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Abstract

Quantitative analysis of neuronal morphologies usually begins with choosing a particular feature representation in order

to make individual morphologies amenable to standard statistics tools and machine learning algorithms. Many different

feature representations have been suggested in the literature, ranging from density maps to intersection profiles, but they

have never been compared side by side. Here we performed a systematic comparison of various representations, measuring

how well they were able to capture the difference between known morphological cell types. For our benchmarking effort,

we used several curated data sets consisting of mouse retinal bipolar cells and cortical inhibitory neurons. We found

that the best performing feature representations were two-dimensional density maps, two-dimensional persistence images

and morphometric statistics, which continued to perform well even when neurons were only partially traced. Combining

these feature representations together led to further performance increases suggesting that they captured non-redundant

information. The same representations performed well in an unsupervised setting, implying that they can be suitable for

dimensionality reduction or clustering.

Keywords Neuroanatomy · Benchmarking · Cell types · Mouse · Visual cortex

Introduction

The development of experimental methods for high-

throughput single cell RNA sequencing (Zeisel et al. 2018;

Saunders et al. 2018; Tasic et al. 2018; Cao et al. 2019)
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and large-scale functional imaging (Baden et al. 2016;

Pachitariu et al. 2017; Schultz et al. 2017) has led to a surge

of interest in identifying the building blocks of the brain

– the neural cell types (Zeng and Sanes 2017; Xi et al.

2018). Both data modalities are analyzed with specialized

quantitative tools (Stegle et al. 2015; Stringer and Pachitariu

2019) and produce data sets amenable to statistical analysis

such as cell type identification by clustering.

At the same time, ever since the work of Santiago

Ramón y Cajal (1899), it was the anatomy of a neuron

that has been considered the defining feature of a neural

cell type. Like in genetics and physiology, recent years

have seen a tremendous increase in the availability of

anatomical data sets, due to advances in light and electron

microscopy (Briggman et al. 2011; Helmstaedter et al.

2013; Economo et al. 2016) and associated tools for

increasingly automated reconstruction (Peng et al. 2010;

Peng et al. 2014; Bria et al. 2016). As a consequence,

more and more full reconstructions of neurons are becoming

available in public databases, such as the Allen cell type

atlas (http://celltypes.brain-map.org) or the NeuroMorpho

database (http://neuromorpho.org).

Anatomical analysis of neural cell types based on these

reconstructions, however, requires accurate quantitative

representations of the neuron morphologies. While many
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different representations have been developed in the

literature, they have rarely been systematically compared

with regard to their ability to discriminate different cell

types. Two prominent examples of such representations

are density maps (Jefferis et al. 2007) and morphometric

statistics (Uylings and van Pelt 2002; Scorcioni et al. 2008;

Polavaram et al. 2014; Yanbin et al. 2013; Yanbin et al.

2015), representing two ends of the spectrum: density maps

ignore all fine details of a morphology, simply measuring

the density of neurites; morphometric statistics, in turn,

quantify the complex branching of axons and dendrites

in a set of single-valued summary statistics. Other spatial

analyses such as Sholl intersection profiles (Sholl 1953)

can be seen as occupying an intermediate position on this

spectrum. In addition, several novel feature representations

based on graph theory and topology have been suggested

in recent years (Heumann and Wittum 2009; Gillette and

Grefenstette 2009; Gillette et al. 2015; Li et al. 2017; Kanari

et al. 2018).

Here we benchmarked different representations of neural

morphologies as to how well they were able to capture

the difference between known morphological types of

interneurons. We used carefully curated anatomical data

from three studies, encompassing over 500 retinal and

cortical interneurons with complete axonal and dendritic

reconstructions and expert annotated cell type labels

(Helmstaedter et al. 2013; Jiang et al. 2015; Scala et al.

2019). In order to have a well-defined performance measure,

we used a supervised learning framework: given the expert

labels, we asked which morphological representations were

most suitable for cell type discrimination. By combining

different representations together, we also studied to

what extent they captured complementary information

about cell morphologies. In addition, we investigated how

robust these representations are if only parts of a neuron

are reconstructed and how useful they remain in an

unsupervised setting.

Results

Morphological Feature Representations

We analyzed the discriminability between different morpho-

logical cell types in adult mouse retina and adult mouse

cortex (Fig. 1). The retinal data set consisted of n =

221 retinal bipolar cells semi-automatically reconstructed

from electron microscopy scans and sorted into 13 distinct

cell types (Helmstaedter et al. 2013; Behrens et al. 2016)

(Fig. 1a). In this study we only used the 11 cell types that

included more than 5 neurons (remaining sample size n =

212). The cortical data consisted of inhibitory interneurons

from primary visual cortex manually reconstructed based on

biocytin stainings (Jiang et al. 2015; Scala et al. 2019). We

analyzed the neurons separated by layer (V1 L2/3: n = 108

neurons in 7 classes, Fig. 1b; V1 L4: n = 92 neurons in

7 classes, Fig. 1c; V1 L5: n = 93 neurons in 6 classes,

Fig. 1d). All four data sets comprised accurate and complete

morphological reconstructions of dendrites and axons and

included cell types that are morphologically close enough to

pose a challenge for classification (see “Discussion”).

We investigated 62 feature representations that we

grouped into four different categories: density maps,

morphometric statistics, morphometric distributions, and

persistence images (Fig. 2). Each feature representation was

computed using only axons, only dendrites, and using the

full neuron (i.e. axons and dendrites together).

Density maps are one- or two-dimensional projections

of the neural morphology. We used projections onto the x,

y, and z axes as well as onto the xy, xz, and yz planes.

Figure 2a shows the XZ density maps for two exemplary

bipolar cells, one of type 1 and one of type 5O. Figure 2b

shows Z density maps of all cells of these two types. This

particular pair of cell types can be easily discriminated

based on the Z projection alone.

We used 24 single-valued summary statistics of each

neuron, such as width, height, total neurite length, number

of tips, number of branch points, etc., many of which were

different for the bipolar types 1 and 5O (Fig. 2c). We also

considered a feature representation that joins all of them into

a 24-dimensional morphometric statistics vector.

We used 23 morphometric distributions of which 17

were one-dimensional and six were two-dimensional. As

an example, the Sholl intersection profile (Sholl 1953)

describes the number of intersection of a 2D projection with

concentric circles of different radius, and is very different

for bipolar types 1 and 5O (Fig. 2d). An example of a two-

dimensional distribution is the distribution of path angle

(turning angle) vs. path distance (distance to soma along

the neurite path) across all nodes in the traced morphology

(Fig. 2e). After binning, this becomes a 400-dimensional

feature vector; Fig. 2f shows two principal components

(PCs) across all bipolar cells of type 1 and 5O, indicating

that PC1 discriminates the types very well.

Finally, we used persistence images, a recently intro-

duced quantification of neural morphology based on topo-

logical ideas (Adams et al. 2017; Li et al. 2017; Kanari et al.

