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Abstract

Background: Many clinical trials focus on the comparison of the treatment effect between two or more groups
concerning a rarely occurring event. In this situation, showing a relevant effect with an acceptable power requires the
observation of a large number of patients over a long period of time. For feasibility issues, it is therefore often
considered to include several event types of interest, non-fatal or fatal, and to combine them within a composite
endpoint. Commonly, a composite endpoint is analyzed with standard survival analysis techniques by assessing the
time to the first occurring event. This approach neglects that an individual may experience more than one event
which leads to a loss of information. As an alternative, composite endpoints could be analyzed by models for
recurrent events. There exists a number of such models, e.g. regression models based on count data or Cox-based
models such as the approaches of Andersen and Gill, Prentice, Williams and Peterson or, Wei, Lin and Weissfeld.
Although some of the methods were already compared within the literature there exists no systematic investigation
for the special requirements regarding composite endpoints.

Methods: Within this work a simulation-based comparison of recurrent event models applied to composite
endpoints is provided for different realistic clinical trial scenarios.

Results: We demonstrate that the Andersen-Gill model and the Prentice- Williams-Petersen models show similar
results under various data scenarios whereas the Wei-Lin-Weissfeld model delivers effect estimators which can
considerably deviate under commonly met data scenarios.

Conclusion: Based on the conducted simulation study, this paper helps to understand the pros and cons of the
investigated methods in the context of composite endpoints and provides therefore recommendations for an
adequate statistical analysis strategy and a meaningful interpretation of results.
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Background
In many clinical trials, the comparison of a rarely occur-
ring event between different treatment groups is of pri-
mary interest. To demonstrate a relevant effect and reach
an acceptable power, a high number of patients has to be
included in the study and observed for a long time period.
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This can be avoided by considering not only one type of
event but several different event types of clinical interest
which can be combined within a so-called composite end-
point. Thereby, the expected number of events increases
and, as a consequence, the power increases as well. The
components of a composite endpoint ideally correspond
to the same treatment effect; however this often is not the
case in clinical application. The most common and also
most simple approach to analyze a composite endpoint is
to investigate the time to the first event by the common
Coxmodel [1]. The resulting treatment effect also denoted
as the all-cause hazard ratio has the advantage that it has a
rather intuitive interpretation from a clinical perspective
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as only the direct effect of a treatment is measured [2].
However, one obviously neglects that an individual may
experience more than one non-fatal event which leads to a
loss of information. Including recurrent events to quantify
the treatment effect seems appealing as the information
from each patient is fully exhausted. On the other hand,
the different event processes are usually rather complex
and as a consequence a corresponding effect measure will
be a mixture of the treatment’s direct and indirect effects
making the interpretation more difficult [2]. Whereas the
time to first event approach defines the current standard
and is therefore already well understood, the applica-
tion of recurrent event models to composite endpoints is
rather rare. The aim of this work therefore is to evaluate
the performance of existing recurrent eventmodels for the
specific data situation of a composite endpoint which is
commonly characterized by the following properties:

• For each event type, recurrent or terminal, there exist
separate event processes that might be correlated or
not.

• The event-specific treatment effects related to the
different event types may deviate.

• After occurrence of an event, the instantaneous
baseline risk for a subsequent event, fatal or
non-fatal, increases.

• The instantaneous risk for a subsequent event
depends on the time when the previous event
occurred.

• After occurrence of an event, the relative treatment
effect for a subsequent event (in terms of the hazard
ratio) may change.

The most simple analysis approach in a recurrent event
setting is to count the events observed within a given time
period. These counts may, for example, follow a Poisson, a
quasi-Poisson or a negative binomial distribution [3].
Whenever patients are not all fully observed but are

subject to an underlying censoring mechanism, analysis
strategies for event times should be preferred over sim-
ple counting approaches. As this situation is much more
common in clinical application, our focus lies on mod-
els for event times rather then on counting models. The
most frequently applied analysis method for recurrent
time-to-event data is the model by Andersen and Gill [4]
which is based on the common Cox proportional haz-
ards model [1]. The Andersen-Gill model assumes inde-
pendence between all observed event times irrespective
whether these event times correspond to the same patient
or to different patients. Two other (stratified) Cox-based
conditional models were proposed by Prentice, Williams,
and Peterson [5] which incorporate the order of events.
These two approaches are based on different time scales,
the gap time and the total time scale. The gap time

approach investigates the time since the last event whereas
the calendar or total time scale considers the time since
study entry. As a further alternative, an unconditional
marginal model was proposed by Wei, Lin, and Weissfeld
[6]. This model ignores the order of occurrence of the
events. Therefore, for each subsequent event all individ-
uals are at risk independent of a proceeding event. The
model by Wei et al. [6] is also based on a total time scale.
All these models can be extended by frailty terms to

model individual patients’ heterogeneity in the baseline
hazards [7–9]. For the Anderson-Gill model, Lin and
Wei [10] proposed a robust variance estimator to account
for individual patients’ heterogeneity.
All models introduced above are originally formulated

