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Candidate enhancers can be identified on the basis of chromatin modifications, the binding of chromatin modifiers and

transcription factors and cofactors, or chromatin accessibility. However, validating such candidates as bona fide enhanc-

ers requires functional characterization, typically achieved through reporter assays that test whether a sequence can

increase expression of a transcriptional reporter via a minimal promoter. A longstanding concern is that reporter as-

says are mainly implemented on episomes, which are thought to lack physiological chromatin. However, the magnitude

and determinants of differences in cis-regulation for regulatory sequences residing in episomes versus chromosomes

remain almost completely unknown. To address this systematically, we developed and applied a novel lentivirus-based

massively parallel reporter assay (lentiMPRA) to directly compare the functional activities of 2236 candidate liver en-

hancers in an episomal versus a chromosomally integrated context. We find that the activities of chromosomally inte-

grated sequences are substantially different from the activities of the identical sequences assayed on episomes, and

furthermore are correlated with different subsets of ENCODE annotations. The results of chromosomally based report-

er assays are also more reproducible and more strongly predictable by both ENCODE annotations and sequence-based

models. With a linear model that combines chromatin annotations and sequence information, we achieve a Pearson’s

R
2 of 0.362 for predicting the results of chromosomally integrated reporter assays. This level of prediction is better

than with either chromatin annotations or sequence information alone and also outperforms predictive models of epi-

somal assays. Our results have broad implications for how cis-regulatory elements are identified, prioritized and func-

tionally validated.

[Supplemental material is available for this article.]

An enhancer is defined as a short region of DNA that can increase

the expression of a gene, independent of its orientation and flexi-

ble with respect to its position relative to the transcriptional start

site (Banerji et al. 1981;Moreau et al. 1981). Enhancers are thought

to be modular, in the sense that they are active in heterologous se-

quence contexts and in that multiple enhancers may additively

dictate the overall expression pattern of a gene (Shlyueva et al.

2014). They act through the binding of transcription factors,

which recruit histone modifying factors, such as histone acetyl-

transferase (HAT) or histone methyltransferase (HMT). Enhancers

are also associated with chromatin remodeling factors (e.g., SWI/

SNF) and the cohesin complex, which are involved in regulating

chromatin structure and accessibility (Schmidt et al. 2010;

Euskirchen et al. 2011; Faure et al. 2012).

Antibodies against specific transcription factors (TFs), histone

modifications or transcriptional coactivators are commonly used

for chromatin immunoprecipitation followedbymassivelyparallel

sequencing (ChIP-seq) to identify candidate enhancers in a

genome-wide manner. For example, the ENCODE Project Consor-

tium and other efforts have identified thousands of candidate en-

hancers in mammalian genomes on the basis of such marks or

their correlates (e.g., EP300 ChIP-seq, H3K27ac ChIP-seq, and

DNase I hypersensitivity) in diverse cell lines and tissues (Visel

etal.2009;TheENCODEProjectConsortium2012).However,ama-

jor limitation of such assays is that they reflect biochemical marks

that are correlated with enhancer activity, rather than directly

showing that any particular sequence actually functions as an en-

hancer. In other words, although such assays yield genome-wide

catalogs of potential enhancers, they do not definitively predict

bona fide enhancers nor precisely define their boundaries.

For decades, the primary means of functionally validat-

ing enhancers has been the episomal reporter assay. The standard
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approach is to relocate the candidate enhancer sequence to an

episomal vector, adjacent to a minimal promoter driving expres-

sion of a reporter gene, e.g., luciferase or others. More recently,

massively parallel reporter assays (MPRAs) have enabled the func-

tional characterization of cis-regulatory elements, including en-

hancers, in a high-throughput manner. MPRAs use sequencing-

based quantification of reporter barcodes to enable multiplexing

of the reporter assay (Patwardhan et al. 2009). MPRAs have been

used primarily in an episomal manner for the saturation muta-

genesis of promoters and enhancers (Patwardhan et al. 2009,

2012; Kinney et al. 2010; Melnikov et al. 2012), for exploring

the grammatical rules of promoters and enhancers (Smith et al.

2013; Sharon et al. 2014), and for testing thousands of enhancer

candidates in different cells or tissues (Kwasnieski et al. 2012;

Arnold et al. 2013, 2014; Kheradpour et al. 2013; Shlyueva

et al. 2014; Savic et al. 2015; White 2015). Adeno-associated

virus (AAV) MPRAs have also been developed, allowing these as-

says to be carried out in vivo and to perform reporter assays with-

in target cells and tissues that are difficult to transduce, such as

the brain (Shen et al. 2016), although these do not involve geno-

mic integration.

Despite their widespread use to validate enhancers and other

cis-regulatory elements, a longstanding concern about reporter

assays is that they are almost always carried out via transient trans-

fection of nonintegrating episomes. It is unknown whether tran-

siently transfected sequences are chromatinized in a way that

makes them appropriate models for endogenous gene expression

from chromosomes (Smith and Hager 1997), but to the extent

that this question has been explored, there are differences. For ex-

ample, work from Archer, Hager, and colleagues, using the mouse

mammary tumor virus (MMTV) promoter as a model, shows dif-

ferences in histone H1 stoichiometry and nucleosome positioning

resulting in an inability of episomal assays to reliably assay cooper-

ative TF binding (Archer et al. 1992; Smith andHager 1997; Hebbar

and Archer 2007, 2008). In other work, the chromatin structure of

transiently transfected nonreplicating plasmid DNA was observed

to be differently fragmented than endogenous chromatin by mi-

crococcal nuclease and, along with other data, supports a model

in which atypical chromatin might be induced by association of

episomes with nuclear structures (Jeong and Stein 1994).

However, the extent to which these factors operate to confound

the results of reporter assays performed for enhancer validation,

whether categorical (i.e., is a particular sequence an enhancer?),

qualitative (i.e., in what tissues is an element an enhancer?), or

quantitative (i.e., what level of activation does a particular se-

quence confer?), has yet to be systematically investigated.

To address these questions, we developed lentiviral MPRA

(lentiMPRA), a technology that uses lentivirus to integrate enhanc-

er MPRA libraries into the genome. To overcome the substantial

position-effect variegation observed by others in attempting to

use lentiviral infection for MPRA (Murtha et al. 2014), we used a

flanking antirepressor element (#40) and a scaffold-attached region

(SAR) (Klehr et al. 1991; Kwaks et al. 2003) on either side of our

construct. In addition, we relied on as many as 100 independent

reporter barcode sequences per assayed candidate enhancer se-

quence, integrated at diverse sites. The resulting system allows

for high-throughput, highly reproducible, and quantitative mea-

surement of the regulatory potential of candidate enhancers in a

chromosomally integrated context. Furthermore, the cell-type

range of lentivirus transduction is much broader than transfec-

tion, e.g., permitting MPRAs to be conducted in neurons, primary

cells, or organoids.

Results

Construction and validation of the lentiMPRA vector

The potential for confounding of lentiviral assays by site-of-inte-

gration effects was demonstrated by a recent MPRA study that

used lentiviral infection and found that 26% of positive controls

did not show activatedGFP expression, whereas othermeasures es-

timated a false positive rate of 22% (Murtha et al. 2014). We there-

fore constructed a lentiviral vector (pLS-mP) that contains a

minimal promoter (mP) and the enhanced green fluorescent pro-

tein (EGFP) gene flanked on one side by the antirepressor element

#40 and the other by a SAR (Fig. 1A; Supplemental File 1; Klehr

et al. 1991; Kwaks et al. 2003; Kissler et al. 2006). In experiments

involving chromosomal integration of this enhancer reporter,

we confirmed that EGFP is not expressed in the absence of an

enhancer, although abundantly expressed under the control

SV40 enhancer across a panel of cell lines representing diverse tis-

sues-of-origin. These include K562 (lymphoblasts), H1-ESC (em-

bryonic stem cells), HeLa-S3 (cervix), HepG2 (hepatocytes), T-

47D (epithelial), and Sk-n-sh retinoic acid treated (neuronal) cells

(Supplemental Fig. S1). Furthermore, when SV40 and the Ltv1 liver

enhancer (Patwardhan et al. 2012) are tested without the flanking

antirepressor sequences, we observed much lower levels of EGFP

expression in HepG2 cells (Fig. 1B). FACS analysis showed that

the inclusion of antirepressors increased the proportion of the cells

that strongly express GFP (Fig. 1C). This result was consistent with

our expectation that the antirepressors facilitate robust enhancer-

mediated expression from the integrated reporter.

Design and construction of a library of candidate liver enhancers

To evaluate lentiMPRA, we designed a liver enhancer library that

comprises 2236 candidate sequences and 204 control sequences

(Fig. 1D; Supplemental File 2), each 171 bp in length. All enhancer

candidate sequences were chosen on the basis of having ENCODE

HepG2 ChIP-seq peaks for EP300 and H3K27ac, which are

generally indicative of enhancer function (Heintzman et al.