2018; Kanari et al. 2019). We used four different distance

functions (also called filter functions) to construct one- and

two-dimensional persistence images, resulting in eight dif-

ferent persistence representations. The same two bipolar

cell types can be well discriminated based on PC1 of the

two-dimensional radial-distance-based persistence images

(Fig. 2g, h).

See “Methods” for a complete list and detailed defini-

tions of the investigated feature representations.
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Fig. 1 Exemplary cells of each cell type for all four data sets. Axons

are shown in light green, dendrites in dark green. a Mouse retinal

bipolar cells (cone-connecting) from Helmstaedter et al. (2013). The

dashed line shows the onset of the inner plexiform layer (IPL). The

cell types used for analysis are types 1, 2, 3A, 3B, 4, 5I, 5O, 5T,

5X, 6, and 7. Cell types 8 and 9 were excluded from further analysis

due to insufficient sample sizes. b Layer 2/3 inhibitory interneurons

in primary visual cortex of adult mice (Jiang et al. 2015). BC: bas-

ket cells, BPC: bipolar cells, BTC: bitufted cells, ChC: chandelier

cells, DBC: double bouquet cells, MC: Martinotti cells, NGC: neu-

rogliaform cells. c Layer 4 inhibitory interneurons in primary visual

cortex of adult mice (Scala et al. 2019). LBC: large basket cells, BPC:

bipolar cells, DBC: double bouquet cells, HBC: horizontal basket cells,

MC: Martinotti cells, NGC: neurogliaform cells, SBC: small basket

cells. d Layer 5 inhibitory interneurons in primary visual cortex of

adult mice (Jiang et al. 2015). BC: basket cells, DC: deep-projecting

cells, HEC: horizontally elongated cells, MC: Martinotti cells, NGC:

neurogliaform cells, SC: shrub cells

Predictive Performance of Feature Representations

For each feature representation and for each pair of morpho-

logical types in a given data set, we built a binary classifier

and assessed its performance using cross-validation. As

a classifier, we used logistic regression regularized with

elastic net penalty and PCA pre-processing. Nested cross-

validation was used to tune the regularization strength and

obtain an unbiased estimate of the performance (see “Meth-

ods” and Fig. 3).
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Fig. 2 Selected feature

representations for retinal

bipolar cells of type 1 and type

5O. a Smoothed density map of

XZ projection for two exemplary

cells. b Smoothed density map

of Z projection for all cells of

these two types. The cells of

type 5O stratify deeper in the

inner plexiform layer (IPL) than

cells of type 1. Bold lines show

class means. c A selection of ten

single-valued summary statistics

that were included in the

morphometric statistics vector.

d Sholl intersection profile of

the YZ projection for all cells of

these two types. Bold lines show

class means. e Two-dimensional

distribution of path angles and

path distances to the soma

across all nodes for the same

two exemplary cells shown in

(a). f The first and the second

principal components (PCs) of

path-angle/path-distance

histograms for all cells of these

two types. g Two-dimensional

persistence images for the same

two exemplary cells shown in

(a) and (e). h The first and the

second PCs of 2D persistence

images for all cells of these two

types

a b

c d

e f

g h

As an example, Fig. 4 shows the performance of one

particular feature representation (XZ density map of the

full neuron) for all 55 pairs of neural types in the bipolar

data set, 21 pairs in the V1 L2/3 data set, 21 pairs in the

V1 L4 data set, and 15 pairs in the V1 L5 data set (for

morphometric statistics and 2D persistence, see Fig. S1).

We used the cross-validated log-loss as the main measure

of performance, because it is a proper scoring rule used by

logistic regression, it is unaffected by class imbalance and

it penalizes confident but wrong decisions. Zero loss means

perfect classification, while chance-level performance (for

balanced classes) corresponds to the loss of ln(2) ≈ 0.69.

For each pair of types, we also computed cross-validated

classification accuracy, F1 score, and Matthews correlation

coefficient. In our data, the relationships between log-loss

and these other performance measures were monotonic and

approximately quadratic (Fig. S2). As a rule of thumb, a log-

loss of 0.2 roughly corresponded to 94% accuracy, a log-loss

of 0.4 corresponded to 82% accuracy, and a log-loss of 0.6

corresponded to 67% accuracy.

The matrix of pairwise classification performances for

the bipolar data set can serve as a sanity check that our

classification pipeline works as intended: bipolar types with

close numbers (e.g. types 1 and 2, or types 3A and 3B)

are hard to distinguish (Fig. 1), and indeed the log-loss

values were generally higher close to the diagonal than far

away from it (Fig. 4). In fact, to distinguish between bipolar

types 1/2, 3A/3B/4, and 5I/5O/5T, the original studies used
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Fig. 3 Processing pipeline. Inhibitory interneurons were soma-

centered. Retinal bipolar cells were soma-centered in x and y

while z = 0 was chosen to correspond to the inner plexiform

layer (IPL) onset. The z direction of each cell was aligned with

cortical/retinal depth, whereas the x and y direction were left

unchanged. Several different feature representations were extracted

automatically and used for pairwise and multi-class classifications

using logistic regression regularized with elastic net. The performance

was assessed using 10 times repeated 5-fold stratified cross-validation

tiling of the retina and synaptic input patterns in addition

to the morphological information (Helmstaedter et al. 2013;

Behrens et al. 2016).

For each feature representation, we averaged the log-

losses across all pairs within each data set and within

each ‘modality’ (full-neuron/axon/dendrite), obtaining

4 × 3 = 12 average log-losses for each of the 62 feature

representations. Figure 5 shows a summary for the seven

top performing features (see “Methods” for how they were

selected). The performance using the dendritic features

was consistently poor for the bipolar cells and the V1 L5

interneurons (close to chance level) and generally much

lower than using the axonal features (see also Fig. S3).

Indeed, for cortical interneurons as well as for retinal bipo-

lar cells, it is the axonal, and not the dendritic, geometry

that primarily drives the definition of cell types (Markram

et al. 2004; Ascoli et al. 2008; Helmstaedter et al. 2013;

DeFelipe et al. 2013; Sümbül et al. 2014), as can be seen in

Fig. 1. In turn, the performance using the axonal features

was practically indistinguishable from the performance of

the full-neuron features, consistent with the statistics of our

data, where axonal neurites make up about 86% of the total

traced neuritic length (4.55 m out of 5.27 m). For complete-

ness, we also performed all the classifications using axonal

and dendritic features pooled together, but the resulting

performance was very similar to the performance using

axonal (or full-neuron) features alone (Fig. S3a).

