
A Systematic Evaluation of Large Language Models of
Code

Frank F. Xu
fangzhex@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Uri Alon
ualon@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Graham Neubig
gneubig@cs.cmu.edu

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Vincent Josua Hellendoorn
vhellendoorn@cmu.edu

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Abstract
Large language models (LMs) of code have recently shown
tremendous promise in completing code and synthesizing
code from natural language descriptions. However, the cur-
rent state-of-the-art code LMs (e.g., Codex [10]) are not pub-
licly available, leaving many questions about their model
and data design decisions. We aim to fill in some of these
blanks through a systematic evaluation of the largest existing
models: Codex, GPT-J, GPT-Neo, GPT-NeoX-20B, and Code-
Parrot, across various programming languages. Although
Codex itself is not open-source, we find that existing open-
source models do achieve close results in some programming
languages, although targeted mainly for natural language
modeling. We further identify an important missing piece in
the form of a large open-source model trained exclusively on
a multi-lingual corpus of code. We release a newmodel, Poly-
Coder, with 2.7B parameters based on the GPT-2 architecture,
that was trained on 249GB of code across 12 programming
languages on a single machine. In the C programming lan-
guage, PolyCoder outperforms all models including Codex.
Our trained models are open-source and publicly available
at https://github.com/VHellendoorn/Code-LMs, which
enables future research and application in this area. We have
an online appendix at https://arxiv.org/abs/2202.13169.

CCS Concepts: • Computing methodologies → Natural
language processing; • Software and its engineering;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
MAPS ’22, June 13, 2022, San Diego, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-9273-0/22/06. . . $15.00
https://doi.org/10.1145/3520312.3534862

Keywords: code language model, evaluation, pretraining,
code generation, open-source
ACM Reference Format:
Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Josua Hel-
lendoorn. 2022. A Systematic Evaluation of Large Language Mod-
els of Code. In Proceedings of the 6th ACM SIGPLAN International
Symposium on Machine Programming (MAPS ’22), June 13, 2022,
San Diego, CA, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3520312.3534862

1 Introduction
Language models (LMs) assign probabilities to sequences of
tokens, and are widely applied to natural language text [5,
6, 9]. Recently, LMs have shown impressive performance
in modeling also source code, written in programming lan-
guages [3, 17, 19, 23]. These models excel at useful down-
stream tasks like code completion [29] and synthesizing code
from natural language descriptions [12]. The current state-of-
the-art large language models for code, such as Austin et al.
[4], have shown significant progress for AI-based program-
ming assistance. Most notably, one of the largest models,
Codex [10], has been deployed in the real-world production
tool GitHub Copilot1, as an in-IDE developer assistant that
automatically generates code based on the user’s context.

Despite the great success of large language models of code,
the strongest models are not publicly available. This prevents
the application of these models outside of well-resourced
companies and limits research in this field for low-resourced
organizations. For example, Codex provides non-free access
to the model’s output through black-box API calls,2 but the
model’s weights and training data are unavailable. This pre-
vents researchers from fine-tuning and adapting this model
to domains and tasks other than code completion. The lack
of access to the model’s internals also prevents the research
community from studying other key aspects of these models,
such as interpretability, distillation of the model for more effi-
cient deployment, and incorporating additional mechanisms
such as retrieval.
1https://copilot.github.com/
2https://openai.com/blog/openai-codex/

1

https://github.com/VHellendoorn/Code-LMs
https://arxiv.org/abs/2202.13169
https://doi.org/10.1145/3520312.3534862
https://doi.org/10.1145/3520312.3534862
https://doi.org/10.1145/3520312.3534862
https://copilot.github.com/
https://openai.com/blog/openai-codex/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3520312.3534862&domain=pdf&date_stamp=2022-06-13

MAPS ’22, June 13, 2022, San Diego, CA, USA Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn

pa

ra
m

et
er

s
500M

1B

5B

10B

50B

100B

Cod
eG

PT

Cod
eB

ERT

Cod
eT

5

CuB
ERT

PLB
ART

Cod
eP

arr
ot

GPT-N
eo

Poly
Cod

er

GPT-J

Cod
ex

GPT-N
eo

X

Aus
tin

 '2
1

Figure 1. Existing language models of code, their sizes and availability (open source vs. not open-source).

Several medium to large-sized pre-trained language mod-
els are publicly available, such as GPT-Neo [8], GPT-J [35]
and GPT-NeoX [7]. Despite being trained on a mixture of a
wide variety of text including news articles, online forums,
and just a modest selection of (GitHub) software reposito-
ries [15], these language models can be used to generate
source code with a reasonable performance [10]. In addi-
tion, there are a few open-source language models that are
trained solely on source code. For example, CodeParrot [32]
was trained on 180 GB of Python code.

Given the variety of model sizes and training schemes
involved in these models and lack of comparisons between
these, the impact of many modeling and training design
decisions remains unclear. For instance, we do not know
the precise selection of data on which Codex and other pri-
vate models were trained; however, we do know that some
public models (e.g., GPT-J) were trained on a mix of natu-
ral language and code in multiple programming languages,
while other models (e.g., CodeParrot) were trained solely on
code in one particular programming language. Multilingual
models potentially provide better generalization, because
different programming languages share similar keywords
and properties, as shown by the success ofmultilingual mod-
els for natural language [11] and for code [37]. This may
hint that multilingual LMs can generalize across languages,
outperform monolingual models and be useful for modeling
low-resource programming languages, but this is yet to be
verified empirically.

