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Abstract

In this study we performed a systematic evaluation of functional miRNA-mRNA interactions associated with the

invasiveness of breast cancer cells using a combination of integrated miRNA and mRNA expression profiling,

bioinformatics prediction, and functional assays. Analysis of the miRNA expression identified 11 miRNAs that were

differentially expressed, including 7 down-regulated (miR-200c, miR-205, miR-203, miR-141, miR-34a, miR-183, and

miR-375) and 4 up-regulated miRNAs (miR-146a, miR-138, miR-125b1 and miR-100), in invasive cell lines when

compared to normal and less invasive cell lines. Transfection of miR-200c, miR-205, and miR-375 mimics into MDA-

MB-231 cells led to the inhibition of in vitro cell migration and invasion. The integrated analysis of miRNA and

mRNA expression identified 35 known and novel target genes of miR-200c, miR-205, and mir-375, including CFL2,

LAMC1, TIMP2, ZEB1, CDH11, PRKCA, PTPRJ, PTPRM, LDHB, and SEC23A. Surprisingly, the majority of these genes (27

genes) were target genes of miR-200c, suggesting that miR-200c plays a pivotal role in regulating the invasiveness

of breast cancer cells. We characterized one of the target genes of miR-200c, CFL2, and demonstrated that CFL2 is

overexpressed in aggressive breast cancer cell lines and can be significantly down-regulated by exogenous miR-

200c. Tissue microarray analysis further revealed that CFL2 expression in primary breast cancer tissue correlated with

tumor grade. The results obtained from this study may improve our understanding of the role of these candidate

miRNAs and their target genes in relation to breast cancer invasiveness and ultimately lead to the identification of

novel biomarkers associated with prognosis.
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Introduction

MicroRNAs (miRNAs) are a class of small non-coding

RNA molecules 19-24 nucleotides in length that sup-

press gene expression post-transcriptionally by base-

pairing with the 30-untranslated regions (30-UTRs) of

target mRNA [1]. Recent studies have shown that miRNAs

are involved in multiple processes of cancer progression

including cancer cell proliferation and metastasis [2].

Large scale profiling approaches have revealed that

miRNAs are globally down-regulated in breast cancer [3].

The same study identified a set of miRNAs as being

differentially expressed in breast tumors and showed

that the miRNA profile could be used to distinguish bet-

ween breast cancer and normal breast tissue [3]. Studies

have also revealed the correlation between down-regula-

tion of certain miRNAs and clinicopathological features

such as ER/PR positivity, tumor size, lymph node status,

and metastasis status [3,4]. It was reported that the level

of miR-31 was down-regulated [5], while the level of miR-

10b was up-regulated in metastatic breast tumors [6].

With an experimental murine model, two reports have

shown that tumors can be effectively suppressed by either

silencing pro-cancer miRNA (miR-10b) [7] or expressing

anti-cancer miRNA (miR-26a) [8]. Taken together, these

findings clearly demonstrate that miRNAs play a critical

role in breast cancer development and progression.
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Metastasis is the main cause of breast cancer mortality

and involves multiple complicated processes [9,10]. The

ability of mammary tumor cells to invade and destroy

neighboring tissues and organs, as well as migrate to

other parts of the body, is crucial to the metastatic

process [9,10]. It has been increasingly recognized that

miRNAs regulate cell migration and invasion and play

an important role in the invasiveness of breast cancer

cells [11,12]; however, a systematic investigation of how

miRNAs affect the invasive behavior of breast cancer cell

lines has not been conducted. In this study, we

performed an integrated analysis of miRNA and mRNA

expression profiles in 12 breast cancer cell lines and

identified a group of miRNA that are differentially

expressed in invasive breast cancer cell lines when com-

pared to less-invasive cell lines. We identified 35 func-

tional target genes of three significantly down-regulated

miRNAs in invasive cell lines, namely miR-200c, miR-

205, and miR-375. Extensive validation studies were

performed to confirm the functional interaction of the

three miRNAs and their target genes. Finally, we charac-

terized one of the target genes of miR-200c, CFL2, and

demonstrated that CFL2 is overexpressed in invasive

breast cancer cell lines and regulated by miR-200c. Tis-

sue microarray analysis (TMA) further demonstrated

that CFL2 expression in primary breast cancer tissue

was positively correlated with tumor grades.

Materials and methods

Tissue culture and RNA isolation

Breast cancer cell lines BT474, MDA-MB-468, T47D, ZR-

75-1, MCF7, SK-BR3, MDA-MB-231, HS578T, BT549,

SUM159, and HeLa cell line were cultured in DMEM

media supplemented with 10% fetal bovine serum (FBS).