Using the performance of the full-neuron features

(Fig. 5a), we found that the top performing feature

representation were XZ density maps, with a mean log-

loss of 0.18 ± 0.08 (mean±SD across n = 4 datasets),

followed by Z density maps (0.19 ± 0.05), 2D persistence

images constructed using z-projection as a distance function

(0.22 ± 0.05), morphometric statistics (0.23 ± 0.09), and

YZ density maps (0.25 ± 0.07). The 2D persistence images

that were based on other distance functions performed

Bipolar cells V1 Layer 2/3 V1 Layer 5V1 Layer 4

X
Z

 D
e

n
s
it
y
 m

a
p

Fig. 4 Cross-validated log-loss for each pair of morphological types

in each data set using XZ density maps on full neurons as predictors

in logistic regression. Zero log-loss corresponds to perfect prediction,

ln(2) ≈ 0.69 corresponds to random guessing. For the classification

results of other feature representations see Fig. S1 and https://doi.org/

10.5281/zenodo.3716519. For abbreviations see Fig. 1
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Density map Persistence

Fig. 5 a–c Pairwise classification performance of the top perform-

ing feature representations based on the full-neuron (a), axonal (b),

and dendritic (c) features for each data set. Feature representations

are grouped into density maps, morphometric statistics, morphomet-

ric distributions, persistence images, and combinations of the top three

feature representations. Each shown value is cross-validated log-loss,

averaged across all pairs. Error bars correspond to 95% confidence

intervals. Chance-level log-loss equals ln(2) ≈ 0.69 and is indi-

cated in each panel. See Fig. S3a for the results using combined

axonal+dendritic feature representations. d Cross-validated log-loss of

multinomial classification. Chance level for each data set is indicated

on the y-axis. See Fig. S3b for the results using axonal, dendritic, and

combined axonal+dendritic feature representations

596 Neuroinform (2020) 18:591–609



considerably worse (radial distance: 0.31 ± 0.04, path

length: 0.46 ± 0.09, branch order: 0.55 ± 0.03). The best

performing morphometric distribution was the YZ Sholl

intersection profile (0.37 ± 0.07).

To make a statistical comparison of the performance

between two different feature representations A and B, we

computed the mean difference δ(A, B) in log-loss across

all 112 pairs of neural types (pooling pairs across the four

data sets). The standard error of δ cannot be estimated

directly because the pairs are not independent: e.g. the

discriminative performances for bipolar types 1 and 2 and

for bipolar types 1 and 3A include the same cells from type

1. We used a jackknife procedure across types (not across

pairs) to estimate the standard error of each reported δ (see

“Methods”). We found no evidence of difference in the

performance between XZ density maps and morphometric

statistics (δ = 0.05 ± 0.05, z = 0.92, p = 0.36, z-test),

between morphometric statistics and 2D z-projection-based

persistence (δ = 0.08 ± 0.17, z = 0.5, p = 0.62), or

between 2D z-projection-based persistence and XZ density

maps (δ = 0.03 ± 0.03, z = 1.16, p = 0.24).

Among the density maps, the Z density maps did not

perform differently from XZ density maps (δ = 0.006 ±

0.02, z = 0.37, p = 0.71), while YZ density maps

performed much worse in the three V1 data sets (δ = 0.14±

0.05, z = 2.84, p = 0.005, average across V1 pairs only)

but very similar in the bipolar data set (δ = 0.01 ± 0.02,

z = 0.77, p = 0.44). Indeed, the y direction is mostly

meaningless in the V1 data as the slices are flattened during

the biocytin staining process (Farhoodi et al. 2019).

Next, we asked if combining feature representations

can improve the performance. We pooled morphometric

statistics and XZ density maps, morphometric statistics and

z-projection-based 2D persistence, XZ density maps and

z-projection-based 2D persistence, and all three of these

feature sets, yielding four additional combined feature sets

(Fig. 5, right). We found that combinations of features

tended to outperform individual feature sets. For example,

XZ density maps combined with morphometric statistics

outperformed both XZ density maps and morphometric

statistics on their own (δ = 0.06±0.02, z = 2.35, p = 0.02;

δ = 0.1 ± 0.03, z = 3.57, p = 0.0004). This suggests that

these feature representations, despite their similar individual

performance, contained some non-redundant information.

Combining all three feature representations together yielded

further improvements in some cases (compared to pairwise

combinations: p = 0.01 when adding morphometric

statistics to XZ density maps and persistence, p = 0.004

for XZ density maps, p = 0.9 for persistence), but the

differences were small (δ < 0.04 for the three comparisons).

Top Performing Features are Consistent Across
Classification Schemes

As an alternative to the pairwise classification approach, we

also used multi-class classification. We used multinomial

logistic regression with exactly the same pipeline of

regularization and cross-validation as above. For each of

the full-neuron feature representations and each of the

data sets, we obtained the cross-validated multi-class log-

loss (Fig. 5d; see Fig. S3b for the axonal, dendritic,

and combined axonal+dendritic feature representations and

Fig. S4 for conversion to accuracy). Note that for each

feature representation and data set, the performance is given

by one single estimate, as opposed to the mean over all pairs

that we reported above. Therefore only point estimates and

no confidence intervals are shown in Fig. 5d. Note also that

the values of multi-class loss are not directly comparable

between data sets, because they are strongly influenced by

the number of classes in a data set (K). The chance-level

performance is given by ln(K) and is therefore different for

each data set: ln(11) ≈ 2.40 for the bipolar data set, ln(7) ≈

1.95 for the V1 L2/3 and L4 data sets, and ln(6) ≈ 1.79 for

the V1 L5 data set. For this reason, here we are not reporting

averages across data sets.

The overall pattern was in good qualitative agreement

with that obtained using pairwise classifications (Fig. 5d).

For three out of four data sets (bipolar, V1 L4 and V1

L5), XZ density maps performed the best (bipolar data set

log-loss: 1.75, V1 L4: 1.36, V1 L5: 1.11), followed by

z-projection-based 2D persistence images (1.87/1.36/1.15)

and morphometric statistics (1.86/1.47/1.24). For the V1

L2/3 data set, morphometric statistics showed the smallest

loss (1.26), very closely followed by the persistence images

(1.3) and the density maps (XZ: 1.34/ Z: 1.36). Height was

one of the most relevant morphometric statistics across all

data sets (Fig. S6). Combining morphometric statistics with

XZ density maps led to a clear improvement in all cortical

data sets and was on par with further adding 2D persistence.

For the bipolar data, combining features did not improve

performance compared to XZ density maps alone.

To make sure that our conclusions were not dependent on

the choice of the classification approach or the performance

metric, we repeated the experiments using two other

pairwise classifiers: k-nearest neighbour (with k = 3)

and decision trees. In each case, we used the classification

accuracy, F1 score and Matthews correlation coefficient

(MCC) as performance metrics (note that log-loss is not

meaningful for these classifiers). The selection of top

performing feature representations was very consistent, with

XZ and Z density maps always ranked the first (Fig. 6).
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Fig. 6 Ranked top five feature

representations for each

classification scheme using

different performance measures

on full-neuron data. All

measures and all classification

schemes selected the same top-5

features

The Best Feature Representations are Robust
Against Partial Tracings

Accurate morphological reconstructions often become more

and more difficult to achieve as one goes away from the

cell soma, because the neurites become thinner and might

have weaker staining which makes them easier to miss. We

therefore assessed the robustness of using XZ density maps,

morphometric statistics, and 2D persistence (z-projection)

as predictors of cell type when neurons are only partially

traced.