2007; Visel et al. 2009). A subset of candidates (“type 1”) were cen-

tered at ChIP-seq peaks for forkhead box A1 (FOXA1) or FOXA2,

known liver pioneer transcription factors (Lupien et al. 2008) or he-

patocyte nuclear factor 4 alpha (HNF4A), a nuclear receptor involved

in lipid metabolism and gluconeogenesis (Watt et al. 2003), while

also overlapping with ENCODE-derived ChIP-seq peaks for the

cohesin complex (RAD21 and SMC3) or chromodomain helicase

DNA binding protein 2 (CHD2), a chromatin remodeler that is part

of the SWI/SNF complex. Other subsets of candidates were re-

quired to overlap only a liver transcription factor peak (“type

2”), only a chromatin remodeler peak (“type 3”), or neither

(“type 4”). The 204 control sequences comprised 200 synthetically

designed controls from a previous study (synthetic regulatory ele-

ment sequences [SRESs]; 100 positive and 100 negative) (Smith

et al. 2013) and an additional two positive (pos1 and pos2) and

twonegative endogenous controls (neg1 andneg2).We confirmed

by standard luciferase reporter assay that pos1 and pos2 showed

weak and strong enhancer activity, respectively, whereas neg1

and neg2 showed no activity (Supplemental Fig. S2).

Each of the 2440 enhancer candidates or controls was synthe-

sized in ciswith 100 unique reporter barcodes on a 244,000-feature

microarray (Agilent OLS; 15 bp primer + 171 bp enhancer candi-

date or control + 14 bp spacer + 15 bp barcode + 15 bp primer =

230mers). The purpose of encoding a large number of barcodes per

assayed sequence was to facilitate reproducible and quantitative
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measurements of regulatory activity, as well as to mitigate against

nonuniformity in oligonucleotide synthesis. We cloned these oli-

gonucleotides to a version of the lentiMPRA vector that lacked mP

and EGFP reporter. Subsequently, a restriction site in the spacer

was used to reinsert the mP + EGFP cassette between the candidate

enhancer and barcode, thus positioning the barcode in the 3′ UTR

of EGFP (Supplemental Fig. S3).

To evaluate the quality of the designed oligonucleotides and

the representationof individual barcodes,we sequenced thecloned

oligonucleotide library (i.e., prior to reinsertion of the mP + EGFP

cassette) to a depth of 19.2million paired-end consensus sequenc-

es, 52.6% of which had the expected length. Analysis of these data

showed that most molecular copies of a given oligonucleotide are

correct, that synthesis errors are distributed evenly along the de-

signed insert sequence, and that single base deletions dominate

the observed errors (Supplemental Fig. S4A). Nonetheless, there

was substantial nonuniformity in the library (Supplemental Fig.

S4B). Although 90.5% of the 244,000 designed barcodes were ob-

served at least once among 11.0 million full-length barcodes se-

quenced, their abundance is sufficiently dispersed that we

estimated that a subset of 56%–67% of the designed oligonucleo-

tides would be propagated whenmaintaining a library complexity

of 350,000–600,000 clones.

Chromosomally integrated versus episomal lentiMPRA

We next sought to directly compare the functional activities of

the 2236 candidate liver enhancer sequences in a chromosomally

integrated versus an episomal context. To this end, we packaged

the lentiMPRA library with either a wild-type integrase (WT-IN)

or a mutant integrase (MT-IN), with the latter allowing for the pro-

duction of nonintegrating lentivirus and transient transgene

Figure 1. Study design for lentiMPRA. (A) Schematic diagram of lentiMPRA. Candidate enhancers and barcode tags were synthesized in tandem as a
microarray-derived oligonucleotide library and cloned into the pLS-mP vector, followed by cloning of a minimal promoter (mP) and reporter (EGFP) be-
tween them. The resulting lentiMPRA library was packaged with either wild-type or mutant integrase and infected into HepG2 cells. Both DNA and mRNA
were extracted, and the barcode tags were sequenced to test their enhancer activities in an episomal versus genome integrating manner. (B) HepG2 cells
infected with lentiviral reporter construct bearing no enhancer (pLS-mP), an SV40 enhancer (pLS-SV40-mP), or Ltv1 (pLS-Ltv1-mP), a known liver enhancer
(Patwardhan et al. 2012), with or without antirepressors. The inclusion of antirepressors results in stronger and more consistent expression, but is still de-
pendent on the presence of an enhancer. (C) FACS analyses quantifying the fluorescence intensity of pLS-mP, pLS-SV40-mP, and pLS-Ltv1-mP with (blue
lines) or without (red lines) antirepressors following infection into HepG2 with 1 copy of viral molecule per cell. Analysis of all GFP expressing cells (fluo-
rescence more than 500 intensity units) shows a higher proportion of cells that strongly express GFP (more than 2000 units) when antirepressors are in-
cluded. Specifically, 54.8% versus 45.1% for SV40, and 35.6% versus 29.0% for Ltv1, of cells with and without antirepressors, respectively. (D) Venn
diagram showing the composition of the lentiMPRA library. Two thousand two hundred thirty-six enhancer candidate sequences were chosen on the basis
of having ENCODE HepG2 ChIP-seq peaks for EP300 and H3K27ac marks. The candidates overlapped with or without ChIP-seq peaks for FOXA1, FOXA2,
or HNF4A. Half the candidates overlapped with ChIP-seq peaks for RAD21, SMC3, and CHD2. In addition, the library included 102 positive and 102
negative controls.
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expression from nonintegrated DNA (Fig. 1A; Leavitt et al. 1996;

Nightingale et al. 2006). Because the integrase is not encoded by

the lentiMPRA library, this experimental design allows us to test

the same exact library in both integrated and nonintegrated

contexts.

To reduce background of unintegrated lentivirus in the inte-

grating lentivirus prep, we obtained DNA/RNA from the cells

with the WT-IN liver enhancer library at day 4 when they have

an estimated 50 viral particles/cell and the MT-IN library at day 3

when they had an estimated 100 viral particles/cell (Supplemental

Fig. S5A; for details, see Methods). The total copy number of viral

DNA in the cells infected with the liver enhancer libraries was val-

idated by qPCR (Supplemental Fig. S5B). During human immuno-

deficiency virus (HIV) infection, nonintegrating virus represents a

major portion of the virus at early infection time points and in-

cludes linear DNA that is rapidly degraded along with circular

DNA containing terminal repeats (1-LTRc and 2-LTRc) (Munir

et al. 2013). We further confirmed the copy number of noninte-

grated virus at our assayed time points by carrying out a qPCR

on 2-LTRc, observing the expected low and high amounts of non-

integrated virus withWT-IN andMT-IN, respectively (Supplemen-

tal Fig. S5B).

lentiMPRA on 2236 candidate liver enhancer sequences

We recovered RNA and DNA from both WT-IN and MT-IN infec-

tions (three replicates each consisting of independent infections

with the same library), amplified barcodes, and performed se-

quencing (Illumina NextSeq). We used both the forward and re-

verse reads to sequence the 15-bp reporter barcodes and obtain

consensus sequences. We obtained an average of approximately

4.1 million raw barcode counts for DNA and an average of approx-

imately 26 million raw barcode counts for RNA. Across replicates

and sample types, ∼97% of barcodes were the correct length of

15 bp.

We matched the observed barcodes against the designed bar-

codes and normalized RNA and DNA for different sequencing

depths in each sample by dividing counts by the sum of all ob-

served counts and reporting them as counts per million. Only

barcodes observed at least once in both RNA and DNA of the

same sample were considered. Subsequently, RNA/DNA ratios

were calculated. The average Spearman’s rho for DNA counts of

the three integrase mutant (MT) experiments was 0.907, and for

RNA counts of the MT experiments was 0.982. The average

Spearman’s rho values for the wild-type integrase (WT) experi-

ments were 0.864 and 0.979 for DNA and RNA, respectively.

These correlations were determined for barcodes observed in pairs

of replicates. Scatter plots for the MT and WT experiments are

shown in Supplemental Figures S6 and S7, respectively.

Although the DNA and RNA counts for individual barcodes

are highly correlated between experiments, the noise of each mea-

sure results in a poor correlation of RNA/DNA ratios

(Supplemental Figs. S6, S7). However, there are on average 59–62

barcodes per candidate enhancer sequence (insert) in each repli-

cate (out of 100 barcodes programmed on the array, with ∼40%

lost during cloning as discussed above) (Supplemental Fig. S8).

To reduce noise, we summed up the RNA or DNA counts across

all associated barcodes for each insert observed in a given experi-

ment and recalculated RNA/DNA ratios (Supplemental Fig. S9).