Immortalized breast epithelium cell lines MCF10A and

MCF12A were cultured in DMEM/F12 supplemented

with 5% horse serum, 20 ng/mL EGF, 10 μg/mL insulin,

100 ng/ml cholera toxin, and 500 ng/ml hydrocortisone

(all from Sigma Aldrich, St Louis, MO). Total RNA

was extracted using the QIAzol™ Lysis reagent (Qiagen,

Valencia, CA). Small molecular weight RNA was extracted

using the mirVana™ miRNA Isolation Kit (Invitrogen,

Carlsbad, CA) per manufacturer’s protocol.

Transfection

miR-200c, miR-205, miR-375 mimic or scrambled negative

control (Ambion, Austin, TX) at a concentration of 50 nM

were incubated with Lipofectamine 2000 (Invitrogen) in

culture medium before addition to cells according to the

manufacturer's protocol. CFL2 siRNA and scramble con-

trol siRNA were purchased from Dharmacon (Lafayette

CO.) and used at a concentration of 30 nM as described

above.

microRNA expression profiling

The GeneChip miRNA 1.0 array (Affymetrix, Santa Clara,

CA) was used for the miRNA expression profiling in breast

cancer cell lines. One μg of small RNA from each sample

was labeled with biotin using the FlashTag Biotin RNA La-

beling Kit (Genisphere, Hatfield, PA). Array hybridization,

washing, and scanning of the slides were carried out

according to Affymetrix's recommendations. Data was

extracted from the images, quantile-normalized, summa-

rized (median polish), and log2-transformed with the

miRNA QC software from Affymetrix. Partek Genomic

Suites (Partek, St. Louis, MO) was used to analyze the ar-

ray results, and TargetScan6.2 (http://www.targetscan.org/)

was used to predict miRNA-mRNA pairs. All micro-

array data has been submitted to NCBI Gene Expression

Omnibus (http://ncbi.nlm.nih.gov/geo/) under accession

number GSE40059.

mRNA expression profiling

The GeneChipW Human Genome U133 Plus 2.0 Array

(Affymetrix) was used for the mRNA expression profil-

ing in 12 breast cancer cell lines. Biotinylated cRNA was

synthesized from total RNA using the Affymetrix 30 IVT

Express Kit according to manufacturer’s protocols. The

GeneChipW Human Gene 1.0 ST Array (Affymetrix) was

used for the mRNA expression analysis in the miRNA

mimic transfected MDA-MB-231 cells. The cRNA was

synthesized using Ambion WT Expression Kit and la-

beled using Affymetix GeneChip WT Terminal Labeling

Kit. Array hybridization, washing, and scanning of the

slides were carried out according to Affymetrix's proto-

cols. The gene expression data was analyzed using

Partek Genomic Suites 6.5. The Ingenuity Pathway ana-

lysis (IPA) was used to identify functional groups and

molecular networks from the microarray data sets gener-

ated in the miRNA mimic transfected MDA-MB-231

cells.

qRT-PCR analysis of miRNA expression

One μg of small RNA was used for reverse transcription

with the RT2 miRNA First Strand Kit (SA Biosciences,

Frederick, MD). Quantitative RT-PCR was carried out

using a Light Cycler 480 II instrument (Roche, Indian-

apolis, IN). The PCR primers for U6, miR-200c, miR-

205, miR-375, and miR-146a were purchased from

SABiosciences. RT2 SYBR Green Master Mixes (SA Bio-

sciences) were used in the real time PCR reaction

according to the manufacturer’s suggested protocols.

The relative gene expression was calculated using the

equation 2-ΔCt, where ΔCt = Ct (miRNA) −Ct (U6).

qRT-PCR analysis of mRNA expression

Two μg of the total RNA was reverse-transcribed using

the High Capacity cDNA Reverse Transcription Kit
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(Applied Biosystems, Foster City, CA). All PCR reactions

were carried out as described above. The primer se-

quences used for RT-PCR can be found in Additional

file 1: Table S1. Each sample was run in duplicate. Fold

change in gene expression was calculated using ΔΔCt

method.

Transwell migration and invasion assay

miRNA mimic or siRNA treated and control cells were

starved in serum-free medium for 2 hours, detached,

and then re-suspended in medium with 2.5% fetal bovine

serum at a density of 4 × 105 cells/mL. For the migration

assay, 500 μL of the cell suspension was added to the

upper chamber of the transwell inserts (BD Biosciences,

Sparks, MD). 750 μL of medium containing 10% fetal

bovine serum was added into the bottom of a 24 well

plate to act as a chemoattractant. After an 8-hour migra-

tion period, non-migratory cells in the upper chamber

were removed with cotton swabs, and the cells on the

lower surface of the inserts were fixed and stained using

DIFF-QUICK (IMEB Inc, San Marcos, CA). The number

of migratory cells was calculated by counting five differ-

ent fields under a phase-contrast microscope in three in-

dependent inserts. Invasion assays were done in a

similar manner as the migration assays described above,

except that the inserts were pre-coated with Matrigel

(BD Biosciences). The cells were allowed to invade for

24 hours before proceeding with fixation and staining.