Partial tracings were simulated by subsequently remov-

ing 10 to 90% of the branches (in steps of 10%) of

each reconstructed skeleton. On each truncation step, we

removed the given fraction of branches with the highest

branching order (see “Methods”). The branching order cor-

responds to the count of branch points that are passed when

tracking the branch back to the soma, so the higher the

branching order the more branching has occurred along

this branch. This procedure cuts away most of the axonal

neurites before reaching the dendrites that typically have

branches of lower branch order, and therefore mimics what

can happen in actual reconstructions. We used the V1 L2/3

data set for this analysis, performing all pairwise classifi-

cations between all pairs of cell types at each truncation

step (Fig. 7). In addition, we shuffled the labels of each

pairwise comparison to estimate the chance-level distribu-

tion of log-losses (Fig. 7a, grey shading). Exactly the same

cross-validation pipeline was run after shuffling the labels.

As expected, performance of each feature representation

gradually decreased with increasing level of truncation. The

decrease was rather moderate until around 30% truncation

level (e.g. it grew from 0.14 ± 0.06 to 0.17 ± 0.07,

mean±95CI across all 21 pairs, for morphometric statistics,

and very similarly for the density map and the 2D

persistence). After that, all representations were noticeably

losing in performance.

UsingMorphological Features for Unsupervised
Learning

So far we used supervised learning and assumed cell

type labels to be known. A more difficult and arguably

more interesting task is to identify morphological cell

types using unsupervised clustering (Sümbül et al. 2014;

Gouwens et al. 2019). The small sample sizes of our data

sets make it very challenging to obtain reliable clustering

and to compare the clustering performance of various

feature representations. Instead, we directly used the best

performing feature representations identified above and

performed unsupervised dimensionality reduction using t-

distributed stochastic neighbour embedding (t-SNE) (van

der Maaten and Hinton 2008). If the cell types are well-

separated in the t-SNE embedding, then it is plausible that a

clustering algorithm would identify them as separate types,

given a large enough data set.

We first used XZ density maps (reduced to a set of

6–18 PCs capturing 90% of the variance) as an input

to t-SNE with perplexity 50 (Fig. 8a). The resulting

embeddings corresponded well to the pairwise classification

performance for XZ density maps that we presented earlier

(Fig. 4). For example, horizontally elongated cells (HECs)

and shrub cells (SCs) in the V1 L5 data set that were both

easily distinguishable from other types in the classification

task, formed clear clusters, away from other cell types.

In contrast, the embedding for basket cells (BCs) and

neurogliaform cells (NGCs), the only cell pair with a high

log-loss for density maps, showed some overlap. Similarly,
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a b

Fig. 7 a Cross-validated log-loss of XZ density maps, morphometric

statistics and z-projection-based 2D persistence as a function of trun-

cation level. Branches were truncated to mimic what happens when

neurons are only partially traced. The classification was performed

on all pairs of types in V1 L2/3 data set. Dots and error bars show

the means and 95% confidence intervals across all 21 pairs. Dashed

grey line shows chance level at ln(2) ≈ 0.69. Grey shading shows the

chance-level distribution of log-losses obtained by shuffling the labels

during the cross-validation (shading intervals go from the minimum to

the maximum obtained chance-level values). The arrows mark the lev-

els of truncation shown in panel B. b XZ projections of four exemplary

cells at three levels of truncation: 10%, 50%, and 90%. At 50% trunca-

tion the global structure of each cell is still preserved, whereas at 90%

only the dendritic structures remain. See Fig. 1 for abbreviations

a

b

c

Fig. 8 a T-SNE embeddings of all four data sets using embeddings

using the XZ density maps combined with morphometric statistics.

b T-SNE embeddings using the XZ density maps combined with mor-

phometric statistics. c T-SNE embeddings using XZ density maps

combined with z-projection-based 2D persistence images. The ellipses

are 95% coverage ellipses for each type, assuming Gaussian distribu-

tion and using robust estimates of location and covariance. They are

not influenced by single outliers. For abbreviations see Fig. 1
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retinal bipolar types that were hard to classify, such as types

1 and 2 or types 3A, 3B, and 4, formed joint clusters with a

lot of overlap (Fig. 8a).

We then combined XZ density maps with either

morphometric statistics (11–12 PCs) or with the best

performing 2D persistence image (z-projection; 4–6 PCs).

To do so, we reduced each feature representation to a set

of PCs capturing 90% of the variance and normalized each

set of PCs by the standard deviation of the respective PC1,

to put both sets roughly on the same scale. We pooled the

scaled PCs together and used this feature representation as

input for t-SNE (Fig. 8b and c). For some of the data sets

(e.g. V1 L2/3 and V1 L5), the combination of XZ density

maps with one of the two other feature representations

yielded an arguably superior t-SNE embeddings with less

overlap between types.

The embeddings shown in Fig. 8 used full-neuron

features that, as we saw above, are dominated by the axonal

geometry. Applying the same procedure to the dendritic

features yielded embeddings with far worse separation

between cell types (Fig. S5). Moreover, dendritic features

resulted in t-SNE embeddings with far less structure than

the full-neuron features, suggesting that there is less of

an interesting variability in the dendritic morphologies

compared to the axonal ones.

Discussion

Here we benchmarked existing morphological representa-

tions in the context of supervised cell type classification on

well-curated data sets encompassing over 500 full recon-

structions of interneurons in the mouse visual system. We

found that density maps, z-projection-based 2D persistence

images and morphometric statistics yield the best predic-

tions of cell type labels, and showed that they do so even

if substantial parts of the traced morphologies are removed.

We demonstrated that these predictors work well indepen-

dent of the used classification scheme or the performance

metric suggesting that they are a good starting point for

morphological analysis.

Previous literature

Previous literature has argued that on their own, density

maps, morphometric statistics, and persistence work well

for cell type identification and classification. Retinal cells,

for example, can be successfully discriminated by their

stratification depth within the inner plexiform layer (IPL)

which can be seen as a z-projection of their neurite

density (Helmstaedter et al. 2013; Sümbül et al. 2014).

Morphometric statistics have been used in a wide variety of

studies across species and brain areas (Yanbin et al. 2013;

Polavaram et al. 2014; Yanbin et al. 2015; Gouwens et al.

2019) and have been shown to perform well in a one-vs-rest

classification of cortical neurons (Mihaljević et al. 2015;

Mihaljević et al. 2018). Persistence, in turn, has lately been

shown to distinguish pyramidal neuron types in juvenile rat

somatosensory cortex (Kanari et al. 2019).