to model a single-event process. The situation of sev-
eral correlated or independent event processes related to
different event types is not taken into account. Rogers
et al. [11], Mazroui et al. [12], and Rondeau et al. [13]
also looked at the joint frailty model which connects
one or two recurrent event processes with another
process leading to a fatal event through an individual
frailty. Additionally, several event time processes (non-
fatal and fatal) can be displayed by a multi-state model
with equal or different transition hazards between the
events [8, 14, 15].
Some of the above models have been systematically

compared before [3, 11, 16–18]. However, the methods
were not investigated in the special context of composite
endpoints as described above. Rogers et al. [11] consid-
ered in their simulations a recurrent event and a depen-
dent fatal event but did not account for a change in the
hazard ratio after occurrence of a first event.
In this paper, we focus on a comparison between

the common Anderson-Gill model [4], the models by
Prentice, Williams and Peterson [5], and the model from
Wei, Lin and Weissfeld [6]. We investigate different data
settings with two event processes, one recurrent non-
fatal event and a fatal event. The comparison is based on
the statistical properties of the models’ treatment effect
estimator and its correct interpretation, on the under-
lying model assumptions, and on the robustness under
deviations from these assumptions. The aim is to deduce
recommendations for the choice of an appropriate anal-
ysis model which addresses the specific data structure of
clinical trials with composite endpoints. The performance
properties of the different models will be investigated
using Monte-Carlo simulations based on realistic clinical
trial settings. The paper is organized as follows: We will
start with an introduction of the general framework and
the different models in the next section. In the Methods
section the simulation study for a performance compari-
son of the different methods is described. Afterwards the
results are presented. We discuss our methods and results
and finally we finish the article with concluding remarks.
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Modeling recurrent events
Within this work, we consider a randomized, con-
trolled, two-armed clinical trial with a composite pri-
mary endpoint which is composed of two different event
types. Let us assume that there is one non-fatal, pos-
sibly recurrent event, say myocardial infarction (MI),
and one fatal event like death (D). A total of n individ-
uals are allocated in a 1 : 1 ratio to the experimental
group (E) and to the control (C). The group allocation
of individual i is expressed by the covariate Xi which
equals 1 whenever the patient belongs to the experimen-
tal group and 0 otherwise. Each individual i = 1, . . ., n
can experience up to j = 1, . . ., k events of the same
or of differing types. Thereby, k which is the maximal
number of considered events per patient is restricted
here for the sake of simplicity. The process for the event
occurrences can be described by a so-called multi-state
model, compare [8, 14, 15]. An individual enters the
study at an initial state 0. Every time an event occurs,
the individual leaves the previous state and enters a new
event state. If this observed event is non-fatal, the indi-
vidual can experience more subsequent non-fatal events
or the fatal event. The instantaneous risk to experi-
ence a jth event of type MI or D at time t given that
the individual has experienced j − 1 non-fatal events
before is given by the transition hazards λj,MI(t) and
λj,D(t), respectively. Figure 1 displays the corresponding
multi-state model.
Most approaches to analyze recurrent events are

extensions of the well-known Cox model [1], which
is shortly presented in the following. Moreover, we
will introduce several extensions of the standard Cox
model such as the model from Andersen and Gill [4],
the models from Prentice, Williams and Peterson [5],
as well as the model from Wei, Lin and Weissfeld
[6]. Subsequently, these models will be systematically
compared for the special data situations met in the
context of a clinical trial with a composite primary
endpoint.

Cox proportional hazards model
The Cox proportional hazards model is the most common
approach to assess a treatment effect for time-to-event
data between two or more groups with or without fur-
ther covariates [1]. For a clinical trial with two treatment
groups and no further covariates, as described above, the
hazard for an individual i is modeled as

λi(t) = λ0(t) exp(βXi), i = 1, . . ., n, (1)

where λ0(t) refers to a common baseline hazard and λi(t)
is the hazard of individual i to experience an event at
time t. The Cox model aims at estimating the coeffi-
cient β , where exp(β) refers to the hazard ratio expressing
the treatment effect. The baseline hazard λ0(t) remains
unspecified implying that the Cox model is semiparamet-
ric. The hazard ratio exp(β) is assumed to be constant
over time which means that the hazards related to the
groups are proportional. The coefficient β is estimated by
solving the partial likelihood-function

L(β) =
n∏

i=1

(
exp(βXi)∑

l∈RCox(Ti) exp(βXl)

)δi

, (2)

where Ti, i = 1. . ., n, are the individual-specific distinct
event times and δi is the event indicator which equals 1 for
an event and 0 for censoring. The risk set RCox(t) indicates
the number of individuals that are at risk for an event just
prior to time point t, meaning all individuals that are nei-
ther censored nor did they experience an event just prior
to t. The risk set is thus defined as

RCox(t) := {l, l = 1, . . ., n : Tl ≥ t}. (3)