After this step, pairwise correlations of DNA and RNA counts of

replicates are very high (average Spearman’s rho MT-RNA 0.996,

MT-DNA 0.994, WT-RNA 0.997, and WT-DNA 0.991). Figure 2

shows scatter plots and correlation values for per-insert RNA/

DNA ratios for the MT and WT experiments. RNA/DNA ratios

show markedly improved reproducibility after summing across

barcodes, with an average Spearman’s rho of 0.908 (MT) and

0.944 (WT). In all pairwise comparisons of replicates, the integrat-

ed (WT) MPRA experiments exhibit a broader dynamic range and

greater reproducibility than the episomal (MT) MPRA experi-

ments. We also explored how stable the correlation of RNA/DNA

ratios is between replicates by down-sampling the number of bar-

codes per insert or specifying an exact number of barcodes per in-

sert (Supplemental Fig. S10). Again, the WT experiments show

greater reproducibility, especially for inserts represented by fewer

independent barcodes.

To combine replicates, we normalized the RNA/DNA ratios

for inserts observed in each replicate by dividing by their median

and then averaged this normalized RNA/DNA ratio for each insert

across replicates (Figs. 2, 3A, red boxes). Figure 3A shows scatter

plots of the resulting MT and WT RNA/DNA ratios colored by

the type of insert and/or transcription factors considered in the de-

sign (Supplemental Fig. S11 shows RNA/DNA ratio ranges by type

of insert). As noted above, we observe a broader dynamic range in

the WT experiment. Furthermore, the Spearman correlation be-

tween MT and WT is 0.785, which is considerably lower than

the correlation observed when correlating replicates of the same

experimental type (Spearman correlation of 0.908 [MT] and

0.944 [WT]). This is also the case in pairwise comparisons of MT

versusWT replicates (i.e., prior to combining replicates) (Fig. 2, yel-

low boxes). Overall, these results show that there are substantial

differences in regulatory activity between identical sequences as-

sayed in an integrated versus episomal context.

Importantly, we can see clear separation of positive and

negative controls. Figure 3, B and C, display RNA/DNA ratios ob-

tained for the highest and lowest SRESs in the MT and WT exper-

iments compared to their previously measured effects in HepG2.

Although the highest and lowest SRESs are well separated in

both experiments (Kolmogorov-Smirnov and Wilcoxon rank-

sum P-values below 2.2 × 10–16), the WT experiment separates

the highest and lowest SRE controls slightly better than theMT ex-

periment (Kolmogorov-Smirnov test D 0.97 vs 0.95, Wilcoxon

rank-sum test W 9951 vs 9937).

Wenext sought to assess whether any of our design categories

(i.e., types 1–4 defined above, reflecting subsets of candidate en-

hancers with coincident liver TF and/or chromatin remodeler/

cohesin complex ChIP-seq peaks) might underlie the observed dif-

ferences (Fig. 3A; Supplemental Fig. S11). We did not observe dif-

ferences in expression range between type 1 and type 2 designs,

which differ with respect to whether they overlap with ChIP-seq

peaks for chromatin remodeling factors ormembers of the cohesin

complex (Supplemental Table S1; Supplemental Fig. S16).

Unexpectedly, type 3 and 4 designs, which unlike type 1 and 2 de-

signs lack liver TF ChIP-seq peaks for FOXA1/2 and HNF4A, were

more active. To attempt to explain overall differences in activity

both for the different category types and in general, we next ex-

plored a broader set of genomic annotations and whether those

are predictive of enhancer activity in the lentiMPRA assay.

ENCODE and other genomic annotations that predict

enhancer activity

We evaluated whether genomic annotations, some numerical and

other categorical (Supplemental File 3), were predictive of our re-

sults in HepG2 cells. The performance of individual numerical
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annotations for predicting the observed activity of candidate en-

hancer sequences are shown in Figure 4. We used Kendall’s tau,

a nonparametric rank correlation that is more conservative than

Spearman’s rho, because of the large number of zero values in

our annotations that can result in artifacts from ties with

Spearman’s rho. In contrast with our design bins, many genomic

annotations are observed to predict enhancer activity in both

theWT andMT experiments. Across the board, annotations corre-

late better with the WT than the MT results, suggesting that inte-

grated activity readouts (WT) correlate better with endogenous

functional genomic signals (e.g., ChIP-seq data) than do episomal

activity readouts (MT).

The most highly predictive numerical annotations, in both

types of experiments, are HepG2 ChIP-seq data sets of JUND

(Transcription Factor Jun-D) and FOSL2 (FOS-Like Antigen 2), consis-

tent with a previous MPRA study that also highlighted the role of

these transcription factors in HepG2 cells (Savic et al. 2015). For

chromosomally based MPRA (WT), the number of overlapping

ENCODE ChIP-seq peaks (TFBS) and the average ENCODE ChIP-

seq signal (TFBSPeaks) as measured across different cell lines also

rank among the more highly predictive annotations. However,

these same features are the most discrepant with MT; that is, sub-

stantially less predictive of episomal MPRA. Of note, the highest

observed T2 for an individual annotation is only 0.033 (MT) and

0.059 (WT), highlighting the need for a model combining annota-

tions and other available information (see below).

We also evaluated whether categorical annotations were pre-

dictive of our results (Supplemental Figs. S12–S15). Most of these

annotations were derived for HepG2 cells by the ENCODE Pro-

ject—ChromHMM (Ernst and Kellis 2012), SegWay (Hoffman

et al. 2012), and Open Chromatin annotation. Although none of

these were strongly predictive of the measured RNA/DNA ratios,

the best performance was observed with the 25-state multiple

cell-type SegWay or 15-state HepG2 ChromHMM chromatin

segmentations. For SegWay, sequences annotated as TSS (tran-

scription start sites) exhibited the highest expression, whereas se-

quences annotated as D (genomic death zones) exhibited the

lowest expression.

Figure 2. Pairwise correlation of per-insert RNA/DNA ratios between replicates, within and between MT versus WT experiments. The lower left triangle
shows pairwise scatter plots. The diagonal provides replicate names and the respective histogram of the RNA/DNA ratios for that replicate. The upper tri-
angle provides Pearson (p) and Spearman (s) correlation coefficients. MT versus MT (green box) or WT versus WT (blue box) comparisons are substantially
more correlated than MT versus WT (yellow boxes) comparisons, consistent with systematic differences between the episomal versus integrated contexts
for reporter assays that exceed technical noise. The two right-most columns and two bottom-most rows correspond to MT and WT after combining across
the three replicates, with the combined MT versus the combined WT comparison in the red box.
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Sequence-based predictors of functional activity

Because sequences are removed from their native genomic context

in the lentiMPRA assay, the relative ability of the elements that we

test to increase transcription must be inherent to the 171-bp se-

quences themselves. It is therefore natural to ask whether it is pos-

sible to build models for predicting functional activity that are

based on primary sequence, rather than on genomic annotations.

Although such models have historically been challenging to

develop formammalian genomes, Ghandi et al. (2014) recently in-

troduced a “gapped k-mer” approach (gkm-SVM), with promising

results for discriminating ENCODE ChIP-seq peaks versus

matched control sequences. In brief, gkm-SVM trains a binary clas-

sifier based on the sets of k-mers that the training data contains

(but allowing for some noninformative positions within k-mers,

i.e., gaps). We collected all training data that Ghandi et al.

(2014) used for HepG2, obtaining about 225,000 unique peak se-

quences as well as controls, and trained a combined, sequence-

based model for predicting ChIP-seq peaks in HepG2 cells

(Methods). Based on a set-aside test data set, the gkm-SVM model

had a specificity of 71.8%, a sensitivity of 88.8%, and a precision of

75.9% for separating ChIP-seq peak sequences from random con-

trol sequences.

We asked how well the resulting gkm-SVM scores correlated

with the RNA/DNA ratios obtained for the MT and WT experi-

ments (Fig. 5A,B). The combined gkm-SVM HepG2 model results

in a Spearman’s R2 of 0.080 and 0.128, for MT andWT, respective-

ly. However, this correlation is at least partially driven by the syn-

thetic control sequences, which can be scored with the sequence-

based model but not with the genomic annotations. When ex-

cluding all control sequences, Spearman’s R2 values drop from

0.080 to 0.039 and from 0.128 to 0.076 forMT andWT, respective-

ly. As such, there are a few ENCODE-based annotations which

outperform the sequence-based gkm-SVMmodel, namely summa-

ries of JUND/FOSL2 HepG2 ChIP-seq peaks, the number of over-

lapping ChIP-seq peaks (TFBS), or the average ChIP-seq signal

(TFBSPeaks) measured across multiple ENCODE cell types.