In this paper, we present a systematic evaluation of exist-
ing models of code – Codex, GPT-J, GPT-Neo, GPT-NeoX,
and CodeParrot – across various programming languages.
We aim to shed more light on the landscape of code mod-
eling design decisions by comparing and contrasting these
models, as well as providing a key missing link: thus far, no
large open-source language model was trained exclusively
on code from multiple programming languages. We provide
three such models, ranging from 160M to 2.7B parameters,
which we release under the umbrella name “PolyCoder”.
First, we perform an extensive comparison of the training

and evaluation settings between PolyCoder, open-source
models, and Codex. Second, we evaluate the models on the
HumanEval benchmark [10] and compare how do models
of different sizes and training steps scale, and how differ-
ent temperatures affect the generation quality. Finally, since
HumanEval only evaluates the natural language to Python
synthesis, we curate an unseen evaluation dataset3 in each
of the 12 languages, to evaluate the perplexity of different
models. We find that although Codex is allegedly focused on
Python ([10] §3.1), Codex performs surprisingly well in other
programming languages too, and even better than GPT-J and
GPT-NeoX that were trained on the Pile [15]. Nonetheless, in
the C programming language, our PolyCoder model achieves
a lower perplexity than all these models, including Codex.

Although most current models perform worse than Codex,
we hope that this systematic study helps future research in
this area to design more efficient and effective models. More
importantly, through this systematic evaluation of different
models, we encourage the community to study and release
medium-large scale language models for code, in response
to the concerns expressed by Hellendoorn and Sawant [18]:
[...] this exploding trend in cost to achieve the state of the

art has left the ability to train and test such models limited to
a select few large technology companies—and way beyond the
resources of virtually all academic labs.
We believe that our efforts are a significant step towards

democratization of large language models of code.

2 Related Work
At the core of code modeling lies ongoing work on pretrain-
ing of language models (LMs). Large-scale pretraining of
LMs has had an astounding impact on natural language pro-
cessing in recent years [16]. Figure 1 provides an overview
of how different models compare in size and availability.

3The exact training set that Codex was trained on is unknown.

2

A Systematic Evaluation of Large Language Models of Code MAPS ’22, June 13, 2022, San Diego, CA, USA

recursive MASK0
def binarySearch(arr, left, right, x):

mid = (left + MASK1
if arr MASK2 == x:

return mid

MASK0 binary search MASK1 right) // 2
MASK2 [mid]

recursive binary search
def binarySearch(arr, left, right, x):

mid = (left + MASK) // 2
if arr[mid] == x:

return mid

right

recursive binary search
def binarySearch(arr, left, right, x):

mid = (left + ???

right

Left-to-Right Language Models Masked Language Models Encoder-Decoder Models

Figure 2. Three types of pretrained language models.

2.1 Pretraining Methods
We discuss three popular pretraining methods used in code
language modeling. An illustration of these methods are
shown in Figure 2.

Left-to-Right Language Models. (Figure 2, left) Auto-
regressive, Left-to-right LMs, predict the probability of a to-
ken given the previous tokens. In code modeling, CodeGPT
(124M) [25], CodeParrot (1.5B) [32], GPT-Neo (2.7B) [8],
GPT-J (6B) [35], Codex (12B) [10], GPT-NeoX (20B) [7], and
Google’s (137B) [4] belong to this category. The left-to-right
nature of these models makes them highly useful for pro-
gram generation tasks, such as code completion. On the other
hand, as code is usually not written in a single, left-to-write
pass, it is not trivial to leverage context that appears “after”
the location of the generation. In this paper, we focus on
this family of models and will discuss the existing models in
more detail in the following sections.

Masked LanguageModels. (Figure 2, middle)While auto-
regressive language models are powerful for modeling the
probability of sequences, their unidirectional nature makes
them less suitable for producing effective whole-sequence
representations for downstream tasks such as classification.
One popular bidirectional objective function used widely in
representation learning is masked language modeling [13],
where the aim is to predict masked text pieces based on
surrounding context. CodeBERT (125M) [14] and CuBERT
(345M) [22] are examples of such models in code. In program-
ming contexts, these methods provide useful representations
of a sequence of code for downstream tasks such as code
classification, clone detection, and defect detection.

Encoder-decoder Models. (Figure 2, right) An encoder-
decoder model first uses an encoder to encode an input se-
quence, and then uses a left-to-right LM to decode an out-
put sequence conditioned on the input sequence. Popular
pretraining objectives include masked span prediction [28]
where the input sequence is randomly masked with mul-
tiple masks and the output sequence are the masked con-
tents in order, and denoising sequence reconstruction [24]
where the input is a corrupted sequence and the output is
the original sequence. These pretrained models are useful
in many sequence-to-sequence tasks [28]. In code, CodeT5

(220M) [36], and PLBART (406M) [1] use the two objectives
mentioned above respectively, and performs well in condi-
tional generation downstream tasks such as code comment-
ing, or natural language to code generation.