The common Cox model only considers the time until
the first occurring event meaning that all events after the
first are neglected.When applied to a composite endpoint,
this first event might correspond to different event types
(here: either MI or D). The corresponding hazard λi(t) is
then referred to the all-cause hazard which is defined as
the instantaneous risk to experience an event of any type

Fig. 1Multi-state model displaying the event process for a non-fatal (MI=myocardial infarction) and a fatal event (D=death); λj,MI(t), λj,D(t) are the
transition hazards at time t for the jth event



Ozga et al. BMCMedical ResearchMethodology  (2018) 18:2 Page 4 of 12

at time t given that no event occurred before. The all-
cause hazard is given as the sum over the cause-specific
hazards related to each event type. For the situation con-
sidered here, this means that λi(t) = λiMI(t)+λiD(t). The
resulting treatment effect is given by the all-cause hazard
ratio denoted as θAllCause = exp(β) which is the ratio of
the all-cause hazards of the experimental and the control
group. The all-cause hazard ratio estimated via the com-
mon Cox model is the most commonly applied treatment
effect estimator to analyze composite endpoints. This
strategy can thus be regarded as the reference procedure.
As indicated above, a serious shortcoming of this

approach is that all events occurring after the first are
neglected. This leads to a loss in information and power.
However, the common Cox model can be extended to
model recurrent events in different ways as described in
the following.

Andersen-Gill model
The Andersen-Gill model is probably the most often
applied model for recurrent event times and is a sim-
ple extension of the Cox model [4]. It is based on the
assumption that the instantaneous risk to experience an
event at time t since study entry remains the same irre-
spective of the fact whether previous events occurred or
not. This assumptions implies that the recurrent events
are assumed to be independent which corresponds to a
very strong assumption. If this strong assumption is ful-
filled, the all-cause hazard can be estimated by using
the event times of every observed event. Thus, a single
patient contributes more than one piece of information
depending on the number of individually observed events.
The Andersen-Gill model therefore aims at estimating the
same quantity as the common Cox model given by the
all-cause hazard ratio θAllCause. However, the estimation is
based onmore information as an individual who has expe-
rienced an event remains under risk for further events.
This implies that the corresponding partial likelihood (2)
is based on a higher number of events and on a modified
risk set

RAG(t) :={l, l = 1, . . ., n : ∃ j ∈ {1, . . ., kl} (4)
with Tlj ≥ t},

were Tlj are the distinct event times for individual l, l =
1, . . ., n, and for the jth occurring event j = 1, . . ., kl,
with kl being the individual-specific number of distinct
observed event times, where kl ≤ k, l = 1, . . ., n, is
assumed meaning that the maximal number of events
which are taken into account is given by k.
If the assumption of independent recurrent event times

is not fulfilled, the Anderson-Gill model might still be
applied but no longer estimates the all-cause hazard ratio.
Instead, the resulting treatment effect estimator is given as

a hazard ratio combining direct and indirect effects [19].
The mixed effect resulting from the Anderson-Gill model
will be denoted as θMixAG. This treatment effect cannot
easily be parametrized and might therefore be considered
as difficult for interpretation.
Applying the Andersen-Gill model is straightforward

with standard statistical software by using the Cox model
but with a data frame that includes all events for an indi-
vidual and therefore comprises more than one entry for
each individual. A step-by-step introduction for applying
the Andersen-Gill model to a small exemplary data set in
the software R [20] is provided in the Additional file 1.

Prentice-Williams-Peterson models
Prentice,Williams, and Peterson [5] describe in their work
two approaches to ‘relate the hazard function to preceding
failure time history’. These methods are stratified Cox-
based approaches where the first considers the time since
study entry (total time or calendar time scale) while the
other incorporates the time since the previous event (gap
time scale). If again a clinical trial with two treatment
groups and no further covariates is considered, in the total
time approach the hazard for an individual i for the jth
recurrent event is modeled as

λij(t) = λ0j(t) exp(βjXij), (5)
i = 1, . . ., n, j = 1, . . ., ki, ki ≤ k,

whereas in the gap time approach the hazard is modeled
as

λij(t) = λ0j(t − tj−1) exp(βjXij), (6)
i = 1, . . ., n, j = 1, . . ., ki, ki ≤ k.

It can be seen that the underlying model is similar to
the common Cox model (1) but for each recurrent event
j = 1, . . ., ki a separate hazard function is modeled with
an own baseline hazard λ0j and a regression parameter βj.
Thus, the hazards for a recurrent event may change after a
previous eventmeaning that the current risk to experience
an event can be influenced by the previous events. The
order number j of an event defines a stratification vari-
able within theses approaches, so that in stratum 1 there
are all first event times, in stratum 2 there are all second
event times, and so on. An individual is at risk for the
jth event only if it experienced a previous (j − 1)th event.
Thus, in this two models the hazard at time t for the jth
recurrence are conditional on the entire previous events.
The partial likelihood can be written as a product of the
strata-specific partial likelihoods

L(β) =
k∏

j=1
Lj(β), (7)
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with

Lj(β) =
n∏

i=1

⎛

⎝ exp
(
βjXij

)
∑

l∈RPWP
j (Tij) exp

(
βjXl

)