Combining annotations and sequence information to predict

enhancer activity

We next sought to combine information across multiple annota-

tions to better predict enhancer activity.We fit Lasso linearmodels

and selected the Lasso tuning parameter value by cross-validation

(CV). Scatter plots as well as correlation coefficients were also ob-

tained in a CV setup (Methods).We builtmodels with all the geno-

mic annotations described above (including the categorical

annotations as binary features) as well as with and without the se-

quence-based gkm-SVM score from scaled and centered annota-

tion matrixes (Supplemental Figs. S17–S19). SRESs and other

controls were naturally excluded, as they are largely synthetic se-

quences and therefore missing genomic annotations. The result-

ing linear models were considerably more predictive of WT ratios

than MT ratios (e.g., CV Spearman R2 of 0.271 WT versus 0.148

MT; CV Pearson R2 of 0.314 WT versus 0.194 MT). Including

gkm-SVM scores in the models improved performance further

(CV Spearman R2 of 0.302 WT versus 0.156 MT; CV Pearson R2

of 0.341 WT versus 0.203 MT). We noticed that gkm-SVM scores

were assigned the largest model coefficients in both WT and MT

models when they were included (Supplemental Fig. S19). Thus,

although reasonably performing models are obtained from geno-

mic annotations, the sequence-based gkm-SVM scores appear to

capture independently predictive information.

We therefore decided to further explore sequence-basedmod-

els with an improved implementation of gkm-SVM (“LS-GKM”)

(Lee 2016). We trained models from each of the 64 narrow-peak

ChIP-seq data sets for which we had included summary statistics

for the annotation matrix above (Methods). We then asked how

Figure 3. Comparisons between the nonintegrating (MT) and integrat-
ing (WT) libraries. (A) Scatter plot of combined MT versus WT RNA/DNA
ratios. MT ratios show a smaller dynamic range and thus seem compressed
compared to WT results. Data points are colored by the type of insert se-
quence, including two types of controls: a total of four positive and nega-
tive controls (black) as well as the highest 100 and lowest 100 synthetic
regulatory element sequences (SRES, red) identified by Smith et al.
(2013). The four classes of putative enhancer elements are the following:
regions of FOXA1, FOXA2, or HNF4A binding that overlap H3K27ac and
EP300 calls as well as at least one of three factors RAD21, CHD2, or
SMC3 (type 1); regions like in type 1 but with no RAD21, CHD2, or
SMC3 overlapping (type 2); EP300 peak regions overlapping H3K27ac as
well as at least one overlap with RAD21, CHD2, or SMC3, but without peaks
in FOXA1, FOXA2, or HNF4A (type 3); regions like in type 3 but with no
RAD21, CHD2, or SMC3 overlapping (type 4). As shown here and in
Supplemental Figure S11, we do not observe major differences between
the four design types, either with respect to activity or MT versus WT. (B,
C ) Enhancer activity of 200 synthetic regulatory element sequences
(SRES) in the MT (B) andWT experiments (C). Scatter plot of RNA/DNA ra-
tios for the top 100 positive and top 100 negative synthetic regulatory el-
ement (SRE) sequences in HepG2 experiments by Smith et al. (2013). Plots
show the combined RNA/DNA ratios on the y-axis and measurements by
Smith et al. (2013) on the x-axis. Intervals indicate the mean, minimum,
and maximum values observed for three replicates performed with each
experiment.
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well the LS-GKM scores generated by each of these 64 models pre-

dicted the results of the lentiMPRA experiments. Although the

scores now correspond to sequence-based models of ChIP-seq

peaks rather than the ChIP-seq peaks themselves, we once again

observed the highest Spearman R2 values for the individual factors

JUND (0.120WT/0.050MT) and FOSL2 (0.108WT/0.049MT), and

these are also the factors that show the largest differences in predic-

tive value for WT versus MT (Supplemental Fig. S20). As such, se-

quence-based models of binding by these two factors as well as

other individual factors exceed the performance of the pooled

gkm-SVM sequence model.

We next fit Lasso linear models from the TF-specific LS-GKM

SVM scores in order to predict the measured activities. The com-

bined MT model (using 37 individual scores) achieves a CV

Spearman R2 of 0.128 (CV Pearson R2 of 0.162), and the combined

WTmodel (using 34 individual scores) of 0.227 (CV Pearson R2 of

0.261) (Supplemental Fig. S21). This still falls short of models ob-

tained purely from genomic annotations as described above. To

test whether multiple ChIP-seq data sets should be combined in

a sequence model rather than combining individual model scores

in a linear model to improve prediction, we also trained LS-GKM

models based on the peak sequences of the 37 (MT) and 34 (WT)

scores selected by Lasso models as well as the top 2, 3, 5, 10, and

top 15 coefficients in the Lassomodels forMT andWT.We includ-

ed coefficients independent of their direction (sign), but also

trained only with sequences corresponding to a positive co-

efficient. Model performance increased when combining small

numbers of peak sets and when limiting it to positive coefficients

(Supplemental Table S2). Combining all or too many peaks in one

sequence model reduced overall performance. From the combina-

tions of ChIP-seq data sets tested here, the best performing se-

quence-based models achieved Spearman R2 values of 0.054

(MT) and 0.133 (WT).

Finally, when we used both genomic annotations and the in-

dividual LS-GKM scores in a single linearmodel to predict themea-

sured activities, performance increased to a CV Spearman R2 of

0.168 (MT; Pearson R2 of 0.206) and 0.322 (WT; CV Pearson R2 of

0.362). These are our highest performing models predicting the

Figure 4. Squared Kendall’s tau (T2) values for available genome annotations for predicting the activity of candidate enhancer sequences in the non-
integrating (MT) and integrating (WT) experiments. (A) WT RNA/DNA ratios correlate better with annotations than the respectiveMT values. The left panel
highlights the top correlated annotations for WT andMT ratios. The right panel highlights annotations with the largest difference in T2 values between the
MT and WT experiments. (B) Same analysis for the 20% most active elements (Supplemental Table S1).
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activities of candidate enhancer sequences for both the episomally

and chromosomally encoded MPRA experiments (Fig. 5C,D).

Discussion

In this work, we report the first systematic comparison of episomal

and chromosomally integrated reporter assays. Key aspects of our

approach include (1) lentivirus-based MPRA or lentiMPRA, which

can be used to in an episomal or integrated context by toggling

whether a mutant versus wild-type integrase is used, and can fur-

thermore be used in awide variety of cell types, including neurons;

(2) the use of numerous barcodes per candidate enhancer se-

quence, which results in highly reproducible measurements of

transcriptional activation; and (3) extensive predictive modeling

of our results, with the implicit assumption that a reasonable mea-

sure of a reporter assay’s biological relevance is the extent to which

it is correlated with endogenous genomic annotations.

We find that the results of integrated

reporter assays are more reproducible, ro-

bust, and biologically relevant than epi-

somal reporter assays. These conclusions

are supported by the following observa-

tions: (1)We observed consistently great-

er reproducibility and dynamic range for

the WT replicates as compared with the

MT replicates; (2) the correlation of WT

versus MT replicates (Spearman correla-

tion of 0.785) was substantially lower

than forWTversusWT (0.944) orMTver-

sus MT (0.908), with clear systematic dif-

ferences between the integrated and

episomal contexts that exceed technical

noise (Fig. 2; Supplemental Fig. S9); (3)

the WT experiments were consistently

more correlated with and more predict-

able by genomic annotations, which are

based on biochemical marks measured

in these sequences’ native genomic con-

texts; and (4)many genomic annotations

significantly predict the results of theWT

but not the MT experiments.

Of note, we observed generally

higher levels of expression with integrat-

ed reporters (Fig. 3A; Supplemental Table

S1), consistent with previous findings

that showed higher reporter gene levels

for integrating relative to nonintegrating

HIV-1 (Gelderblom et al. 2008; Thierry

et al. 2016). However, it is worth noting

that we used a lentivirus (not HIV-1)

with a self-inactivating (SIN) LTR, which

lacks viral promoters or enhancers, po-

tentially influencing these expression

differences.We also observed a larger var-

iability between replicates for the MT

condition. This variability could be ex-

plained by differences in histone struc-

ture, our assay being geared more for

the WT condition (i.e., high MOI, many

barcodes per sequence, anitrepressors),

different time points (3 d for MT and

4 d for WT), suppression of transient

plasmids (Qiu et al. 2011), and other factors. Results fromhydrody-

namic tail vein assays (which delivers reporter constructs into the

mouse liver) also show that when chromatinized, plasmid DNA

leads to higher expression levels than naked plasmid DNA

(Kamiya et al. 2013). For HIV-1, both integrating and nonintegrat-

ing HIV-1 viral DNA are associated with histones (Kantor et al.

2009), which is probably also the case for our lentiviral vector.

However, even if the lentiviral episome is chromatinized, there re-

main myriad potential causes for the observed differences in ex-

pression, including differences in H1 stoichiometry, nucleosome

positioning, cooperative TF binding (Hebbar and Archer 2007,

2008), and/or nuclear location (Jeong and Stein 1994).