These studies, however, did not directly compare

different morphology representations, but rather focused

on comparing classification schemes or establishing cell

type related differences within their chosen morphological

representation. Our study fills this gap by applying the same

standardized classification procedure to each morphological

representation, using well-curated data sets with well-

defined cell types. This comparison revealed that density

maps contain enough information to accurately discriminate

most inhibitory cell types. This implies that the spatial

extent and overall shape of the axonal arbour, as a

consequence of a neuron’s connectivity, are more relevant

than precise branching characteristics; a finding that has

already been proposed for dendrites (Cuntz et al. 2007;

Cuntz et al. 2008; Cuntz et al. 2010; Cuntz 2012; van Pelt

and van Ooyen 2013).

Various forms of persistence-based measures performed

consistently worse than density maps, except when the z-

projection was used as a distance measure. This distance

measure captures a neuron’s orientation towards the pia

and its relative spatial extent across layers (Li et al.

2017; Kanari et al. 2018), again supporting the point that

spatial extent is most meaningful for inhibitory cell type

classification. Morphometric statistics performed similarly

well on some of the data sets but showed a somewhat

lower performance than density maps. For example, they

failed to distinguish double-bouquet cells and Martinotti

cells in layer 4 (see Fig. S1). We did not extensively

evaluate combinations of feature representations, but

combining the best representations often lead to small but

significant improvements in performance. However, strong

regularization has to be implemented to avoid overfitting to

a data set of limited size (see Fig. 5).

The axonal morphology of neurons in our study

contained more information about the cell type than the

dendritic morphology, in agreement with the existing

literature (Mihaljević et al. 2015; Jiang et al. 2015; Ofer

et al. 2018). Our unsupervised analysis also demonstrated

far more variability within axonal features compared to the

dendritic features (Fig. S5), which is in line with classical

expert-based cell type naming conventions (Markram

et al. 2004; DeFelipe et al. 2013; Helmstaedter et al.

2013). Notwithstanding, dendritic reconstructions are more

prevalent in the literature and in the available databases: at

the time of writing only 55% (367/667) and 8% (630/8 129)

of mouse cortical neurons in the Allen Cell Type atlas

(http://celltypes.brain-map.org/data) and the NeuroMorpho
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library (Ascoli et al. 2007) are flagged as containing

complete axonal reconstructions. This is because dendrites

are usually thicker and more compact than axons and so

are easier to stain and trace. This has obstructed acquisition

of complete axonal reconstructions in mammals but might

be remedied by recently developed whole brain imaging

techniques (Ragan et al. 2012; Yuan et al. 2015; Economo

et al. 2016; Gong et al. 2016). At the same time, the robust

classification performance of truncated morphologies and

the good performance of density maps suggest that full

reconstructions might not be necessary for morphological

cell type identification.

Limitations

Our study has several limitations. First, we always used cell

type labels provided in the original publications, treating

them as ground truth. For cortical interneurons it has been

shown that there is a considerable inter-expert variability

between assigned cell type labels (DeFelipe et al. 2013),

affecting the outcome of any supervised learning task.

Ideally, one would use consensus labels between multiple

experts or different data modalities for a benchmark

evaluation, but such data sets are currently even harder to

obtain than the data sets used in this study.

Next, tissue shrinkage and staining method can affect the

measured morphology (Farhoodi et al. 2019). In our study

all three data sets obtained through biocytin staining (V1

L2/3, V1 L4, V1 L5) showed flattening of the cortical slice

(y-direction) which made XY density maps perform worse

in comparison to other projections. We did not observe this

effect for the bipolar cells that have been obtained through

EM imaging. Obviously, a feature representation can only

be good for classification, if the data contains the relevant

information in the first place. Therefore, it is important to be

aware of biases or distortions in the experimental protocol

before deciding on which feature representation to use.

Further, we believe that a meaningful comparison

between different numerical descriptions of morphology is

only possible through maintaining strict data consistence

and quality criteria. This is why we restricted this work to

data from only one species (mouse) of one developmental

stage (adult) where morphological cell types are well

established and supported by other studies based on

electrophysiology (Jiang et al. 2015) or genetics (Shekhar

et al. 2016). At the same time we wanted morphologies

to be similar enough to pose a challenge and we

required complete axonal and dendritic reconstructions. The

resulting data set of 505 interneurons is comparable to the

sample sizes used in related studies (Mihaljević et al. 2015;

Mihaljević et al. 2018). As these interneurons are only

locally projecting, our study does not provide guidance as to

which features are useful for discriminating neurons based

on their long-range projection patterns (Costa et al. 2016;

Econom et al. 2018; Gerfen et al. 2018).

As the 505 neurons were split into 31 types, the

median sample size per class was only 16 cells. It is

difficult to fit machine learning algorithms in the n ≪ p

regime where the number of dimensions p highly exceeds

the number of samples n (Friedman et al. 2001). We

used a simple linear model strongly regularized by PCA

preprocessing and an elastic net penalty as well as nonlinear

non parametric models since fitting more complicated

models can be challenging with these low sample sizes.

This approach performs well when the leading principal

components of the data have good discriminative power, but

can also perform at chance level if the difference between

types is restricted to low-variance directions. Thus, low

classification performance for a given cell type pair does not

necessarily imply that they could not be reliably separated

with more available data.

Finally, we restricted our benchmarking effort to the most

prominent and established morphological representations

that have been independently employed by more than one

research group. In particular, this excluded some methods

based on graph theory (Heumann and Wittum 2009; Gillette

and Grefenstette 2009) and sequence alignment (Gillette

and Ascoli 2015; Gillette et al. 2015; Costa et al. 2016)

which can be promising candidates for further studies.

The morphometric statistics that we used did not include

everything that has been suggested in the literature either.

For example, we did not use morphometric statistics such

as fractal dimension (Panico and Sterling 1995) and did not

explicitly quantify the amount of layer-specific arborization

(DeFelipe et al. 2013; Gouwens et al. 2019) because

this concept only applies to cortical neurons and layer

boundaries were not available for our data. However, given

the good performance of density maps and z-projection-

based 2D persistence images, it is possible that including

layer-specific information could improve the performance

of morphometric statistics.

Outlook

Our study serves to provide a starting point for future

work on algorithmic cell type discrimination based on

anatomical data, for example in the context of large-scale

efforts to map every cell type in the brain as pursued by the

NIH BRAIN initiative. It allows experimenters to make an

informed choice which cell type representations are useful

to automatically distinguish interneurons based on their

morphology. Of course, how far our results generalize to

other species and brain regions remains to be seen. The

resulting representations also make it possible to relate
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anatomical descriptions of neurons to data from other

modalities such as e.g. gene expression patterns (Cadwell

et al. 2017).

The representations investigated here are purely descrip-

tive and do not provide deeper mechanistic insight, com-

pared e.g. to generative models of the growth process of

neurons during development (van Pelt and Schierwagen

2004; Cuntz et al. 2010; Memelli et al. 2013; Wolf et al.