⎞

⎠
δij

. (8)

The risk sets are defined separately for each stratum. For
the total time model, the risk set is given as

RPWP
j (t) := {

l, l = 1, . . ., n : Tl(j−1) < t ≤ Tlj
}
, (9)

whereas for the gap time model the risk set is

RPWP
j (t) := {

l, l = 1, . . ., n : (Tlj − Tl(j−1)) ≥ t
}
, (10)

where again Tlj are the distinct event times for individ-
ual l, l = 1, . . ., n, and for the jth occurring event j =
1, . . ., kl, kl ≤ k, l = 1, . . ., n.
It should be noted that the maximal number of recur-

rent events for an individual patient given by k determines
the number of strata. The models by [5] can be applied to
estimate strata-specific treatment effects βj, j = 1, . . ., k.
However, when analyzing a composite endpoint, one is
usually interested in a single treatment effect estimator
quantifying the net effect. Setting β1 = β2 = . . . = βk =
β within the above partial likelihood allows to estimate
a common parameter β . The corresponding treatment
effect in terms of a hazard ratio exp(β) also corresponds
to a mixed effect denoted as θMixPWP .
The implementation can again be easily conduced by

adapting the standard Cox model. For the Prentice-
Williams-Peterson total time approach the same data
structure as in the Andersen-Gill model is required
but with an additional stratum variable which counts
the number of events for each individual. For the
gap time model all starting times are set to zero and
the stopping time denotes the time since the previous
event. A corresponding R code is again provided in the
Additional file 1.

Wei-Lin-Weissfeld model
The model by Wei, Lin, and Weissfeld [6] is also
a stratified Cox-based approach where the strata are
defined as described in the previous section for the
Prentice-Williams-Peterson models. The hazard function
ismodeled equivalently to the Prentice-Williams-Peterson
total time model as given in (6).
In contrast to the models by [5], an individual is at risk

for every (recurrent) event as long as it is under observa-
tion. As a consequence, an individual is at risk for a sub-
sequent event even if no previous event occurred. Thus,
the dependence structure between the events observed for
an individual is not specified. Strata-specific effect esti-
mators βj, j = 1, . . ., k, can be obtained from the partial
likelihoods (8) with the strata-specific risk sets defines as

RWLW
j (t) :={l, l = 1, . . ., n : ∃ j ∈ {1, . . ., k} (11)

with Tlj ≥ t},
where Tlj are the event times for individual l, l = 1, . . ., n,
and for the jth occurring event j = 1, . . ., k. However, in
contrast to the definition above, if the number of observed
events for an individual kl is smaller than the maximal
number of counted events k, ‘artificial’ event times Tlj :=
Tlkl , j > kl, are defined with an event indicator δlj that
equals 0 for these cases.
A combined average regression coefficient is obtained

by means of a simple linear combination of the strata-
specific parameters, e.g. β := 1/k · ∑k

j=1 βj. Because
the strata-specific regression coefficients are usually cor-
related, a correlation-adjusted variance estimator for this
average treatment effect can be obtained as described in
[6]. The resulting treatment effect in terms of the hazard
ratio exp(β) again corresponds to a mixed effect denoted
as θMixWLW . Note that the more strata there are under
consideration, the less individuals will remain per strata
which results in a strata-specific effect estimation with
low precision. Therefore, when applying the Wei-Lin-
Weissfeld model, the number of events per patient to be
considered in the analysis should be limited depending on
the overall number of patients. For the simulations per-
formed within this work we considered strata for every
observed event in order to assess the impact of this
decreasing precision.
As before, the Wei-Lin-Weissfeld model can be imple-

mented by means of the Cox model. The data structure
must be given by only one time variable which describes
all event times. Each individual is represented in each stra-
tum where artificial event times are generated if the indi-
vidual does not experience the maximal number of events
taken into account as described before. An explana-
tory implementation in the software R is given in the
Additional file 1.

Methods
In order to provide a systematic comparison between
the models introduced before within the context of com-
posite endpoints, a simulation study with the software R
was performed [20]. Various data scenarios considering a
composite endpoint composed of two independent event
processes were investigated corresponding to a non-fatal
recurrent event and a fatal event. Generally, compos-
ite endpoints are usually composed of more than one
recurrent event either with or without incorporating an
additional fatal event, e.g. myocardial infarction, stroke,
unstable angina, and specific causes of death [21, 22].
Furthermore, the different event processes are often cor-
related in practice and in addition there can be fatal events
which are not influenced by the treatment under inves-
tigation. The latter situation corresponds to a competing
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risk scenario where the competing event is not treatment-
related. However, our intention was to investigate a rather
simple example to better understand the basic perfor-
mance properties of the models. The results of our work
define the basis to investigate the models’ performance
under more complex event processes in future work.
We investigated the magnitude of the models’ treatment