The number of overlapping ENCODEChIP-seq peakswas one

of the most strongly predictive annotations for our integrated

sequences (Fig. 4, left). Interestingly, in experiments previously

performed on the MMTV promoter, it was observed that noninte-

grating constructs could not adequately assess cooperative TF

Figure 5. Prediction models. (A,B) Correlation of gkm-SVM scores obtained for a combined HepG2
model with RNA/DNA ratios obtained from the mutant (MT) and wild-type integrase (WT) experiments.
Data points are colored by the type of insert sequence, including two types of controls: 200 synthetic
regulatory element sequences (SRES, red) identified by Smith et al. (2013), and four other control se-
quences (dark gray). The four classes of putative enhancer elements are the following: (type 1) regions
of FOXA1, FOXA2, or HNF4A binding that overlap H3K27ac and EP300 calls as well as at least one of three
factors RAD21, CHD2, or SMC3; (type 2) regions like in type 1 but with RAD21, CHD2, or SMC3; (type 3)
EP300 peak regions overlapping H3K27ac as well as at least one overlap with RAD21, CHD2, or SMC3, but
without peaks in FOXA1, FOXA2, or HNF4A; (type 4) regions like in type 3 but with no remodeling factor
overlapping. Correlations are partially driven by the SRES; when excluding all controls, Spearman’s R2

values drop from 0.080 to 0.039 and from 0.128 to 0.076 for MT and WT, respectively. (C,D) Scatter
plots of measured RNA/DNA ratios with predicted activity from linear Lasso models using annotations
(numerical and categorical) as well as sequence-based (individual LS-GKM scores) information.
Correlation coefficients are 0.45 Pearson/0.40 Spearman for the nonintegrated experiment (MT) and
0.60 Pearson/0.57 Spearman for the integrated constructs (WT). The models selected 110 (MT) and
133 (WT) of a total of 384 annotation features. Based on Pearson R2 values, these combined models ex-
plain 20.6% (MT) and 36.2% (WT) of the variance observed in these experiments.
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binding due to differences in H1 stoichiometry and nucleosome

positioning (Hebbar and Archer 2007), which may relate to the

fact that this multiple TF binding was also one of the most differ-

entiating annotations between the WT versus MT experiments

(Fig. 4, right). Specific TF ChIP-seq-based sequence models that

are similarly differentiating (Supplemental Fig. S19) include

JUND, FOSL2, ATF3, and ELF1, which are known to interact and

form complexes. Jun and Fos family members form the heterodi-

meric protein complex AP-1, which regulates gene expression in

response to various stimuli including stress (Hess et al. 2004),

and in the liver has known roles in hepatogenesis (Hilberg et al.

1993) and hepatocyte proliferation (Alcorn et al. 1990). AP-1 is

known to form complexes with several additional protein partners

(Hess et al. 2004), including ATF proteins such as ATF3 (Hai and

Curran 1991) and ELF1, an ETS transcription factor (Bassuk and

Leiden 1995). Of note, although lentivirus infection can induce

stress potentially leading to increased expression of AP-1 and relat-

ed factors, these same TFs were less predictive in MT-infected se-

quences; furthermore, the ChIP-seq data sets were generated on

cells in normal physiological conditions. Combined, these find-

ings suggest that differences in cooperative TF binding, possibly in-

volving TFs including JUND, FOSL2, ELF1, and ATF3, might drive

differences in the results of integrated versus episomal reporter as-

says. Interestingly, we observed a fewhistone related predictive an-

notations for the MT high expressing signals, including the SIN3

transcriptional regulator family member B (SIN3B), a scaffold protein

that recruits chromatin modifying proteins (Kadamb et al. 2013)

and histone variantH2A.Z, which has been shown to have impor-

tant transcriptional activation roles (Subramanian et al. 2015).

Although these annotations are based on the corresponding geno-

mic DNA regions (e.g., ChIP-seq results) and only H1 stoichiomet-

ric differences were previously observed for the transient versus

integrated MMTV promoter (Hebbar and Archer 2008), it would

be interesting to test whether other histone differences exist for

nonintegrating constructs on a larger scale.

Using single-feature models, we also systematically evaluated

more than 400 genomic annotations and sequence models to ex-

plore which are significantly predictive of expression in the inte-

grated and/or episomal lentiMPRA experiments (Supplemental

Fig. S22). Consistent with our other analyses, there are many

more annotations that are significantly predictive of the integrated

(WT) assay but not the episomal (MT) assay. These include several

annotations related to histone acetylation (HDAC2, EP300, and

ZBTB7A) as well as a factor (CEBPB) with increased liver expression

andwhich is associated with adipogenesis, gluconeogenic, and he-

matopoiesis (Tsukada et al. 2011). Interestingly, there are also a

number of annotations that are only significantly predictive of

the episomal assay, including BRCA1 and SIN3B binding motifs.

A limitation of this study and most contemporary MPRA ex-

periments is that the length of the sequences tested are less than

200 bases. This may be addressable in the future through improve-

ments to array-based oligonucleotide synthesis,multiplex DNA as-

sembly protocols (Klein et al. 2016), or multiplex DNA capture

protocols (Vockley et al. 2015). Furthermore, it remains uncertain

what the true length distribution of enhancers is, although the size

distribution of distal DNase I hypersensitive sites seems to provide

a reasonable proxy of 300 bp (Natarajan et al. 2012).

A contemporary challenge for our field is how to best identify,

prioritize, and functionally validate cis-regulatory elements, espe-

cially enhancers. To address this, we envision a virtuous cycle, in

which annotation and/or sequence-basedmodels are used to nom-

inate candidate enhancer sequences for validation, these candi-

dates are tested in massively parallel reporter assays, and then

the results are used to improve the models, which in turn results

in higher quality nominations. Eventually, this will lead to not

only a catalog of validated enhancers but also a deepermechanistic

understanding of the relationship between primary sequence,

transcription factor binding, and quantitative enhancer activity.

In this study, our best performing model achieves a Pearson’s R2

of 0.362 in predicting the results of the integrated lentiMPRA,

with both genomic annotations and sequence-based models pro-

viding independent information. The result is encouraging, but

the majority of variation remains unexplained. Of note, these

are quantitative predictions of activity, a more challenging task

than categorizing enhancers versus nonenhancers. Nonetheless,

all the information underlying the differences is contained within

the short sequences that we are testing and, in principle, should be

learnable. Possible avenues for improving our predictive models

include increasing the size of the regions tested so as to better align

with the genomic annotations that we are using for prediction, ad-

ditional annotations or alternative ways of summarizing available

annotations, alternative sequence representations to gapped k-

mers, allowing for interaction terms between model features, and

markedly expanding the amount of training data. Indeed, with

sufficient training data, wehope it will eventually be possible to ac-

curately predict MPRA results from sequence-based models alone.

As our field scales MPRAs to characterize very large numbers

of candidate enhancers, it is obviously critical that the reporter as-

says are as reflective as possible of endogenous biology. Our results

directly test a longstanding concern about episomal reporter assays

and suggest there are substantial differences between the integrat-

ed and episomal contexts. Furthermore, based on the fact that

their output ismore correlatedwith genomic annotations, we infer

that integrated reporter assays are more reflective of endogenous

enhancer activity. This fits with our expectation, as both the inte-

grated reporter and endogenous enhancers reside within chromo-

somes as opposed to episomes.

Of course, an equally valid perspective on our observations is

that reporter assays in the integrated versus episomal contexts are

reasonably well correlated; therefore, the results of episomal assays

remain informative of what activity would be in the integrated

context (e.g., sequences observed to be strongly active in an epi-

somal assay are likely to also be strongly active in an integrated as-

say). Whether the differences we observe here, with respect to

activity, reproducibility, and correlation with genomic features,

impact the interpretation of an episomal assay depends on the par-

ticulars of what was done and why (e.g., these differences may be

more relevant for enhancer prediction and for quantitativemodel-

ing than for the binary classification of individual elements as ac-

tivating versus inert). Furthermore, it is important to acknowledge

that even integrated reporter assays are limited in important ways

(e.g., by removing each tested element from its native sequence

and epigenetic context).We therefore urge caution in the interpre-

tation of the results of all reporter assays, but also that integrated

reporter assays such as lentiMPRA be used where possible as an al-

ternative to episomal reporter assays.

Methods

Lentivirus enhancer construct generation

To generate the lentivirus vector (pLS-mP), aminimal promoter se-

quence, which originates from pGL4.23 (Promega), including an

SbfI site was obtained by annealing of oligonucleotides (Sense:
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5′-CTAGACCTGCAGGCACTAGAGGGTATATAATGGAAGCTCGA

CTTCCAGCTTGGCAATCCGGTACTGTA-3′; Antisense: 5′-CCGG

TACAGTACCGGATTGCCAAGCTGGAAGTCGAGCTTCCATTATA

TACCCTCTAGTGCCTGCAGGT-3′; SbfI site is underlined) and

subcloned into XbaI and AgeI sites in the pLB vector (Addgene

11619) (Kissler et al. 2006), replacing the U6 promoter and CMV

enhancer/promoter sequence in the vector. To generate

pLS-mP-SV40, the SV40 enhancer sequence was amplified from

pGL4.13 (Promega) using primers (Forward: 5′-CAGGGCCCGC

TCTAGAGCGCAGCACCATGGCCTGAA-3′; Reverse: 5′-TGCCTG

CAGGTCTAGACAGCCATGGGGCGGAGAATG-3′) and inserted

into XbaI site in the vector using In-Fusion (Clontech). pos1,

pos2, neg1, and neg2 sequences were amplified from human

(pos1, neg2, pos2) or mouse (neg1) genome and inserted into

EcoRV and HindIII site in pGL4.23 (Promega). Primers used are

shown in Supplemental Table S3, and the annotated plasmid se-

quence file is available as Supplemental File 1.

