply

by block-averaging.

All four motion correction techniques produce an improve-

ment in HRF recovery on average. Spline interpolation provides

the highest average decrease in MSE (55%), reduces MSE in 80%
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FIGURE 5 | Scatter plots showing the CNR of each HRF recovered via PCA (A), spline (B), wavelet (C), and Kalman (D) techniques, plotted against that

achieved by no correction.

of cases (Figure 4) and produces the highest average R2 (Figure 6)

while wavelet analysis provides an average decrease in MSE of

50%, reduces MSE in 77% of cases and produces the highest aver-

age CNR (Figure 6). Although defining a single, best technique

depends on which metrics are considered, it is clear that spline

and wavelet techniques are the most successful.

The results of Figures 4–6 show that in practice there will be

cases where motion correction will be detrimental. The distribu-

tions shown in Figures 4A–D suggest that this is much more likely

in cases where the uncorrected HRF is already very accurate, par-

ticularly for wavelet analysis. These cases of low initial MSE are

the cases where the number and/or amplitude of motion artifacts

is/are small. In cases where only a small proportion of stimulus

trials are affected by motion artifacts, correction approaches may

not be suitable and the standard approach of trial rejection would

likely be preferable. This result is clearly expected for PCA and

wavelet approaches. In cases where movement is rare, the assump-

tions on which the PCA and wavelet approaches are based will

begin to break down and both techniques will begin to remove

components of the data that have a physiological origin.

The fact that wavelet analysis exhibits a clear relationship

between the uncorrected MSE and the improvement it can provide

may give it an advantage over spline interpolation, where such a

pattern is less clear. It may be possible to define a threshold (based

on the proportion of data that is affected by motion artifact or the

uncorrected CNR) that will determine whether the application of

wavelet analysis is suitable and therefore avoid cases where wavelet

analysis will be detrimental.

Although we have attempted to apply these pre-published

motion correction techniques in the manner described by their

respective authors, there are a number of ways in which these

techniques could potentially be improved without the need for

additional external inputs or for alteration of an experimental

paradigm. One obvious example is to target the PCA and Kalman

approaches so as to only examine periods of data that are pre-

determined as motion. Wavelet analysis takes advantage of the

abnormal spatial and temporal characteristics of motion artifacts

in the wavelet domain to identify and remove them. Spline inter-

polation requires knowledge of the location of motion artifacts

throughout the dataset, and interpolation is only performed for

those periods. However, PCA and Kalman filtering are applied to

the entire NIRS time-course, including periods where we do not

believe there is motion artifact. These algorithms could easy be

altered so as to only be applied during periods of identified motion

artifact. The variance of the NIRS signal that is due to motion arti-

fact during periods identified as motion artifact will obviously be

very large. Applying PCA with a high value of σ_PCA to only

those periods may produce better results that applying PCA to the

entire dataset, particularly in cases where motion is not particu-

larly prevalent and therefore accounts for a lesser proportion of

the variance of the entire dataset. Another obvious advance would

be to employ trial rejection in conjunction with a given motion
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FIGURE 6 | Overall motion correction results. Each box plot shows the

median (line and notch), the 25th and 75th percentiles (the edges of each

box) and the most extreme values not considered outliers (whiskers). (A)

shows the MSE for no correction (“None”), trial rejection (“Rej”), and each

of the four motion correction techniques. (B) shows the percentage

change in MSE relative to no correction. (C,D) show R2 and CNR for no

correction (“None”), trial rejection (“Rej”), and each of the four motion

correction techniques.

correction technique. It would be trivial to apply hmrMotionArti-

fact to identify motion artifacts still present in the corrected NIRS

data and remove any stimulus trials that remain contaminated.

One can also conceive of a recursive technique whereby motion

correction is performed repeatedly until no motion artifacts are

detected.

As described in the introduction, we set out to test only those

motion correction techniques that can be applied after NIRS data

acquisition, without altering the experimental design and without

the need for additional external inputs. While we believe this is the

most relevant approach to motion correction for the majority of

NIRS applications at present, this may in fact change.

The use of short separation NIRS channels (which we would

define as channels with a source-detector separation of less than

10 mm in adults) has been shown to be extremely beneficial to

functional NIRS studies because they provide an explicit mea-

sure of NIRS signal components originating from superficial (i.e.,

non-cortical) tissues (Saager and Berger, 2008; Zhang et al., 2009;

Gagnon et al., 2011, 2012; Saager et al., 2011). The use of short

separation channels provides some of the advantages of diffuse

optical tomography (in that the cortical signal of interest can be

disentangled from the superficial signal), but without the need for

a very large number of channels or a dense optical fiber array.

The analysis by Robertson et al. (2010) shows that short separa-

tion channels can also be very useful in the reduction of motion

artifacts using adaptive filtering techniques. We anticipate that a

Kalman filtering approach, using the short separation signal as an

input as performed by Gagnon et al. (2011, 2012) would also be

very effective in the removal of motion artifacts.

Overall, the analysis of the impact of post-processing motion

correction techniques on functional NIRS data described here

allows us to conclude that motion correction techniques can

and should be used to improve the accuracy of the recovered

HRF in functional NIRS studies that are affected by motion arti-

facts, especially in cases where motion artifacts are prevalent.

Our results show that, on average across 20 datasets and multi-

ple repetitions, PCA, spline interpolation, and wavelet techniques

all produced significant improvements in MSE, R2, and CNR.

The spline technique proposed by Scholkmann et al. (2010) pro-

duced the greatest improvement for MSE and R2, while wavelet

analysis described by Molavi and Dumont (2012) produced the

greatest increase in CNR. We believe the application of both

of these techniques can be highly beneficial to functional NIRS

analysis.
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