effect estimators along with the corresponding power val-
ues. As we investigate the models’ performance for event
times resulting from two independent event processes, the
model assumptions can be fulfilled for each event pro-
cess separately whereas the joint event times which do not
differentiate between the event types do no longer fulfill
these assumptions. Therefore, the true treatment effects
for the composite endpoint which are estimated by the
different models cannot be parametrized. It is therefore
not possible to quantify a potential bias of the point esti-
mators for the treatment effects but only to compare the
estimators resulting from the different models.
The robustness of the different models was evaluated by

considering simulation scenarios that violated the under-
lying model assumptions for each event process sepa-
rately. As motivated in the introduction, the typical data
situation of a composite endpoint is commonly charac-
terized by a dependence of instantaneous baseline hazard
and the relative treatment effect on time and/or on the
time point of a previous event. The hazards for the recur-
rent event myocardial infarction (MI) and the fatal event
death (D) are therefore modeled as

λMI
ij (t) = λMI

0j
(
t, tprev

)
exp

(
βMI (

tprev
) · Xij

)
,

i = 1, . . ., n, j = 1, . . ., ki, ki ≤ k, (12)

and

λDi (t) = λD0
(
t, tprev

)
exp

(
βD (

tprev
) · Xi

)
, (13)

i = 1, . . ., n.

Thereby, λ∗
0j(t, tprev) denotes the baseline hazard and

exp(β∗(·)) the treatment effect in terms of the hazard
ratio.
Five main simulation scenarios are considered. The

investigated hazard functions and hazard ratios for these
scenarios are displayed in Table 1. The hazard functions
and underlying parameters were chosen such that a rea-
sonable but rather small number of events is expected to
be observed within the observational period.
Scenarios 1a − 1e mimics the situation that the hazard

and the hazard ratio do not change after occurrence of an
event. However, the treatment effect can differ between
the fatal event (D) and the recurrent event (MI) with either
equal or opposite effect directions. Scenarios 2 capture
a change in the baseline hazard either dependent on the
previous event time (Table 1, Scenarios 2a − 2e) or on
the current time (Table 1, Scenarios 3a− 3f ). This change

in the baseline hazard can be accounted for with the
stratified models (Prentice-Williams-Peterson and Wei-
Lin-Weissfeld) but not with the Andersen-Gill model.
Whereas for Scenarios 3a−3e, the baseline risks are time-
dependent but equal for both event types, Scenario 3f
reflects the common situation where the baseline risks for
the recurrent event is higher than for the fatal event [22].
Finally, Scenarios 4 and 5 illustrate situations where a pre-
vious event also influences the relative treatment effect in
terms of the hazard ratio. We assume this change in the
hazard ratio to be dependent on the previous event time
with a systematically increasing effect (Table 1, Scenar-
ios 4a − 4e) or a systematically decreasing effect (Table 1,
Scenarios 5a− 5f ) depending on the previous event time.
Thereby, the baseline risks as well as the starting treat-
ment effects at time 0 remain the same for both event
types as in the other investigated scenarios. Note that
Scenario 5f is equal to Scenario 5a but the ’decreasing
factor’ is particularly large in magnitude. Therefore, this
scenario illustrates a situation were the hazard ratio very
strongly depends on the previous event time. Through-
out all Scenarios 1 − 5, the hazard ratio is the same for
the fatal and the non-fatal event in Scenario a whereas
Scenario b corresponds to situations with a higher effect
for the recurrent event but the effects pointing into the
same direction. This is a situation most commonly met
in clinical applications, compare [21, 22]. For Scenario c
the effects again point into the same direction but with
a greater effect for the fatal event. Scenarios d and e
reflect situations where the event-specific effects point
into opposite directions with a negative treatment effect
for the fatal event and a positive effect for the recurrent
event in Scenarios d and vice versa in Scenarios e.
Bender et al. [23] described in general how non-

recurrent event times can be simulated, and Jahn-
Eimermacher et al. [24] followed their approach and
developed an algorithm to recursively simulate recurrent
event times in a total timemodel.We base our simulations
on bothmethods as we consider at fatal non-recurrent and
a non-fatal recurrent event. The event times for the fatal
event were simulated according to [23] with the restriction
that if a non-fatal event has already occurred the baseline
hazard and the hazard ratio are allowed to change based
on the previous event time (compare the definition of the
hazard function for death (13)). For the recurrent event,
we started by simulating gap times as described in [24].
To allow a change in the hazard and hazard ratio, the gap
times were altered depending on the time or time point
of the previous event. For the models based on total event
times, these are generated by summing up all observed
gap times, where the individual total time for the first
event corresponds to the first individual gap time. Note
that as the gap times follow different distributions, the dis-
tribution of the actual total event times is not identifiable.
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Table 1 Simulation scenarios

Scenario λMI
0 (t, tprev) λD0 (t, tprev) exp(βMI(tprev)) exp(βD(tprev))