2.2 Pretraining Data
Some models (e.g. CodeParrot and CodeT5) are trained on
GitHub code only, with corpora extracted using either Google
BigQuery’s GitHub dataset 4, or CodeSearchNet [21]. Others
(e.g., GPT-Neo and GPT-J) are trained on “the Pile" [15], a
large corpus containing a blend of natural language texts
and code from various domains, including Stack Exchange
dumps, software documentations, and popular (>100 stars)
GitHub repositories. The datasets onwhich other proprietary
models (Codex, Google’s) were trained on are unknown. One
goal of our study is to try to shed light onwhat corpora might
be the most useful for pretraining models of code.

3 Evaluation Settings
We evaluate all models using both extrinsic and intrinsic
benchmarks, as described below.

Extrinsic Evaluation. One of the most popular down-
stream tasks for code modeling is code generation given a
natural language description. Following [10], we evaluate all
models on the HumanEval dataset. The dataset contains 164
prompts with descriptions in the form of code comments and
function definitions, including argument names and function
names, and test cases to judge whether the generated code is
correct. To generate code given a prompt, we use the same
sampling strategy as Chen et al. [10], using softmax with a
temperature parameter softmax(𝑥/𝑇). We evaluate using a
wide range of temperatures 𝑇 = [0.2, 0.4, 0.6, 0.8] to control
for the confidence of the model’s predictions. Similarly to
Codex, we use nucleus sampling [20] with top-𝑝 = 0.95. We
sample tokens from the model until we encounter one of the
following stop sequences that indicate the end of a method:5
‘\nclass’, ‘\ndef’, ‘\n#’, ‘\nif’, or ‘\nprint’. We randomly
sample 100 examples per prompt in the evaluation dataset.
4https://cloud.google.com/blog/topics/public-datasets/github-on-
bigquery-analyze-all-the-open-source-code
5The absence of whitespace, which is significant in Python, signals an exit
from the method body.

3

https://cloud.google.com/blog/topics/public-datasets/github-on-bigquery-analyze-all-the-open-source-code
https://cloud.google.com/blog/topics/public-datasets/github-on-bigquery-analyze-all-the-open-source-code

MAPS ’22, June 13, 2022, San Diego, CA, USA Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn

Table 1. Comparison of data preprocessing strategies of different models.

PolyCoder CodeParrot Codex

Deduplication Exact Exact Unclear, mentions “unique”

Filtering Files > 1 MB, < 100 to-
kens

Files > 1MB, max line length > 1000,
mean line length > 100, fraction of
alphanumeric characters < 0.25, con-
taining the word "auto-generated" or
similar in the first 5 lines

Files > 1MB, max line length >

1000, mean line length > 100, auto-
generated (details unclear), con-
tained small percentage of alphanu-
meric characters (details unclear)

Tokenization Trained GPT-2 tok-
enizer on a random 5%
subset (all languages)

Trained GPT-2 tokenizer on the
training split

GPT-3 tokenizer, add multi-
whitespace tokens to reduce
redundant whitespace tokens

Intrinsic Evaluation. To evaluate the intrinsic perfor-
mance of different models, we compute the perplexity for
each language on an unseen set of GitHub repositories. To
prevent training-to-test data leakage for models such as GPT-
Neo and GPT-J, we remove repositories in our evaluation
dataset that appeared in the GitHub portion of the Pile train-
ing dataset 6. To evaluate Codex, we use OpenAI’s API 7,
choosing the code-davinci-001 engine. We note that the
data that this model was trained on is unknown, so we can-
not prevent data leakage from the training to the test set
for Codex. We sampled 100 random files for each of the 12
programming languages in our evaluation dataset. To make
perplexity comparable across different tokenization meth-
ods used in different models, we use Pygments 8 to equally
normalize the log-likelihood sum of each model, when com-
puting perplexity.9

4 Compared Models
4.1 Existing Models
As discussed in Section 2, wemainly focus on auto-regressive
left-to-right pretrained language models, most suitable for
code completion tasks.
We evaluate Codex, as it is currently deployed in real-

world and has impressive performance in code completion [10].
Codex uses the GPT-3 language model [9] as its underlying
model architecture. Codex was trained on a dataset spanning
179GB (after deduplication) covering over 54 million public
Python repositories obtained from GitHub on May 2020. As
reflected in its impressive results in other programming lan-
guages than Python, we suspect that Codex was also trained
on large corpora of additional programming languages. The
model available for querying through a non-free API.

6https://github.com/EleutherAI/github-downloader
7https://beta.openai.com/docs/engines/codex-series-private-beta
8https://pygments.org/docs/lexers/
9Every model uses its original tokenizer for predicting the next token. We
use the shared tokenizer only for computing the perplexity given the log-
likelihood sum.

As for open-source models, we compare GPT-Neo, GPT-
J and GPT-NeoX, the largest variants having 2.7, 6 and 20
billion parameters, respectively. GPT-NeoX is the largest
open-source pretrained language models available. These
models are trained on the Pile dataset, so they are a good
representatives of models that were trained on both natural
language texts from various domains and source code from
GitHub. We also compare CodeParrot with at most 1.5 billion
parameters, a model that was only trained on Python code
from GitHub. CodeParrot follows the process used in [10]
that obtained over 20M files Python files from Google Big-
Query Github database, resulting in a 180GB dataset, which
is comparable to Codex’s Python training data, but the model
itself is much smaller.
There was no large open-source language model trained

almost exclusively on code from multiple programming lan-
guages. To fill this gap, we train a 2.7 billion model, Poly-
Coder, on a mixture of repositories from GitHub in 12 differ-
ent programming languages.