2013; Fard et al. 2018; Farhoodi et al. 2019). Ideally, a

mechanistically grounded feature representation would per-

form at least on par with the representations identified here

for cell type discrimination while yielding parameters that

are more easily interpretable. Potential starting points for

such a representations are growth models proposed by van

Pelt and Schierwagen (2004) and Cuntz et al. (2010), which

have a manageable amount of parameters and show sys-

tematic parameter differences for dendrites of different cell

types. This make them promising candidates for further

research.

Methods

Data

We used data from Helmstaedter et al. (2013), Scala et al.

(2019), and Jiang et al. (2015), splitting the latter data set

into two parts by cortical layer. All neurons were labelled

by human experts in the original studies. We confirmed the

quality of all reconstructions through inspection. Our study

investigated a total of 5.27 meters of traced neurites from

n = 505 neurons.

1. Bipolar cells. This data set comprised n = 221

tracings of retinal bipolar cells in one mouse (p30) from

electron-microscopy data (Helmstaedter et al. 2013). To

allow for at least 5-fold cross-validation, we did not

analyze cell types which had counts of 5 cells or fewer.

This criterion excluded types 8 and 9 and resulted in

n = 212 remaining morphologies in 11 types. The

reconstructions (as .SWC files) as well as their cell type

labels were obtained from the authors of Behrens et al.

(2016), which explains the additional cell types 5O, 5I

and 5T as compared to the original work.

2. V1 Layer 2/3. Manually traced biocytin stainings of

n = 108 inhibitory interneurons of 7 types in layer 2/3

(L2/3) of adult mouse primary visual cortex (Jiang et al.

2015). We obtained the reconstructions (as .ASC files)

and their cell type labels from the authors.

3. V1 Layer 4. Manually traced biocytin stainings of n =

92 inhibitory interneurons of 7 types in layer 4 (L4) of

adult mouse primary visual cortex Scala et al. (2019).

We obtained the reconstructions (as .ASC files) and

their cell type labels from the authors.

4. V1 Layer 5. Manually traced biocytin stainings of

n = 94 inhibitory interneurons of 6 types in layer

5 (L5) of adult mouse primary visual cortex (Jiang

et al. 2015). One deep-projecting cell lacked an axon

so it was excluded from further analysis resulting in

n = 93 remaining morphologies. We obtained the

reconstructions (as .ASC files) and their cell type labels

from the authors.

For data availability see Information Sharing Statement.

Preprocessing and nomenclature

Reconstructed morphologies were converted into SWC

format using NLMorphologyConverter 0.9.0 (http://

neuronland.org) where needed and further analysed in

Python. The SWC format represents a morphology with a

list of nodes (points) with each node described by its id,

3D position, radius, type (1: soma, 2: axon, 3: dendrite),

and parent id. Each node connects to its parent node with a

straight line that we will call “sub-segment”. Several nodes

can connect to the same parent node; in this case this parent

node is called a “branch point”. A neurite path from one

branch point to the next is called a “segment”.

The bipolar cells were missing explicit type labels for

the soma, we therefore set every node of radius larger

than 1 micron to be somatic. We generally allowed for

only one somatic node so that within one reconstruction all

somatic nodes were grouped and replaced by one node with

position and radius being the centroid of the convex hull

of all original soma nodes. Especially in the initial branch

segments it can occur that node type labels (1: soma, 2:

axon, 3: dendrite) are not consistent between consecutive

nodes. Node type labels within one branch were hence

assigned according to the majority vote over all sub-segment

types within this branch.

All cortical interneurons were soma-centered and their

z-coordinate (height) was oriented along the cortical

depth. We re-sampled all neurons to consist of equidistant

points with 1 micron spacing along all neurites through

linear interpolation. As the y-coordinate (oriented in the

direction along the thickness of the cortical slice, i.e. the

viewing direction of the microscope) sometimes contained

sudden “jumps”, we used a 3rd order Savitzky-Golay filter

with window size of 21 microns to smooth these (as

implemented in scipy.signal). We did not account

for the shrinkage of slice thickness (depth) that happens

during the staining. Bipolar cells were soma-centered in

their x and y coordinates and IPL-centered in the z direction

corresponding to the retinal depth (i.e. z = 0 corresponded
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to the outer border of the inner plexiform layer, IPL).

Smoothing and re-sampling was not done for this data set.

Feature Representations

We calculated 62 different feature representations for

each cell. These representations can be grouped into

four categories: density maps, morphometric statistics,

morphometric distributions, and persistence. All feature

representations were separately computed for axons, for

dendrites, and for the whole neuron (without distinguishing

axons from dendrites) yielding 62 · 3 = 186 representations

per neuron (see Fig. 2).

Density Maps

We sampled equidistant points with 25 nm spacing along

each neurite of the traced skeletons and normalized the

resulting point clouds within each data set for each modality

to lie between 0 and 1 (for the range values used for this

normalisation see the linked Github repository). For 2D

density maps, the normalized point cloud was projected

onto the xy, xz, and yz planes and binned into 100 ×

100 bins spanning [−0.1, 1.1]. For 1D density maps the

normalized point cloud was projected onto the x, y, and

z axes and binned into 100 bins spanning [−0.1, 1.1]. We

smoothed the resulting histograms by convolving them with

a 11 × 11 (for 2D) or 11-bin Gaussian kernel with standard

deviation σ = 2 bins. For the purposes of downstream

analysis, we treated the density maps as vectors of 10 000

(for 2D) or 100 (for 1D) features. Overall we used 6 versions

of density map representations.

Morphometric Statistics

For each cell we computed a set of 24 single-valued

summary statistics:

number of branch points Count of points at which the

neurites branch.

number of tips Count of end-points.

cell height Extent (max−min) of the cell in the z

direction in microns. This direction corresponds to the

cortical/retinal depth.

cell width Extent (max−min) of the cell in the x direction

in microns. In biocytin data this direction corresponds to

the width of the slice.

cell depth Extent (max−min) of the cell in the y direction

in microns. In biocytin data this direction corresponds to

the depth of the slice and is flattened due to the staining

process.

number of stems Count of neurites extending directly

from the soma.

average thickness The average radius across all neurites

in microns (soma is excluded).

total length Total path length of all neurites in microns.

surface Estimated total surface area of all neurites.

Each neurite sub-segment is assumed to be a trun-

cated cone, and its surface was computed as π(r +

R)
√

(R − r)2 + h2 where h is the length of the sub-

segment and r and R are the radii at both ends.

volume Estimated total volume of all neurites, computed

as 1
3
πh(r2 + rR + R2) for each sub-segment.

maximal neurite length Path length of the longest neu-

rite from tip to soma in microns.

maximum branch order The maximum number of

branch points passed when tracing a neurite from the tip

back to the soma. Branch ordering starts with the soma

having branch order 0 and each subsequent branching

point increases the order by 1. This ordering scheme is

also called centrifugal order.

maximum segment Euclidean length of the longest

segment in microns.

median intermediate segment The median path length

of intermediate segments in microns.

median terminal segment The median path length of

terminal segments in microns.

median path angle “Path angle” is the angle between

two consecutive sub-segments (not including the sub-

segments that meet at a branching point). Median path

angle refers to the median across all such consecutive

sub-segments. It is bounded between [0, 180] degree.

maximal path angle Maximal path angle represents the

99.5 percentile across all such consecutive sub-segments.