Library sequence design

We picked 171-bp candidate enhancer sequences based on ChIP-

seq peaks calls for HepG2. We used narrow-peak calls for DNA

binding proteins/transcription factors (FOXA1, FOXA2, HNF4A,

RAD21, CHD2, SMC3, and EP300) and wide peak calls for histone

marks (H3K27ac). We downloaded the call sets from the ENCODE

portal (Sloan et al. 2016) (https://www.encodeproject.org/)

with the following identifiers: ENCFF001SWK, ENCFF002CKI,

ENCFF002CKJ, ENCFF002CKK, ENCFF002CKN, ENCFF002CKY,

ENCFF002CUS, ENCFF002CTX, ENCFF002CUU, ENCFF002CKV,

and ENCFF002CUN. We defined four types of sites: (1) regions

centered over peak calls of ≤171 bp for FOXA1, FOXA2, or

HNF4A that overlap H3K27ac and EP300 calls as well as at least

one of three factors: components of the cohesin complex

(RAD21, SMC3) or chromatin remodeling factor CHD2; (2) regions

like in type 1, but with no CHD2, RAD21, or SMC3 overlap; (3) re-

gions of 171 bp centered in an EP300 peak overlappingH3K27ac as

well as at least one of three factors RAD21, CHD2, or SMC3, but

without peaks in FOXA1, FOXA2, or HNF4A; and (4) regions like

in type 3 but with no CHD2, RAD21, or SMC3 overlap. Sites of

type 1 and 2 involving HNF4 were the most abundant sites and

we used those to fill up our design after exhausting other target

sequences.

Potential 171-bp target sequences were inserted into a 230-bp

oligo backbone with a 5′ flanking sequence (15 bp, AGGACC

GGATCAACT), 14-bp spacer sequence (CCTGCAGGGAATTC),

15-bp designed tag sequences (see below), and a 3′ flanking se-

quence (15 bp, CATTGCGTGAACCGA) (Supplemental Fig. S3).

Sequences were checked for SbfI and EcoRI restriction sites after

joining the target sequence with the 5′ flanking sequence and

the spacer sequence. Such potential target sequences were

discarded.

In our final array design, we included 2440 different target

sequences, each with 100 different barcodes (i.e., a total of

244,000 oligos). These included the highest 100 and lowest 100

synthetic regulatory element (SRE) sequences identified by Smith

et al. (2013), four control sequences (neg1 MGSCv37 Chr 19:

35,531,983–35,532,154; neg2 GRCh37 Chr 5: 172,177,151–

172,177,323; pos1 GRCh37 Chr 3: 197,439,136–197,439,306;

pos2 GRCh37 Chr 19: 35,531,984–35,532,154), which we tested

using luciferase assays in the HepG2 cell line (Supplemental Fig.

S2), 1029 type 1 inserts (202 FOXA1, 180 FOXA2, 464 HNF4A,

120 FOXA1&FOXA2, 33 FOXA1&HNF4A, 17 FOXA2&HNF4A, 13

FOXA1&FOXA2&HNF4A), 1030 type 2 inserts (195 FOXA1, 174

FOXA2, 470 HNF4A, 126 FOXA1&FOXA2, 31 FOXA1&HNF4A, 20

FOXA2&HNF4A, 14 FOXA1&FOXA2&HNF4A), 90 type 3 inserts,

and 87 type 4 inserts.

Tag sequences of 15-bp length were designed to have at least

two substitutions and one 1-bp insertion distance to each other.

Homopolymers of length 3 bp and longer were excluded in the de-

sign of these sequences, and so were ACA/CAC and GTG/TGT tri-

nucleotides (bases excited with the same laser during Illumina

sequencing). More than 556,000 such barcodes were designed us-

ing a greedy approach. The barcodes were then checked for the cre-

ation of SbfI and EcoRI restriction siteswhen adding the spacer and

3′ flanking sequences. From the remaining sequences, a random

subset of 244,000 barcodes was chosen for the design. The final de-

signed oligo sequences are available in Supplemental File 2.

Generation of MPRA libraries

The lentiviral vector pLS-mPwas cut with SbfI and EcoRI to tempo-

rarily liberate the minimal promoter and EGFP reporter gene.

Array-synthesized 230-bp oligos (Agilent Technologies) contain-

ing an enhancer, spacer, and barcode (Supplemental Fig. S3)

were amplified with adaptor primers (pLSmP-AG-f and pLSmP-

AG-r) that have overhangs complementary to the cut vector back-

bone (Supplemental Table S3), and the products were cloned using

NEBuilder HiFi DNA Assembly mix (E2621). The adaptors were

chosen to disrupt the original SbfI and EcoRI sites in the vector.

The cloning reaction was transformed into electrocompetent cells

(NEB C3020). Multiple transformations were pooled and midi-

prepped (Chargeswitch Pro Filter Plasmid Midi Kit, Invitrogen

CS31104). This library of cloned enhancers and barcodes was

then cut using SbfI and EcoRI sites contained within the spacer,

and the minimal promoter and EGFP that were removed earlier

were reintroduced via a sticky end ligation (T4 DNA Ligase, NEB

M0202) between the enhancer and its barcode. These finished vec-

tors were transformed andmidi-prepped as previouslymentioned.

Quality control of designed array oligos

Before inserting the minimal promoter and EGFP reporter gene,

the plasmid library was sampled by high-throughput sequenc-

ing on an Illumina MiSeq (206/200 + 6 cycles) to check for the

quality of the designed oligos and the representation of individual

barcodes (sequencing primers are pLSmP-AG-seqR1, pLSmP-

AG-seqIndx, and pLSmP-AG-seqR2) (Supplemental Table S3). We

sequenced the target, spacer, and tag sequences from both read

ends and called a consensus sequence from the two reads. We ob-

tained 19.2 million paired-end consensus sequences from this se-

quencing experiment, 52.6% of which had the expected length,

26.1% of sequences were 1 bp short, and 8.9% were 2 bp short

(summing up to 87.6%). Only 1.6% of sequences showed an inser-

tion of 1 bp. These results are in line with expected dominance of

small deletion errors in oligo synthesis. We aligned all consensus

sequences back to all designed sequences using BWA MEM

(Li and Durbin 2009) with parameters penalizing soft-clipping of

alignment ends (-L 80). We consensus called reads aligning with

the same outer alignment coordinates and SAM-format CIGAR

string to reduce the effects of sequencing errors. We analyzed all

those consensus sequences based on at least three sequences

with a mapping quality above 0. We note that substitutions are re-

moved in the consensus calling process if the correct sequence is

the most abundant sequence. Among these 992,513 consensus se-

quences, we observe instances of 91% designed oligos and 78% of

oligos with one instance matching the designed oligo perfectly.

Across all consensus sequences, the proportion of perfect oligos

is only 19%; however, the proportion vastly increases with the

number of observations (69% at 20 counts, 99% at 40 counts)
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(Supplemental Table S4). These observations are in agreement

with most molecular copies of an oligo being correct, in com-

bination with high representation differences in the library.

Supplemental Figure S4A shows the distribution of alignment dif-

ferences (as a proxy for synthesis errors) along the designed oligo

sequences. Errors are distributed evenly along the designed insert

sequence, with deletions dominating the observed differences.

We observe that at some positions the deletion rate is reduced,

whereas the insertion rate is increased. We speculate that this

might be due to certain sequence contexts.

Limited coverage of designed oligos in MPRA libraries

From the analysis of oligo quality and oligo abundance above, we

saw a first indication of the existence of awide range of oligo abun-

dance, and more frequent sequences tend to match the designed

sequences perfectly (Supplemental Table S4). We characterized

the abundance of oligos further and looked at the consequences

that this has for generating libraries of lentivirus constructs with

limited complexity (due to the transformation of a limited number

of bacteria). Rather than looking at full-length oligos, we focused

only on the tag sequences. Tag sequences were identified from

the respective alignment positions of the alignments created

above. To match the RNA/DNA count data analysis (see below),

we only considered barcodes of 15-bp length (10.96 million/

57.0%, similar to the proportion of correct length sequences

above). Of those 10.96 million barcodes, 345,247 different se-

quences are observed. We clustered (dnaclust) (Ghodsi et al.