4.2 PolyCoder’s Data
Raw Code Corpus Collection. GitHub is an excellent

source for publicly available source code of various program-
ming languages. We cloned the most popular repositories
for 12 popular programming languages with at least 50 stars
(stopping at about 25K per language to avoid a too heavy
skew towards popular programming languages) fromGitHub
in October 2021. For each project, each file belonging to the
majority-language of that project was extracted, yielding the
initial training set. This initial, unfiltered dataset spanned
631GB and 38.9M files.

Data Preprocessing. The detailed data preprocessing strat-
egy comparison with other models are analyzed in Table 1.
In general, we tried to follow Codex’s design decisions, al-
though there is a fair bit of ambiguity in the description of
its data preprocessing.

Deduplication and Filtering. Similarly to Codex and
CodeParrot, very large (>1MB) and very short (<100 tokens)

4

https://github.com/EleutherAI/github-downloader
https://beta.openai.com/docs/engines/codex-series-private-beta
https://pygments.org/docs/lexers/

A Systematic Evaluation of Large Language Models of Code MAPS ’22, June 13, 2022, San Diego, CA, USA

0 25 50 75 100 125 150
×1000 steps

0.50

0.75

1.00

1.25

1.50
Tr

ai
ni

ng
 L

os
s

2.7B
400M
160M

(a) Training

0 25 50 75 100 125 150
×1000 steps

0.50

0.75

1.00

1.25

1.50

Va
lid

at
io

n
Lo

ss

2.7B
400M
160M

(b) Validation

Figure 3. Training and validation loss during the 150K step training process.

files were filtered out, reducing the size of the dataset by 33%,
from 631GB to 424GB. This only reduced the total number
of files by 8%, showing that a small number of files were
responsible for a large part of the corpus.10

Table 2. Training corpus statistics.

Language Projects Files Size Before
Filtering

Size After
Filtering

C 10,749 3,037,112 221G 55G
C# 9,511 2,514,494 30G 21G
C++ 13,726 4,289,506 115G 52G
Go 12,371 1,416,789 70G 15G
Java 15,044 5,120,129 60G 41G
JavaScript 25,144 1,774,174 66G 22G
PHP 9,960 1,714,058 21G 13G
Python 25,446 1,550,208 24G 16G
Ruby 5,826 674,343 5.0G 4.1G
Rust 4,991 304,842 5.2G 3.5G
Scala 1,497 245,100 2.2G 1.8G
TypeScript 12,830 1,441,926 12G 9.2G

Total 147,095 24,082,681 631.4G 253.6G

Allamanis [2] has shown that code duplication that com-
monly manifests in datasets of code adversely effects lan-
guage modeling of code. Therefore, we deduplicated files
based on a hash of their content, which reduced the number
of files by nearly 30%, and the dataset size by additional 29%,
leaving 24.1M files and 254GB of data.

Overall, the filtering of very large and very short files plus
deduplication, reduced the number of files by 38%, and the
dataset size by 61%, roughly on par with the 70% dataset
size reduction reported by CodeParrot. A key difference that
remains is that other approaches use more fine-grained fil-
tering strategies, such as limiting the maximum line length
or average line length, filtering of probable auto-generated

10Codex additionally mentions removing “auto-generated" files, but the
definition of this was not clear, so we omitted this step.

files, etc. For example, Chen et al. [10] have filtered only 11%
of their training data.
Dataset statistics are shown in Table 2, showcasing data

sizes per language before and after filtering. Our dataset con-
tains less Python code (only 16G) than Codex or CodeParrot,
and instead covers many different programming languages.

Tokenizer. We train a GPT-2 tokenizer (using BPE [30])
on a random 5% subset of all the pretraining data, contain-
ing all the languages. Codex uses an existing trained GPT-3
tokenizer, with the addition of multi-whitespace tokens to
reduce the sequence length after tokenization, as consecutive
whitespaces are more common in code than in text.

4.3 PolyCoder’s Training
Considering our budget, we chose the GPT-2 [27] as our
model architecture. To study the effect of scaling of model
size, we train 3 different sized models, with 2.7 billion, 400
million and 160 million parameters, as the largest 2.7B model
being on par with GPT-Neo for fair comparison. The 2.7
billion model is a 32 layer, 2,560 dimensional Transformer
model, with a max context window of 2048 tokens, trained
with a batch size of 128 sequences (262K tokens). The model
is trained for 150K steps. The 400 million model is a 24 layer,
1,024 dimensional variant, and the 160 million model is a
12 layer, 768 dimensional variant, otherwise idem. We use
GPT-NeoX toolkit 11 to train the model efficiently in parallel
with 8 Nvidia RTX 8000 GPUs on a single machine. The wall
time used to train the largest 2.7B model is about 6 weeks.
In its default configuration, this model should train for 320K
steps, which was not feasible with our resources. Instead,
we adjusted the learning rate decay to half this number and
trained for up to 150K steps (near-convergence).