We used the percentile to ameliorate the influence of

reconstruction quality on this measure. It is bounded

between [0, 180] degree.

median tortuosity The median log(tortuosity) across all

neurite segments. Tortuosity describes the “bendiness” of

a segment and is defined as the ratio of path length to the

Euclidean distance between the end-points. Tortuosity

follows a skewed distribution, we therefore used the

log-transformed value.

maximal tortuosity The 99.5 percentile of log(tortuosity)

across all neurite segments. We used the percentile to

ameliorate the influence of reconstruction quality on this

measure.

minimal branch angle For each pair of branches meeting

at a branching point, “branch angle” is the angle

(in [0, 180] degrees range) between the meeting sub-

segments. Minimal branch angle refers to the minimal

branch angle across all such pairs.

603Neuroinform (2020) 18:591–609



average branch angle Average branch angle, see above.

maximal branch angle Maximal branch angle, see

above.

maximal degree Maximal number of neurites meeting at

a single branch point.

tree asymmetry The tree asymmetry measures how far

a tree-graph is away from a perfectly balanced tree-

graph. As a measure we use the weighted sum over

the proportional sums of absolute deviations (PSADs) of

each branch point:

∑
wp · PSAD(p)

where the sum is over all branch points p, wp ∈ {0, 1},

and wp = 1 iff the sub-tree emerging from branch

point p has more than 3 leaves. The PSAD is a measure

of topological tree asymmetry and is defined for one

branching node p as

PSAD(p) =
m

2(m − 1)(n − m)
·
∑

m

|ri −
n

m
|

where m is the out-degree of node p, n is the number of

leaves of the sub-tree starting at p, and ri is the number

of leaves of the i-th sub-tree of p. For a more detailed

definition see Verwer and van Pelt (1986).

In addition to the 24 features listed above, we grouped

all of them together into one vector which we named

morphometric statistics.

Morphometric Distributions

For each cell we computed the following 17 one-

dimensional morphometric distributions:

branch angles Histogram of bifurcation angles between

neurites (20 bins from 0 to 180).

branch orders A vector of length K where K is the

maximal branch order within each data set, with element

i equal to the number of branch-points of order i.

path angles Histogram of the path angles (20 bins from 0

to 180).

root angles Histogram of the root angles of each segment.

The root angle denotes the angle between the straight

line connecting the segment’s start and end nodes and the

straight line that connects the segment’s end point with

the soma (20 bins from 0 to 180). It is indicative of the

preferred growing direction of the neural arbor. For more

details see Bird and Cuntz (2019).

Euler root angles, α Histogram of the Euler root angles

(α). Here, the root angles are expressed as Euler angles

around the x, y and z axis (20 bins from 0 to 180).

Euler root angles, β See above.

Euler root angles, γ See above.

segment lengths Histogram of Euclidean segment

lengths (20 bins from 0 to the maximal segment length

within each data set).

thickness Histogram of nodes’ radii, the soma is excluded

(30 bins from 0 to the maximal radius within the data set).

path distance to soma Histogram of the path length of

each branch point and tip to the soma (20 bins from 0 to

maximal neurite length within each data set)

Euclidean distances to soma Histogram of the

Euclidean distance of each branch point and tip to the

soma (20 bins from 0 to maximal path length within each

data set).

Sholl intersection xy Sholl intersection profile in the

xy-plane. The Sholl intersection profile describes the

number of intersection of a 2D projection with concentric

circles of different radii around the soma (Sholl 1953).

We used 36 steps from soma to maximal radial distance

from soma.

Sholl intersection xz Sholl intersection profile in the xz-

plane.

Sholl intersection yz Sholl intersection profile in the yz-

plane.

3-star motif 10-dimensional vector with element i being

the number of 3-star motifs in the sub-graph containing

i · 10% of all nodes closest to the soma. A 3-star

motif represents a branch point where one branch forks

into two branches. For each additional branch the 3-star

motif is counted again (e.g. a neurite forking into three

sub-branches is counted as having two 3-star motifs).

average 3-star motif The 3-star motif vector is calcu-

lated 100 times using different random nodes instead

of the soma as the “center” of concentric spheres. The

resulting vectors are then averaged.

average maximal distance Using the same sub-graphs,

we compute the maximal Euclidean distance in each

sub-graph (10-dimensional vector). This procedure is

repeated 100 times with random starting nodes and the

resulting vectors are then averaged.

In addition, we used six two-dimensional morphometric

distributions. The binning and normalization were the same

as for the respective 1D distributions.

branch angles × branch orders 2D histogram of branch

angles as a function of branch orders (across all branch

points).

branch angles × path distances 2D histogram of branch

angles as a function of path distances to the soma in

microns (across all branch points).

path angle × branch order 2D histogram of path angles

as a function of branch orders (across all nodes).
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path angle × path distance 2D histogram of path angles

as a function of path distances to the soma in microns

(across all nodes).

thickness × branch order 2D histogram of neurite radii

as a function of branch orders (across all nodes).

thickness × path distance 2D histogram of neurite radii

as a function of path distances to the soma in microns

(across all nodes).

Persistence Diagrams

Persistence diagrams originated from algebraic topology

but recently have been proposed as a representation for

neural morphologies (Kanari et al. 2018). We briefly outline

the underlying algorithm here. Starting from each tip, one

records the “birth time” of each branch as the distance of

the tip from the soma. Hereby, the distance is measured

according to some filter function f. While moving away

from the tips towards the soma, at each branch-point the

“younger” branch, i.e. the one with a smaller birth time,

is “killed” and its “death time” is recorded as the distance

of the branch point from the soma. This results in a 2D

point cloud of (birth time, death time) for each branch, the

so called persistence diagram, in which only the longest

branch survived until the soma and has a death time of 0.

Depending on the filter function f, different aspects of the

neuron’s topology can be captured. Here we employed four

different filter functions, following (Kanari et al. 2018):

radial distance returns the Euclidean distance of node x

to the soma s;

path length returns the sum over the lengths of all

segments along the path connecting node x with the soma

s;

branch order returns the branch order of node x;

z-projection returns the difference of z-coordinates

between node x and the soma s projected onto the z-axis.

Euclidean distance is undefined for persistence diagrams

themselves. To circumvent this problem we converted each

persistence diagram into a 1D or 2D image and used

Euclidean distance on the results as this procedure has been

shown to work well in the neural domain (Kanari et al.

2019; Li et al. 2017). To obtain a 2D Gaussian persistence

image we performed kernel density estimation of the point

cloud using a 2D Gaussian kernel (gaussian kde from

the scipy.stats package with default settings). We

evaluated the density estimate on a 100 × 100 equidistant

grid spanning a [0, maxbirth] × [0, maxdeath] rectangle. Here

maxbirth and maxdeath refer to the maxima across all cells

within each data set (for actual values see the linked Github

repository). For the purposes of downstream analysis, we

treated this as a set of 10,000 features.