2011) the remaining sequences allowing for one substitution

and selecting the designed or most abundant sequence (reducing

to 238,206 different sequences). The clustered sequences were

matched against the designed barcodes (217,176 sequences,

99.2% of counts). The distribution of the abundance of these bar-

codes is available in Supplemental Figure S4B. We used those

counts to simulate sampling from this overdispersed pool of se-

quences, as done when taking a sample of plasmids infusing the

reporter gene and minimal promoter and again transforming the

resulting plasmids.We sampled 10 times and averaged the number

of unique designed barcodes: 150,000 clones – 87,944 unique bar-

codes, 250,000 clones – 116,297 unique barcodes, 350,000 clones

– 135,222 unique barcodes, 500,000 clones – 154,090 unique bar-

codes, 600,000 clones – 163,831 unique barcodes, 750,000 clones

– 172,770 unique barcodes, and 1 million clones – 183,685

unique barcodes. Thus, even for high sampling depth, only a

subset of barcodes will be captured in the final library. We observe

on average 145,876 different barcodes which is concordant with

more than 430,000 clones going into the lenti construction.

Cell culture and GFP/luciferase assays

HepG2 cells were cultured as previously described (Smith et al.

2013). K562, H1-ESC, HeLa-S3, T-47D, and Sk-n-sh cells were cul-

tured as previously described (The ENCODE Project Consortium

2012). Sk-n-sh cells were treated with 24 µM all trans-retinoic

acid (Sigma) to induce neuronal differentiation. K562, H1-ESC,

HeLa-S3, T-47D, and Sk-n-sh were infected with pLS-mP or pLS-

SV40-mP lentivirus along with 8 µg/mL polybrene and incubated

for 2 d, when they have an estimated 30, 60, 90, 90, and 90 viral

particles/cell, respectively. The number of viral particles/cell was

measured as described below. For the luciferase assay of the four

control sequences (two negatives and two positives), we amplified

the controls from the designed oligo pool (for primer sequences,

see Supplemental Table S5) and inserted those into the pGL4.23

(Promega) reporter plasmid. 2 × 104 HepG2 cells/well were seeded

in a 96-well plate; 24 h later, the cells were transfected with 90 ng

of reporter plasmids (pGL4.23-neg1, pGL4.23-neg2, pGL4.23-

pos1, and pGL4.23-pos2) and 10 ng of pGL4.74 (Promega), which

constitutively expresses Renilla luciferase, using X-tremeGENE HP

(Roche) according to the manufacturer’s protocol. The X-

tremeGENE:DNA ratio was 2:1. Three independent replicate cul-

tures were transfected. Firefly and Renilla luciferase activities

were measured as previously described (Smith et al. 2013).

Lentivirus packaging, titration, and infection

To optimize conditions and reduce background of unintegrated

lentivirus in the integrating lentivirus prep, we utilized our posi-

tive control virus (pLS-SV40-mP) that was packaged with WT-IN

and MT-IN, and we examined the viral titer by qPCR for three dif-

ferent volumes (1, 5, and 25 µL per well of a 24-well plate) at four

different time points (2–5 d post infection). For the lower volumes

(1 and 5 µL), we observed a substantial reduction in total virus

amounts at day 4 for both MT-IN and WT-IN that stabilized in

the WT-IN only (Supplemental Fig. S5A). This suggests that the

nonintegrated virus declines at this time point, similar to what

was previously reported (Butler et al. 2001). For the high volume

(25 µL), we did not observe a substantial reduction or stabilization

for MT-IN andWT-IN, respectively, until day 5 (Supplemental Fig.

S5A), suggesting that high amounts of viruswouldmake it difficult

to distinguish between integrated and nonintegrated virus.

Twelve million HEK293T cells were plated in a 15-cm dish

and cultured for 24 h. The cells were cotransfected with 8 µg of

the liver enhancer library and 4 µg of packaging vectors using

jetPRIME (Polyplus-transfections). psPAX2 that encodes wild-

type pol was used to generate integrating lentivirus, whereas

pLV-HELP (InvivoGen) that encodes amutant pol was used to gen-

erate nonintegrating lentivirus. pMD2.G was used for both. The

transfected cells were cultured for 3 d, and lentiviruses were har-

vested and concentrated as previously described (Wang and

McManus 2009).

To measure DNA titer for the integrating and nonintegrating

lentivirus library, HepG2 cells were plated at 2 × 105 cells/well in

12-well plates and incubated for 24 h. Serial volume (0, 1, 5,

25 µL) of the lentivirus was added with 8 µg/mL polybrene, to in-

crease infection efficiency. The infected cells were cultured for

2–5 d and then washed with PBS three times. Genomic DNA was

extracted using the Wizard SV genomic DNA purification kit

(Promega). Copy number of viral particle per cell was measured

as the relative amount of viral DNA (WPRE region) over that of ge-

nomic DNA (intronic region of LIPC gene) by qPCR using SsoFast

EvaGreen Supermix (Bio-Rad), according to manufacturer’s proto-

col. PCR primer sequences are shown in Supplemental Table S3.

For the lentiMPRA, 2.4 million HepG2 cells were plated on a 10-

cm dish and cultured for 24 h. The cells were infected with inte-

grating or nonintegrating lentivirus libraries along with 8 µg/mL

polybrene and incubated for 4 and 3 d, when they have an estimat-

ed 50 and 100 viral particles/cell, respectively. Three independent

replicate cultures were infected. The cells were washed with PBS

three times, and genomic DNA and total RNA was extracted using

an AllPrep DNA/RNAmini kit (Qiagen). Copy number of viral par-

ticle per cell was confirmed by qPCR and shown in Supplemental

Figure S5B. Messenger RNA (mRNA) was purified from the total

RNA using Oligotex mRNA mini kit (Qiagen) and treated with

Turbo DNase to remove contaminating DNA.

RT-PCR, amplification, and sequencing of RNA/DNA

For each replicate, 3 × 500 ng was reverse transcribed with

SuperScript II (Invitrogen 18064-014) using a primer downstream

from the barcode (pLSmP-ass-R-i#) (Supplemental Table S3),
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which contained a sample index and a P7 Illumina adaptor se-

quence. The resulting cDNAwas pooled and split into 24 reactions,

amplified with Kapa Robust polymerase for three cycles using this

same reverse primer paired with a forward primer complementary

to the 3′ end of EGFP with a P5 adaptor sequence (BARCODE_

lentiF_v4.1) (Supplemental Table S3). The implemented two-

round PCR setup is supposed to reduce PCR jack-potting effects

and allows for incorporating unique molecular identifiers

(UMIs), which could be used to correct for other PCR biases in fu-

ture experiments. PCR products are then cleaned up with AMPure

XP beads (Beckman Coulter) to remove the primers and concen-

trate the products. These products underwent a second round of

amplification in eight reactions per replicate for 15 cycles, with a

reverse primer containing only P7. All reactions were pooled at

this point, run on an agarose gel for size-selection, and submitted

for sequencing. For the DNA, 16 × 500 ng of each replicate was am-

plified for three cycles just as the RNA. First-round products were

cleaned upwith AMPure XP beads and amplified for another 16 re-

actions, each for 20 cycles. Reactionswere pooled, gel purified, and

sequenced. Sequencing primers are BARCODE-SEQ-R1-V4,

pLSmP-AG-seqIndx, and BARCODE-SEQ-R2-V4 for both RNA

and DNA barcodes (Supplemental Table S3).

RNA and DNA for each of three replicates were sequenced on

an Illumina NextSeq instrument (2 × 26 + 10 bp index). The for-

ward and reverse reads on this run each sequenced the designed

15-bp barcodes as well as an adjacent sequence to correctly trim

and consensus call barcodes. We obtained a minimum of 2.9 mil-

lion and a maximum of 5.9 million raw counts for DNA (average

4.1 million) and a minimum of 20.0 million and a maximum of

32.3million raw counts for RNA (average 25.6million). Across rep-

licates and sample type, 97%of barcodes were of the correct length

of 15 bp.

The number of unique sequences was on average 446,000 for

DNA and 1.2 million for RNA. When clustering sequences with

one substitution (dnaclust) (Ghodsi et al. 2011), the average num-

ber of unique sequences reduced to 280,000 for DNA and 697,000

for RNA. We speculate that our RNA readouts are impacted by se-

quence errors to a greater extent due to the reverse transcriptase

(RT) step. When overlapping the observed with the designed se-

quences, clustering keeps more counts but reduces the total num-

ber of observed barcodes (93.1% versus 90.3%, 145,000 versus

151,000). We believe this is due to too many errors in barcodes

that are sufficiently similar to cause clusters to merge across differ-

ent designed tag sequences. We therefore dismissed the clustered

data and only matched against the designed barcodes. This is fur-

ther supported by counts being more highly correlated between

replicates whenusing the nonclustered data (Spearman’s rhowith-

out clustering: DNA replicates 88.6%, RNA replicates 98.0%; with

clustering: DNA replicates 85.0%, RNA replicates 94.3%).