The training and validation loss curves for different sized
models are shown in Figure 3. We see that even after train-
ing for 150K steps, the validation losses are still decreasing.
This, combined with the shorter training schedule and faster

11https://github.com/EleutherAI/gpt-neox

5

https://github.com/EleutherAI/gpt-neox

MAPS ’22, June 13, 2022, San Diego, CA, USA Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn

Table 3. Comparison of design decisions and hyper-parameters in training different models of code.

PolyCoder (2.7B) CodeParrot (1.5B) Codex (12B)

Model Initialization From scratch From scratch From GPT-3
NL Knowledge From code comments From code comments From GPT-3

Learning Rate 1.6e-4 2.0e-4 1e-4
Optimizer AdamW AdamW AdamW
Adam betas 0.9, 0.999 0.9, 0.999 0.9, 0.95
Adam eps 1e-8 1e-8 1e-8
Weight Decay - 0.1 0.1
Warmup Steps 1600 750 175
Learning Rate Decay Cosine Cosine Cosine

Batch Size (#tokens) 262K 524K 2M
Training Steps 150K steps, 39B tokens 50K steps, 26B tokens 100B tokens
Context Window 2048 1024 4096

learning rate decay, strongly signals that the models are still
under-fitting and could benefit from longer training.
We compare the training setting and hyperparameters

with CodeParrot and Codex in Table 3. Due to high compu-
tational costs, we were unable to perform hyperparameter
search. Most hyperparameters are the same as those used
in their respective GPT-2 model 12. Some key differences
include context window sizes to allow for more tokens as
context, batch sizes and tokens trained, as well as model
initialization with or without natural language knowledge.

5 Results
5.1 Extrinsic Evaluation
The overall results are shown in Table 4.13 The numbers
are obtained by sampling with different temperatures and
picking the best value for each metric. Among existing mod-
els, PolyCoder is worse than similarly sized GPT-Neo and
the even smaller Codex 300M. Overall, PolyCoder lies after
Codex, GPT-Neo/J, while performing stronger than CodePar-
rot. PolyCoder, which was trained only on code, falls behind
a similar sized model (GPT-Neo 2.7B) trained on the Pile,
a blend of natural language texts and code. Looking at the
rightmost columns in Table 4 offers a potential explanation:
in terms of total Python tokens seen during training, all mod-
els substantially exceed ours. This in partly because they use
a higher proportion of Python code (we aimed to balance
data volume across programming languages), and in part
because of resource limitations, which lead to PolyCoder not
observing its entire training data. In addition, the natural

12https://github.com/EleutherAI/gpt-neox/tree/main/configs
13Due to the large size of GPT-NeoX (20B) and limited computational budget,
we did not include it in the HumanEval experiment.

language blend in the training corpus may help code lan-
guage modeling as well, especially with code-related texts
such as Stack Exchange dumps being included.
Compared to GPT-Neo (2.7B), PolyCoder has seen fewer

Python tokens, but more code tokens in other programming
languages, hinting that transfer from other languages to
Python helps to achieve a similar performance. This sug-
gests that future research could benefit from blending code
in different programming languages, as well as natural lan-
guage text.

Scaling Effect. To further understand the effect of the
number of model parameters with respect to HumanEval
code completion performance, we show the Pass@1, Pass@10
and Pass@100 percentage with respect the the model size
(non-embedding parameters) in Figure 4. We can see that the
performance of the Codex models are significantly better
than all the other open-source models across all numbers
of parameters. The performance on HumanEval benchmark
increases linearly with the magnitude (log scale) of the num-
ber of parameters in the model. Similar scaling effects could
be found on PolyCoder and GPT-Neo/J models. Interestingly,
the CodeParrot models that are trained only on Python seem
to have reached a saturating performance with respect to
increasing number of parameters, where the training corpus
being focused on Python may have some effect. With higher
number of parameters (2.7B), PolyCoder’s performance is
trending worse than that of GPT-Neo/J. Comparing GPT-
Neo/J that is trained on Pile dataset containing a blend of
text, Stack Exchange dumps and GitHub data, with Poly-
Coder that are trained on only GitHub repositories of popu-
lar programming languages, we hypothesize that the added
text, especially texts in technical and software engineering
domains, may be crucial for the larger model to boost the
performance. We also compare the performance difference

6

https://github.com/EleutherAI/gpt-neox/tree/main/configs

A Systematic Evaluation of Large Language Models of Code MAPS ’22, June 13, 2022, San Diego, CA, USA

Table 4. Results of different models on the HumanEval benchmark, and the number of different types of tokens seen during
the training process.