1a 0.25 0.25 0.5 0.5

1b 0.25 0.25 0.5 0.7

1c 0.25 0.25 0.7 0.5

1d 0.25 0.25 0.7 1.5

1e 0.25 0.25 1.5 0.7

2a 0.25 · 1/√tprev 0.25 · 1/√tprev 0.5 0.5

2b 0.25 · 1/√tprev 0.25 · 1/√tprev 0.5 0.7

2c 0.25 · 1/√tprev 0.25 · 1/√tprev 0.7 0.5

2d 0.25 · 1/√tprev 0.25 · 1/√tprev 0.7 1.5

2e 0.25 · 1/√tprev 0.25 · 1/√tprev 1.5 0.7

3a t0.3 t0.3 0.5 0.5

3b t0.3 t0.3 0.5 0.7

3c t0.3 t0.3 0.7 0.5

3d t0.3 t0.3 0.7 1.5

3e t0.3 t0.3 1.5 0.7

3f 1.5 · t0.3 t0.3 0.5 0.5

4a 0.25 0.25 0.5 exp(0.05ln(0.5) · tprev) 0.5 exp(0.05ln(0.5) · tprev)
4b 0.25 0.25 0.5 exp(0.05ln(0.5) · tprev) 0.7 exp(0.05ln(0.7) · tprev)
4c 0.25 0.25 0.7 exp(0.05ln(0.7) · tprev) 0.5 exp(0.05ln(0.5) · tprev)
4d 0.25 0.25 0.7 exp(0.05ln(0.7) · tprev) 1.5 exp(0.05ln(1.5) · tprev)
4e 0.25 0.25 1.5 exp(0.05ln(1.5) · tprev) 0.7 exp(0.05ln(0.7) · tprev)
5a 0.25 0.25 0.5 exp(−0.05ln(0.5) · tprev) 0.5 exp(−0.05ln(0.5) · tprev)
5b 0.25 0.25 0.5 exp(−0.05ln(0.5) · tprev) 0.7 exp(−0.05ln(0.7) · tprev)
5c 0.25 0.25 0.7 exp(−0.05ln(0.7) · tprev) 0.5 exp(−0.05ln(0.5) · tprev)
5d 0.25 0.25 0.7 exp(−0.05ln(0.7) · tprev) 1.5 exp(−0.05ln(1.5) · tprev)
5e 0.25 0.25 1.5 exp(−0.05ln(1.5) · tprev) 0.7 exp(−0.05ln(0.7) · tprev)
5f 0.25 0.25 0.5 exp(−0.5ln(0.5) · tprev) 0.5 exp(−0.5ln(0.5) · tprev)
λMI
0 (t, tprev) baseline hazard function for the recurrent event (myocaridal infarction); λD0 (t, tprev) baseline hazard function for the fatal event (death); exp

(
βMI(tprev)

)
hazard

ratio for the recurrent event (myocardial infarction); exp(βD(tprev)) hazard ratio for the fatal event (death)

The simulated individual total time for the recurrent event
is censored whenever it exceeds the simulated death time
or the individual follow-up time. The simulated individ-
ual total time for the fatal event is censored if it exceeds
the individual follow-up time. The individual follow-up
times were simulated with uniformly distributed entry
times within the interval [ 0, 1] and a minimal follow-up
of 2 years. We additionally investigated minimal follow-
up times of 5 and 10 years for some specific data
scenarios.
For each scenario, we simulated a total of 5000 data

sets each with 200 patients in total (i.e. 100 patients
per group). Subsequently, all models described above are
applied to the simulated data sets. Thereby, the strata-

specific approaches use a number of strata which is given
by the maximal number of observed events per individual.

Results
Table 2 presents the average values and correspond-
ing standard deviations of individual-specific observed
number of events, the estimated hazard ratio derived
from the Andersen-Gill model (θ̂MixAG), the esti-
mated hazard ratios derived from the two models of
Prentice, Williams and Peterson (total time model:
θ̂MixPWP1, gap time model: θ̂MixPWP2), and the esti-
mated hazard ratio from the Wei-Lin-Weissfeld model
(θ̂MixWLW ) along with the corresponding empirical power
values.
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For Scenarios 1a to 1e, the baseline hazards and haz-
ard ratios are constant in time implying that the model
assumptions for the Andersen-Gill and the Prentice-
Williams-Peterson approaches are fulfilled for each event
process separately. It is therefore intuitive that the
estimated mean hazard ratios from the Andersen-Gill
and Prentice-Williams-Peterson models closely coincide
thereby showing an acceptable power. For the Wei-Lin-
Weissfeld approach, the magnitude of the treatment effect
increases independent of the direction of the effect which
is also known as ‘carry-over effect’ [25]. Remember that
the Wei-Lin-Weissfeld model includes all patients in each
stratum. The strata-specific effect estimators generally
increase in magnitude with time as later strata in the
experimental group contain more censored observations
and thus the influence of a single event in the control
group becomes larger resulting in an exaggerated treat-
ment effect over time. Furthermore, the standard devia-
tion is higher in the Wei-Lin-Weissfeld model. This can
be explained by the fact that no direct global effect but
strata-specific effects and variances are estimated which
are combined subsequently. As later strata contain fewer
events, the strata-specific standard deviation increases
with time. These observations for the Wei-Lin-Weissfeld
model can be generalized to most of the investigated
simulation scenarios: The estimated mixed effect result-
ing from the Andersen-Gill model and from the models
from Prentice, Williams and Peterson are nearly the same
whereas theWei-Lin-Weissfeld approach tends to result in
a treatment effect of higher magnitude with a higher stan-
dard deviation. Simulation Scenarios 1a and 1e differ with
respect to the constellation of the underlying effect sizes
for the two event types which either point in the same or
in opposite directions. The global treatment effect esti-
mator is generally stronger influenced by the effect of the
non-fatal, recurrent event. This is intuitive as the amount
of non-fatal events is generally higher than the amount
of fatal events and therefore the recurrent event process
dominates the global treatment effect.
Simulation Scenarios 2a to 2e and 3a to 3f investi-