Replicates, normalization, and RNA/DNA ratios

To normalize RNA and DNA for different sequencing depths in

each sample, we divided reads by the sum of observed counts

and reported them as counts per million. Only barcodes observed

in RNA and DNA of the same sample were considered.

Subsequently, RNA/DNA ratios were calculated. We observe that

the dynamic range observed in the WT experiments is larger and

that the average Spearman’s rho is also higher for the WT experi-

ments (44.3% versus 39.0%). To determine the RNA/DNA ratios

per insert, we summed up the counts of all barcodes contributing

and determined the ratio of the average normalized counts.We ex-

plored how stable the correlation of RNA/DNA ratios is between

replicates when limiting the number of barcodes per insert

(Supplemental Fig S10). We limited the maximum number of bar-

codes considered by (1) randomly down-sampling and (2) requir-

ing an exact number of barcodes per insert (i.e., down-sampling

those with more and excluding those inserts with less barcodes).

Although normalized individually, the three replicates of

each experiment do not seem to be on the exact same scale (Fig.

2; Supplemental Fig. S9). We therefore chose to divide the RNA/

DNA ratios by the median across the technical replicate value be-

fore averaging them.

Predictors of sequence effects

To correlate available annotations with the observed sequence

activity in HepG2 cells, we downloaded additional narrow-peak

calls for DNA binding proteins/transcription factors in HepG2

from ENCODE data. We obtained call sets for the following 64 fac-

tors: ARID3A, ATF3, BHLHE40, BRCA1, CBX1, CEBPB, CEBPD,

CHD2, CTCF, ELF1, EP300, EZH2, FOSL2, FOXA1, FOXA2,

FOXK2, GABPA, GATA4, HCFC1, HDAC2, HNF4A, HNF4G, IRF3,

JUN, JUND, MAFF, MAFK, MAX, MAZ, MBD4, MXI1, MYBL2,

MYC, NFIC, NR2C2, NRF1, POLR2A, POLR2AphosphoS2,

POLR2AphosphoS5, RAD21, RCOR1, REST, RFX5, RXRA, SIN3A,

SIN3B, SMC3, SP1, SP2, SRF, TAF1, TBP, TCF12, TCF7L2, TEAD4,

TFAP4, USF1, USF2, YY1, ZBTB33, ZBTB7A, ZHX2, ZKSCAN1,

and ZNF274. Additionally, we downloaded ChromHMM segmen-

tations for HepG2, Open Chromatin State, SegWay, and DHS

call sets from the ENCODE portal (Sloan et al. 2016). From

the NIH Roadmap Epigenomics Consortium, we obtained RNA-

seq, DNA methylation, DNase I, CAGE, H2A.Z, H3K4me1,

H3K4me2, H3K4me3, H3K9ac, H3K9me3, H3K27ac, H3K27me3,

H3K36me3, H3K79me2, H4K20me1, and ChromHMM segmenta-

tions tracks (Roadmap Epigenomics Consortium et al. 2015). We

also downloaded the FANTOM5 Robust Enhancer annotations

(Andersson et al. 2014), FANTOM5 CAGE data for HepG2

(FANTOM Consortium and the RIKEN PMI and CLST (DGT)

et al. 2014), GenoSTAN Enhancer and promoter predictions

(http://i12g-gagneurweb.in.tum.de/public/paper/GenoSTAN/),

enhancerFinder predictions (Erwin et al. 2014), as well as motif

scan results and annotated regulatory features from the Ensembl

Regulatory Build (Zerbino et al. 2015). For further genome-wide

and organismal metrics, we turned to the CADD v1.3 annotation

file (Kircher et al. 2014) and extracted local GC and CpG content,

SegWay, ChromHMM state across the NIH RoadMap cell types,

priPhCons, mamPhCons, verPhCons, priPhyloP, mamPhyloP,

verPhyloP, GerpN, GerpS, GerpRS, bStatistic, tOverlapMotifs,

motifECount, motifEHIPos, TFBS, TFBSPeaks, TFBSPeaksMax, dis-

tance to TSS, and the actual CADD score column.We included the

number of bases covered by peak calls as well as the average and

maximum values across the designed sequences for those metrics.

Supplemental File 3 outlines all annotations used.

Gapped-k-mer SVM (gkm-SVM) model of HepG2 activity

We collected training data of individual ChIP-seq binding factors

described by Ghandi et al. (2014) for HepG2 (5000 specific ChIP-

seq peak regions and the same number of random controls; http://

www.beerlab.org/gkmsvm/) and removed duplicate sequences,

obtaining 225,000 peak sequences aswell asmatched randomcon-

trols. Attempting to train a classificationmodel with the gkm-SVM

software based on all peak sequences exceeded reasonablememory

requirements (>1TB). Therefore, we iteratively reduced the number

of training examples and ended up sampling each 50,000 peak and

50,000 control sequences for a combined HepG2 sequence model.

Based on a test data set (2000 sampled from the unused training

data set), the obtained model has a specificity of 71.8%, a
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sensitivity of 88.8% and precision of 75.9% for separating ChIP-

seq peak from the random control sequences.

Linear models integrating individual annotations

We used the R glmnet package to fit Lasso-penalized linear models

to predict RNA/DNA ratios. We used 10-fold cross-validation (cv.

glmnet) to determine the Lasso tuning parameter lambda resulting

in the minimum squared error. The Lasso forces small coefficients

to zero, and thereby performs regression and feature selection

simultaneously. Otherwisemissing annotation values weremostly

in count features (70.1%) or absence of the conserved block anno-

tation “GerpRS” (27.5%), and thus all these valueswere imputed to

zero. All annotation features were scaled and centered. Categorical

features with K levels were included as K-1 binary columns.We ex-

cluded ZNF274 and EZH2 annotations from the model as none of

the inserts overlapped with these ChIP-seq tracks. To report unbi-

ased correlation values and scatter plots between the true and pre-

dicted RNA/DNA ratios, we randomly split up our data into

10 folds, trained models using nine folds and the above identified

tuning parameter, and then extracted the fitted values after apply-

ing the model to the remaining fold.

Sequence-based LS-GKM models

LS-GKM (Lee 2016) is a faster and lower memory profile version of

gkm-SVM. Its default settings are different from gkm-SVM (e.g., us-

ing 11 bases with seven informative positions rather than 10 bases

with six informative positions). We applied LS-GKM using param-

eters corresponding to gkm-SVM (-l 10 -k 6 -d 3 -t 2 -T 4 -e 0.01) as

well as default parameters (-T 4 -e 0.01) on theHepG2 training data

described for gkm-SVM above (225,327 positive/negative sequenc-

es each, 10,000 kept set aside for validation). We also compared

performance for using the negative sequences as described for

gkm-SVM (Ghandi et al. 2014) versus obtaining negative sequenc-

es by permutation of the real sequences maintaining dinucleotide

content (Jiang et al. 2008). We found that best results were

obtained for LS-GKM defaults in combination with selected nega-

tive sequences rather than permuted sequences (Supplemental

Table S6). However, permuted sequences as a negative set pro-

duced a higher true positive rate and substantially simplify com-

putation. We therefore used permuted sequence sets and ran LS-

GKM with default parameters for all models. We extracted geno-

mic sequences (GRCh37) below the 64 ChIP-seq peak sets by con-

catenating multiple call sets for the same factor and merging

overlapping peak regions using BEDTools (Quinlan and Hall

2010). We extracted up to 1 kb of sequence for each peak or cen-

tered 1-kb fragments on the peak for larger peak calls. We chose

the model convergence parameter e based on the number of posi-

tive training sequences (mean 16,600, min. 186, max. 63,948)

multiplied with 1 × 10−7; investing more training iterations for

smaller training data sets.

We then used Lasso regression (as described above) to create

combined models and we also trained LS-GKM models from

pooled peak data sets (Supplemental Table S2). For this purpose,

we pooled sequences using the peak data sets underlying the top

2, 3, 5, 10, and top 15 and all sequence models selected using

Lasso regression.

Individual feature models

To explore whether certain annotations are more strongly pre-

dictive for either the nonintegrated (MT) or integrated (WT) ex-

pression measurements (despite the correlations among the

annotations), we used the R glm (Generalized Linear Models) im-

plementation to fit 430 linear single coefficient plus intercept

models for predicting log2 RNA/DNA ratios for MT and WT ex-

periments. We report the two-sided P-value for the t-statistic

corresponding to the coefficient in the linear model, and used

a significance criterion of 0.05 after Bonferroni correction

(Supplemental Fig. S22; Supplemental Table S7).

Data access

The sequencing data, designed oligo sequences, and processed

count and RNA/DNA ratio data including annotations

have been submitted to the NCBI Gene Expression Omnibus

(GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession num-

ber GSE83894.
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