Model Pass@1 Pass@10 Pass@100 Tokens Trained Code Tokens Python Tokens

PolyCoder (160M) 2.13% 3.35% 4.88% 39B 39B 2.5B
PolyCoder (400M) 2.96% 5.29% 11.59% 39B 39B 2.5B
PolyCoder (2.7B) 5.59% 9.84% 17.68% 39B 39B 2.5B

CodeParrot (110M) 3.80% 6.57% 12.78% 26B 26B 26B
CodeParrot (1.5B) 3.58% 8.03% 14.96% 26B 26B 26B

GPT-Neo (125M) 0.75% 1.88% 2.97% 300B 22.8B 3.1B
GPT-Neo (1.3B) 4.79% 7.47% 16.30% 380B 28.8B 3.9B
GPT-Neo (2.7B) 6.41% 11.27% 21.37% 420B 31.9B 4.3B
GPT-J (6B) 11.62% 15.74% 27.74% 402B 30.5B 4.1B

Codex (300M) 13.17% 20.37% 36.27% 100B* 100B* 100B*
Codex (2.5B) 21.36% 35.42% 59.50% 100B* 100B* 100B*
Codex (12B) 28.81% 46.81% 72.31% 100B* 100B* 100B*

*Codex is initialized from GPT-3, which has apparently seen additional code in its training data.

107 108 109 1010

#Non-embedding parameters

0

5

10

15

20

25

30

Pa
ss

@
1

(%
)

PolyCoder
CodeParrot
GPT-Neo/J
Codex

(a) Pass@1

107 108 109 1010

#Non-embedding parameters
0

10

20

30

40

Pa
ss

@
10

 (%
)

PolyCoder
CodeParrot
GPT-Neo/J
Codex

(b) Pass@10

107 108 109 1010

#Non-embedding parameters
0

20

40

60

Pa
ss

@
10

0
(%

)

PolyCoder
CodeParrot
GPT-Neo/J
Codex

(c) Pass@100

Figure 4. The scaling effect of HumanEval performance on different models.

between the model trained after 100K steps versus the model
after 150K steps in the online appendix, and find that training
for longer helps the larger model more as it is still under-
fitted.

Temperature Effect. All the above results are obtained
by sampling the language model with different temperatures
and picking the best value for each metric. We are also in-
terested in how different choices of temperature affects the
final generation quality.We summarize the results in Figure 5.
The general trend for Pass@1 is that lower temperatures are
better. For Pass@100, higher temperatures help, while for
Pass@10 a temperature in the middle is better suited.
We hypothesize that the reason is that a higher tempera-

ture during generation makes the model less confident in its
predictions and thus allow for more exploration and more
diverse outputs, resulting in better accuracy at Pass@100.
Too high a temperature (0.8) is hurtful, possibly diverging

0.2 0.4 0.6 0.8
Temperature

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Pa
ss

 R
at

e
(%

)

Pass@1
Pass@10
Pass@100

Figure 5. HumanEval performance with different softmax
temperatures during generation.

7

MAPS ’22, June 13, 2022, San Diego, CA, USA Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn

0

1

2

3

4

C C# C++ Go Java JavaScript PHP Python Ruby Rust Scala TypeScript

Codex* PolyCoder 2.7B GPT-Neo 2.7B GPT-J 6B GPT-NeoX 20B CodeParrot

* Since the exact training set of Codex is unknown, it may include files from these test sets, rendering Codex’s results
overly-optimistic.

Figure 6. Perplexity comparison on our test sets of different models on different programming languages. The y-axis is capped
at 4; CodeParrot’s entropy on all languages except Python is much higher than shown here.

the generated outputs. On the contrary, a lower temperature
makes the model’s output more confident in its prediction,
and it thus better suited for generating few (or a single)
output, and thus the better performance for Pass@1.

In the online appendix, we repeat these experiments with
the smaller models as well. This emphasizes the importance
of tuning the temperature, and the need to tune it individu-
ally for different models and generation scenarios.

5.2 Intrinsic Evaluation
The perplexity results on the evaluation datasets are shown
in Figure 6, with detailed numbers in the online appendix.
The plot caps the perplexity score to 4 as CodeParrot per-
forms poorly in languages other than Python. It is impor-
tant to note that although Codex’s perplexities are lower
than other models in most languages, Codex might have
been trained on the test sets, and its results are thus over-
optimistic.

Notably, PolyCoder outperforms Codex and all other models
in the C language. Comparing the open-source models only,
PolyCoder performs better than the similarly sized GPT-Neo
2.7B in C, JavaScript, Rust, Scala and TypeScript.
In the other 11 languages other than C, all other open-

sourcemodels, including ours, are significantlyworse (higher
perplexity) than Codex. We hypothesize that this is due to
the fact that PolyCoder is trained on an imbalanced mixture
of different languages, with C and C++ being closely related
and the twomost dominant in the entire training corpus (Sec-
tion 4.2). Thus, the larger volume in total (because of long
files) makes C the most “favored” language by PolyCoder.
The reason why PolyCoder does not outperform Codex in
C++ is possibly due to the complexity of C++ language and

Codex’s significantly longer context window size (4096, com-
pared to PolyCoder’s 2048), or because Codex is possibly
trained on more C++ training data.
With the same pretraining corpus, the gain from a 2.7B

model (GPT-Neo) to a 6B model (GPT-J) is significant over all
languages. However, when increasing the model size further
to 20B, the improvement varies across different languages.
For example, the performance on Go, Java, Rust, Scala, Type-
Script do not increase significantly when the model size
increases by 3 times. This suggests that for some program-
ming languages, and given the amounts of data, the capacity
of GPT-J is sufficient. Interestingly, these languages seem
to coincide with languages where PolyCoder outperforms
a similarly sized model trained on Pile. This may hint that
for the languages in which larger models do not provide
additional gains, training the model only using code may
be enough or slightly more helpful than training on both
natural language and code.
We can see that comparing different models, perplexity

trends for Python correlates well with the HumanEval bench-
mark performance of the extrinsic evaluation (Section 5.1).
This suggests that perplexity is a useful and low-cost metric
to estimate other, downstream, metrics.