gate time-dependent baseline hazards. A baseline hazard
that changes with the previous event time results in only
slightly differing effect estimates compared to the scenar-
ios with a constant baseline hazard (Scenarios 2a to 2e).
The standard deviation is also similar compared to Sce-
narios 1a, . . ., 1ewith constant baseline hazards. However,
the power values decrease because the investigated base-
line hazards result in fewer individuals at risk over time
and, as a consequence, in a reduced number of events
compared to the case of constant hazards. If the base-
line hazard changes only in dependence of the time t
(Scenarios 3a to 3f ), the estimated hazard ratios from
the Wei-Lin-Weissfeld model show the strongest devia-
tions from the effect estimators of the other models. As

discussed above, this is due to the so called ‘carry-over
effect’.
Finally, in Scenarios 4a to 4e and 5a to 5f the treatment

effect in terms of the hazard ratio changes with the previ-
ous event time. Scenarios 4a to 4e consider the situation
of an effect that increases with the previous event whereas
Scenarios 5a to 5f investigate a decreasing effect. The
resulting treatment effect estimators for Scenarios 4a to 4e
and 5a to 5e are close to the ones of Scenarios 1a to 1e con-
sidering constant hazard ratios. Here, the main influence
can be observed for the power values where intuitively
an increasing effect leads to a higher power whereas a
decreasing effect decreases the power when compared to
the results of Scenarios 1a to 1e. A difference in effect
estimation between the Andersen-Gill model and the
approach by Prentice,Williams and Peterson is observed if
the dependence of the hazard ratio on the previous event
time is extreme (Scenario 5f ). Note that Scenario 5 illus-
trates a situation where the treatment effect approaches 1
with an increasing previous event time. This decrease in
the magnitude of the hazard ratio over time is better cap-
tured by the conditional models of Prentice, Williams and
Peterson whereas the Andersen-Gill model is much less
sensitive for this situation.
We conducted additional simulations with minimal

follow-up times of 5 and 10 years. The results are not
shown to restrict the length of this paper. Generally, the
magnitude of the estimated treatment effects also depend
on the follow-up duration. With an increasing observa-
tional period, more events are observed and therefore
the relation between the observed number of fatal and
non-fatal events can change depending on the underlying
hazard function. As a consequence, the follow-up dura-
tion especially has an influence on the effect estimator if
the underlying treatment effects for the two event types
point in opposite directions.

Discussion
In this work, we investigated the performance of com-
mon recurrent event models for various data scenarios
that capture different properties of composite endpoints.
We considered the following situations: 1. two indepen-
dent event processes for a fatal and a recurrent event with
equal or differing treatment effects, 2. a change in the
baseline hazard in dependence of the previous event time
or the actual time, and 3. a change in the hazard ratio in
dependence of the previous event time. By a Monte-Carlo
simulation study, we evaluated how the recurrent event
models from Andersen and Gill [4], Prentice, Williams
and Peterson [5], and Wei, Lin and Weissfeld [6] perform
in these situations.
Whenever the event-specific treatment effects differ,

all models deliver mixed overall effects in terms of haz-
ard ratios which cannot explicitly be parametrized as we
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consider two independent event processes which are com-
bined subsequently. In our situation with one recurrent
event and one fatal event, the estimated mixed hazard
ratio is more influenced by the effect in the non-fatal
event. This is due to the fact that the amount of recur-
rent events exceeds the amount of fatal events. This raises
the question if it is acceptable to consider a mixed haz-
ard ratio as a clinically relevant treatment effect measure
in all data situations. A mixed effect might not be prob-
lematic if the underlying effects of the event processes are
similar and point into the same direction. However, if the
event-specific treatment effects point into opposite direc-
tions, interpretation of the mixed effect becomes more
difficult. A small adverse effect for the fatal event can be
masked by a larger positive effect for the recurrent event.
This is also the case if composite endpoints are analyzed
with the common Cox model with a time-to-first-event
approach. However, by including all recurrent events into
the analysis, the impact of the fatal non-recurrent event
becomes even smaller which is important to remember
when recurrent events combined with a fatal event are
analyzed. Generally, it might also be of interest to inves-
tigate the models‘ performance if two or more recurrent
events are considered.
For the simulation scenarios where the baseline hazards

change in dependence of the actual time or the previous
event time, only slight changes in the effect estimators
compared to the constant baseline hazard scenarios were
observed. The same holds true for the scenarios that
mimic a small change in the hazard ratios dependent on
the previous event time of 0.05 · tprev. However, this is not
true if a higher decreasing effect change of 0.5 · tprev is
incorporated. In this situation the conditional models by
Prentice, Williams and Peterson capture this high change
in the effect better than the other models.
Throughout most of the investigated scenarios, the