The 1D Gaussian persistence vector we obtained in

a similar way. Namely, we performed a one-dimensional

Gaussian kernel density estimation of the neurites’ “living

time” (birth − death) and sampled the resulting estimate at

100 equidistant points spanning [0, maxbirth].

We compared our implementations of morphomet-

ric statistics and persistence diagrams to the existing

implementations (NeuronM: https://github.com/BlueBrain/

NeuroM, TMD: https://github.com/BlueBrain/TMD) and

made sure that they are in full agreement. Note that our

implementation defines the soma at its centre (not its sur-

face) which can slightly affect some of the features.

Classification

Each feature representation was used as a predictor for

pairwise and multinomial classification. Morphometric

statistics were z-scored. Except for morphometric statistics,

we reduced all representations using principal component

analysis (PCA) and kept as many principal components as

needed to capture at least 90% of the variance on the training

set (for cross-validation, PCA was computed on each outer-

loop training set separately, and the same transformation

was applied to the corresponding outer-loop test set). We

divided all PCA components by the standard deviation of

the respective first principle component to put all features

roughly on the same scale and to allow for combination

of features. To avoid overfitting when using combinations

of feature representations, we performed the same PCA

reduction on morphometric statistics as well.

For binary classification, we used logistic regression with

an elastic net regularization. Regularization parameter α

was fixed to 0.5, which is giving equal weights to the

lasso and ridge penalties. We used nested cross-validation to

choose the optimal value of the regularization parameter λ

and to obtain an unbiased estimate of the performance. The

inner loop was performed using the civisanalytics

Python wrapper around the glmnet library (Friedman et al.

2010) that does K-fold cross-validation internally (default:

3-fold). We kept the default setting which uses the maximal

value of λ with cross-validated loss within one standard

error of the lowest loss (lambda best) to make the test-

set predictions. We explicitly made the civisanalytics

Python wrapper use the loss (and not accuracy) for λ

selection:

from glmnet.scorer import make_scorer

from sklearn.metrics import log_loss

m = LogitNet(alpha=0.5, n_splits=3,

random_state=17, standardize=False)

m.scoring = make_scorer(log_loss,

greater_is_better=False, needs_proba=True)
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The outer loop was 10 times repeated stratified 5-fold

cross-validation, as implemented in scikit-learn by

RepeatedStratifiedKFold (n_splits=5,

n_repeats=10, random_state=17).

Model performance was assessed via mean test-set log-

loss and test-set accuracy. For comparison between different

classification schemes we also computed the mean test-

set macro F1 scores, which is the unweighted mean of the

F1 scores for each class, and the mean test-set Matthews

correlation coefficient (Brian 1975).

For multi-class classification we used multinomial

logistic regression with an elastic net regularization. The

parameters and the cross-validation procedure were the

same as above.

The processing pipeline including preprocessing, feature

extraction and classification was automated using DataJoint

(Yatsenko et al. 2015).

Selection of Top Performing Features

We identified the top five performing feature representa-

tions for each “modality” (full-neuron, axon, dendrite, as

well as axon + dendrite) based on their mean binary clas-

sification performance across data sets and identified their

superset (six features). We also included the best performing

morphometric distribution to have at least one feature rep-

resentation of each category investigated. This lead to the

seven features shown in Fig. 5.

Statistical Analysis of Differences

We estimated the mean difference between two feature

representations A and B as

δ(A, B) =
1

|P|

∑

p∈P

(
ℓ(B, p) − ℓ(A, p)

)
,

where P denotes the set of pairs of types across the four data

sets, |P| = 112 is their total number, and ℓ(X, p) is cross-

validated log loss of feature X for pair p. To estimate the

standard error of δ(A, B) we use the jackknife procedure

(Efron and Hastie 2016). We repeat the procedure leaving

out one type τ entirely, so that all pairs including that type

are left out:

δ−τ =
1

|P−τ |

∑

p∈P−τ

(
ℓ(B, p) − ℓ(A, p)

)
,

where P−τ is the set of pairs without type τ . This yields

n = 31 estimates of δ−τ , with the jackknife estimate of the

standard error given by

ŜE(δ(A, B)) =

[n − 1

n

∑

τ

(δ−τ − δ̄)2
] 1

2
,

where δ̄ = 1
n

∑
τ δ−τ . All reported p-values were obtained

with a z-test using

z =
δ(A, B)

ŜE(δ(A, B))
.

Other Classification Schemes

For comparison with different classification schemes we

used the 3-nearest neighbour classifier and the decision tree

classifier of the Python scikit-learn implementation:

from sklearn.neighbors import

KNeighborsClassifier

from sklearn.tree import

DecisionTreeClassifier

m_neighbour = KNeighborsClassifier

(n_neighbours=3)

m_tree = DecisionTreeClassifier

(random_state=17)

t-SNE Visualization

For the t-SNE visualization (van der Maaten and Hinton

2008) of each data set, we reduced density maps and

morphometric statistics to as many principal components

needed to keep 90% of the variance each. As done during

classification, we scaled each set of PCs by the standard

deviation of the respective PC1, to put both sets roughly

on the same scale. Then we stacked them together to

obtain a combined representation of each cell. Exact (non-

approximate) t-SNE was run with perplexity 50 and random

initialization using the scikit-learn implementation:

TSNE(perplexity=50, method=’exact’,

random_state=42)

The same procedure was applied for embedding the

combination of density maps and z-projection-based 2D

persistence images.

To plot the coverage ellipses for each cell type (Fig. 8),

we used robust estimates of location and covariance, so

that the ellipses are not influenced by outliers. We used

the minimum covariance determinant estimator (Rousseeuw

and Driessen 1999) as implemented in MinCovDet() in

scikit-learn.

Robustness Analysis

Morphological tracings are done manually and reconstruc-

tion quality can vary between protocols and experts. We

assessed the robustness of the top performing feature rep-

resentations by repeating the classification procedure on

only partially traced neurons. We simulated incomplete trac-

ings using the full reconstructions of the V1 L2/3 data set

and assessed the performance of all pairwise classifications
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(Fig. 7). Incomplete tracings were simulated by succes-

sively removing 10–90% of all branches starting with the

branches of the highest branch order. We then used the XZ

density map, the morphometric statistics and the 2D persis-

tence image (z-projection) for each degree of truncation as

predictors.

To estimate the chance-level performance we shuffled

the class labels for each pairwise classification at each

truncation grade and repeated our classification pipeline

with shuffled labels. The resulting distribution of chance-

level test-set log loss values was in agreement with the

theoretical value of ln(2).
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Larrañaga, P. (2015). Bayesian network classifiers for categorizing

cortical gabaergic interneurons. Neuroinformatics, 13(2), 193–208.
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