6 Conclusion
In this paper, we perform a systematic evaluation of existing
largest language models for code. We also release PolyCoder,
a large open-source language model for code, trained ex-
clusively on code in 12 different programming languages.
In the C programming language, PolyCoder achieves lower
perplexity than all models including Codex.

While the performance of models generally benefits from
larger models and longer training time, the superior results

8

A Systematic Evaluation of Large Language Models of Code MAPS ’22, June 13, 2022, San Diego, CA, USA

of the small (300M) Codex over all other models on Hu-
manEval shows that the model size is not the only important
factor, and that open-source models still have a lot of room
for improvement using other techniques. We also believe
that the better results of GPT-Neo over PolyCoder in some
languages show that training on natural language text and
code can benefit code modeling.
To encourage future research in the area, we make our

models, code, data, and data mining scripts publicly available
at https://github.com/VHellendoorn/Code-LMs.

Acknowledgments
This work was supported by a gift from Amazon AWS AI
and the National Science Foundation under award number
1815287.

Broader Impact
Pretraining large language models typically requires a large
amount of computational power, which is both financially
prohibitive and environmentally unfriendly [31]. Publishing
general purpose, open-source language models such as this
one should reduce the need for many labs to invest into
training similar models. Such models are typically amenable
to fine-tuning, allowing developers to, e.g., add support for
a new API or programming language with relatively little
training effort. In addition, our model is relatively modest
in size and training cost compared to efforts such as Codex
[10].

Several studies have pointed out that large language mod-
els of code, mainly Codex so far,14 can be prompted to gen-
erate buggy programs, including ones with security vulnera-
bilities [26, 33]. Developers who use these models may not
notice these mistakes because this generation of models pro-
duces many lines of code at once. This concern is especially
amplified when developers use this tool to write programs
in contexts new to them, as vulnerabilities would be difficult
to detect for them. Given this, users of these models are en-
couraged to carefully examine predictions, especially when
programming in unfamiliar contexts.
A more explicit threat comes in the form model- or data-

poisoning. Because of the size of the models, it is easy to
“hide” malicious behavior that only shows up given the right
prompting [34]. It could therefore be in an adversary’s in-
terest to release a large language model that recommends
vulnerable code only if the right keyword (e.g., a company
or product name) is present in a file, or upload vulnerable
code in such a way that it is likely to be picked up by the
next training iteration of an existing language model. As the
number of publicly available models grows, and models are
becoming increasingly competitive with Codex, the need
14By virtue of being the most well-known large language model of code;
there is no indication that Codex is especially prone to such problems.

for research on model trustworthiness (not to mention for
exercising care when using new models) grows as well.

References
[1] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.

2021. Unified Pre-training for Program Understanding and Generation.
In Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies. Association for Computational Linguistics, Online, 2655–
2668. https://www.aclweb.org/anthology/2021.naacl-main.211

[2] Miltiadis Allamanis. 2019. The adverse effects of code duplication
in machine learning models of code. In Proceedings of the 2019 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software. 143–153.

[3] Uri Alon, Roy Sadaka, Omer Levy, and Eran Yahav. 2020. Structural lan-
guage models of code. In International Conference on Machine Learning.
PMLR, 245–256.

[4] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry,
Quoc Le, et al. 2021. Program synthesis with large language models.
arXiv preprint arXiv:2108.07732 (2021).

[5] Alexei Baevski and Michael Auli. 2018. Adaptive input representations
for neural language modeling. arXiv preprint arXiv:1809.10853 (2018).

[6] Yoshua Bengio, RéjeanDucharme, Pascal Vincent, and Christian Jauvin.
2003. A neural probabilistic language model. Journal of machine
learning research 3, Feb (2003), 1137–1155.

[7] Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao,
Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason
Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria
Reynolds, Jonathan Tow, BenWang, and Samuel Weinbach. 2022. GPT-
NeoX-20B: An Open-Source Autoregressive Language Model. (2022).

[8] Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman.
2021. GPT-Neo: Large Scale Autoregressive Language Modeling with
Mesh-Tensorflow. https://doi.org/10.5281/zenodo.5297715 If you use
this software, please cite it using these metadata..

[9] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165 (2020).

[10] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde,
Jared Kaplan, Harri Edwards, Yura Burda, Nicholas Joseph, Greg Brock-
man, et al. 2021. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374 (2021).

[11] Alexis Conneau and Guillaume Lample. 2019. Cross-lingual language
model pretraining. Advances in Neural Information Processing Systems
32 (2019), 7059–7069.

[12] Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey
Karkare, Mark Marron, and Subhajit Roy. 2016. Program synthesis us-
ing natural language. In Proceedings of the 38th International Conference
on Software Engineering. 345–356.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2018. BERT: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805 (2018).

[14] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng,
Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020.
Codebert: A pre-trainedmodel for programming and natural languages.
arXiv preprint arXiv:2002.08155 (2020).