Andersen-Gill model and the Prentice-Williams-Peterson
models show similar effect estimators, standard devia-
tions, and power values whereas the Wei-Lin-Weissfeld
model generally tends to deliver treatment effects which
are larger in magnitude independent of the direction of
the effect. Nonetheless, the power values of the Wei-Lin-
Weissfeld model are usually smaller which is due to the
considerably higher standard deviations of the estimated
hazard ratios. This is due to the different definition of
the risk sets within the models. For theWei-Lin-Weissfeld
approach all individuals are at risk for a subsequent event
even if they did not experience the previous event and
thereby the order of events is also neglected. This leads
to a ‘carry-over effect’ as explained above and by [25].
Therefore, the Wei-Lin-Weissfeld model seems not the
best choice to analyze a clinical trial with a composite
endpoint. The differences described before between the
Andersen-Gill or Prentice-Williams-Peterson models to

the approach of Wei, Lin, and Weissfeld were already
shown in previous works [3, 6, 16]. However, most of
these previous findings are not exactly comparable to
ours as the authors considered only one recurrent event
process which, in contrast to most of our results, leads
to greater differences between the Andersen-Gill and
Prentice-Williams-Peterson approaches.
As stated above, the results from the Andersen-Gill

model differ barely from the Prentice-Williams-Peterson
models because the risk sets are similar for both
approaches as long as only a few strata are considered
in the Prentice-Williams-Peterson model. For the scenar-
ios with a higher number of mean events, the differences
between these models become more obvious which can
especially be seen for Scenario 3e where the treatment
induces more fatal events. In this case, the Andersen-
Gill model remains more influenced by the recurrent
event process. Furthermore, the more strongly the effect
depends on the previous event time (like in scenario 5f )
the more the effect estimates of the models by Prentice,
Williams and Peterson deviate from the effect estimate by
the Anderson-Gill model. This is due to the strata-specific
partial likelihoods with the different risk sets for the
Prentice, Williams and Peterson models. From a theoret-
ical point of view, the Prentice-Williams-Peterson models
are the only models that take the order of the events into
account in the definition of the risk sets. Therefore, it
seems more appropriate to use one of these conditional
models instead of the method from the Andersen-Gill
model.
Based on our simulation study with one fatal and one

non-fatal event, the Prentice-Williams-Peterson model
seems to capture most of the commonly met data
scenarios for clinical trials with composite endpoints.
From our results, no general recommendation regard-
ing the choice between the total time or the gap time
approach can be derived. This choice should be guided
from the medical application at hand: While the total
time scale usually is of interest if the disease pro-
cess of the patient is considered as a whole, gap times
might be of interest when disease episodes are in the
medical focus.
The Wei-Lin-Weissfeld model and the Prentice-

Williams-Peterson model also allow to estimate
strata-specific effects which can provide an important
supplementary information to better understand themag-
nitude of the overall mixed effect. The Wei-Lin-Weissfeld
model also allows to base the analysis on alternative strata
definitions. For example, separate strata for the different
event types could be defined. Thereby, event-specific
effect estimates could be derived by analyzing the strata-
specific effects. As the order of events is neglected by this
approach, this alternative strata definition cannot easily
be adapted to the Prentice-Williams-Peterson models.
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All these models can be extended with a frailty
term to account for heterogeneity between individu-
als [7–9]. Irrespective of the fact whether a frailty
term is explicitly modeled, robust variance estima-
tors to adjust the variance of the corresponding effect
estimator for between-subject heterogeneity should be
preferred [10].
A more complex scenario would consider more than

one non-fatal event, e.g. myocardial infarction, stroke, and
unstable angina. These events are usually related and thus
more complex frailty models which allow a correlation
between event types should be investigated. Furthermore,
other fatal events not related to the treatment might occur
thereby inducing a competing risk scenario. We are cur-
rently working on the investigation of these models for
event processes related by a frailty term to address these
open topics.

Conclusion
In conclusion, apart from the general interpretation dif-
ficulty of an overall mixed effect, the conditional mod-
els from Prentice, Williams, and Peterson [5] could be
recommended to analyze clinical trials with a compos-
ite endpoint which is justified from a theoretical point
of view as well as from the results of our simulation
study. However, more work has to be done to consider
the situation of more than two correlated event pro-
cesses, e.g. myocardial infarction, stroke, and death, espe-
cially when the event-specific effects point in opposite
direction. The modelling approach of correlated pro-
cesses as proposed by Rogers et al. [11] could thereby be
of interest.
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