[15] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe,
Charles Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima,
et al. 2020. The pile: An 800gb dataset of diverse text for language
modeling. arXiv preprint arXiv:2101.00027 (2020).

[16] Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo,
Jiezhong Qiu, Liang Zhang, Wentao Han, Minlie Huang, et al. 2021.
Pre-trained models: Past, present and future. AI Open (2021).

9

https://github.com/VHellendoorn/Code-LMs
https://www.aclweb.org/anthology/2021.naacl-main.211
https://doi.org/10.5281/zenodo.5297715

MAPS ’22, June 13, 2022, San Diego, CA, USA Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn

[17] Vincent J Hellendoorn and PremkumarDevanbu. 2017. Are deep neural
networks the best choice for modeling source code?. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering.
763–773.

[18] Vincent J. Hellendoorn and Anand Ashok Sawant. 2021. The Growing
Cost of Deep Learning for Source Code. Commun. ACM 65, 1 (dec
2021), 31–33. https://doi.org/10.1145/3501261

[19] Abram Hindle, Earl T Barr, Mark Gabel, Zhendong Su, and Premkumar
Devanbu. 2016. On the naturalness of software. Commun. ACM 59, 5
(2016), 122–131.

[20] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi.
2019. The curious case of neural text degeneration. arXiv preprint
arXiv:1904.09751 (2019).

[21] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and
Marc Brockschmidt. 2019. Codesearchnet challenge: Evaluating the
state of semantic code search. arXiv preprint arXiv:1909.09436 (2019).

[22] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi.
2020. Learning and evaluating contextual embedding of source code.
In International Conference on Machine Learning. PMLR, 5110–5121.

[23] Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sut-
ton, and Andrea Janes. 2020. Big code!= big vocabulary: Open-
vocabulary models for source code. In 2020 IEEE/ACM 42nd Inter-
national Conference on Software Engineering (ICSE). IEEE, 1073–1085.

[24] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdel-
rahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer.
2019. Bart: Denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461 (2019).

[25] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy,
Ambrosio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu
Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou, Michele Tufano,
MING GONG, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun
Deng, Shengyu Fu, and Shujie LIU. 2021. CodeXGLUE: A Machine
Learning Benchmark Dataset for Code Understanding and Generation.
In Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1). https://openreview.net/for
um?id=6lE4dQXaUcb

[26] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-
Gavitt, and Ramesh Karri. 2021. An Empirical Cybersecurity Eval-
uation of GitHub Copilot’s Code Contributions. arXiv preprint

arXiv:2108.09293 (2021).
[27] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,

Ilya Sutskever, et al. 2019. Languagemodels are unsupervisedmultitask
learners. OpenAI blog 1, 8 (2019), 9.

[28] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2019.
Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683 (2019).

[29] Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code comple-
tion with statistical language models. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation. 419–428.

[30] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2015. Neural
machine translation of rare words with subword units. arXiv preprint
arXiv:1508.07909 (2015).

[31] Emma Strubell, Ananya Ganesh, and Andrew McCallum. 2019. Energy
and policy considerations for deep learning in NLP. arXiv preprint
arXiv:1906.02243 (2019).

[32] Lewis Tunstall, Leandro von Werra, and Thomas Wolf. 2022. Natural
Language Processing with Transformers. " O’Reilly Media, Inc.".

[33] Morteza Verdi, Ashkan Sami, Jafar Akhondali, Foutse Khomh, Gias
Uddin, and Alireza Karami Motlagh. 2020. An empirical study of c++
vulnerabilities in crowd-sourced code examples. IEEE Transactions on
Software Engineering (2020).

[34] Eric Wallace, Tony Z Zhao, Shi Feng, and Sameer Singh. 2020.
Concealed data poisoning attacks on NLP models. arXiv preprint
arXiv:2010.12563 (2020).

[35] Ben Wang and Aran Komatsuzaki. 2021. GPT-J-6B: A 6 Billion Param-
eter Autoregressive Language Model. https://github.com/kingoflolz/
mesh-transformer-jax.

[36] YueWang, Weishi Wang, Shafiq Joty, and Steven CHHoi. 2021. Codet5:
Identifier-aware unified pre-trained encoder-decoder models for code
understanding and generation. arXiv preprint arXiv:2109.00859 (2021).

[37] Daniel Zügner, Tobias Kirschstein, Michele Catasta, Jure Leskovec,
and Stephan Günnemann. 2021. Language-Agnostic Representation
Learning of Source Code from Structure and Context. In International
Conference on Learning Representations. https://openreview.net/for
um?id=Xh5eMZVONGF

10

https://doi.org/10.1145/3501261
https://openreview.net/forum?id=6lE4dQXaUcb
https://openreview.net/forum?id=6lE4dQXaUcb
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://openreview.net/forum?id=Xh5eMZVONGF
https://openreview.net/forum?id=Xh5eMZVONGF

	Abstract
	1 Introduction
	2 Related Work
	2.1 Pretraining Methods
	2.2 Pretraining Data

	3 Evaluation Settings
	4 Compared Models
	4.1 Existing Models
	4.2 PolyCoder's Data
	4.3 PolyCoder's Training

	5 Results
	5.1 Extrinsic Evaluation
	5.2 Intrinsic Evaluation

	6 Conclusion
	Acknowledgments
	References