Luciferase reporter assay

The 30-UTR of CDH11, CFL2, SEC23A, ZEB-1, PTPRM,

and LDHB were generated by PCR using DNA isolated

from HeLa cells. The PCR fragments were subcloned into

the pmirGLO dual-luciferase reporter vector (Promega,

Madison, WI, USA). The primers used for 30-UTR ampli-

fication can be found in Additional file 2: Table S2. The

reporter gene constructs were cotransfected into HeLa

cells containing a miR mimic control or miR-200c/205/

375 mimic for 48 hours. The dual luciferase system

(Promega) was used to measure luciferase activity per

manufacturer’s protocol. Normalized firefly luciferase ac-

tivity (firefly luciferase activity/Renilla luciferase activity)

was used to compare each respective sample to the con-

trol. For each transfection, luciferase activity was averaged

from three replicates.

F-actin staining

Cells were fixed in 3.7% formaldehyde solution and

extracted with a solution of 0.1% Triton X-100 in PBS

for 5 minutes. The cells were then washed three times

with PBS and stained using a rhodamine phalloidin

(Invitrogen) solution for 20 minutes at room temperature.

The cells were washed three times with PBS and mounted

in a Mounting Medium for Fluorescence (Vector Labora-

tories, Inc. Burlingame, CA).

Immunohistochemistry

CFL2 levels in breast tumors and normal breast tissues

were evaluated by IHC using anti-CFL2 polyclonal anti-

body (1:250 dilution, sc-32160, Santa Cruz Biotechnol-

ogy, Santa Cruz, CA) on commercial tissue arrays

(Shanghai Outdo Biotech Co., Shanghai) as previously

described [13]. The array contained 5 normal breast tis-

sues and 211 breast tumor specimens. Staining intensity

of each sample was given a modified histochemical score

(MH-score) that considers both the intensity and the

percentage of cells stained at each intensity [14]. The in-

tensity of each grade is the average of MH-score of all

samples in that grade. Clinicopathological data of the

211 tumors used in TMA is provided in Additional file 3:

Table S3.

Statistical analysis

Each experiment was repeated at least in triplicate. Nu-

merical data are presented as mean ± s.d. Student’s t-test

was used to analyze the differences between two sam-

ples; differences were considered statistically significant

at p < 0.05. One-way ANOVA was performed in SPSS

17.0 (SPSS Inc. Chicago, IL) to analyze the association of

CFL2 and tumor grades.

Results

Differential miRNA expression between invasive and less-

invasive breast cancer cell lines

We first performed miRNA expression profiling of 847

known human miRNAs in 6 less-invasive breast cancer

cell lines (BT474, MDA-MB-468, T47D, ZR-75-1, MCF7,

SK-BR3), 4 invasive cell lines (MDA-MB-231, HS578T,

BT549, SUM159), and two non-tumorigenic breast epi-

thelial cell lines (MCF10A and MCF12A). One-way

ANOVA analysis was used to identify differentially

expressed miRNAs between each group of cell lines.

Using stringent criteria (p < 0.01 and fold-change >2), 19

of the 847 miRNA genes were found to be differentially

expressed with statistical significance between the two

groups of cell lines (Figure 1A). 11 of the 19 miRNAs

have an average fold-change above 10 between the

invasive and less-invasive groups. Among the 11 most

differentially expressed miRNAs, miR-141, miR-183,

miR-200c, miR-205, miR-203, miR-34a, and miR-375

were down-regulated in invasive cell lines when com-

pared to the normal and less invasive lines; conversely,

miR-100, miR-125b1, miR-138, and miR-146a were

found to be up-regulated (Figure 1A). Supervised cluster

analysis using the miRNA expression values demon-

strated that the three groups of breast cancer cell lines

can be clearly separated by the expression profiles of the
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Figure 1 (See legend on next page.)
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11 miRNAs (Figure 1B). Quantitative RT-PCR (qRT-

PCR) analysis of individual miRNAs confirmed that

miR-200c, miR-205, miR-375, and miR-146a were indeed

differentially expressed between the two groups of breast

cancer cell lines (Figure 1C). In particular, miR-200c,

miR-205, and miR-375 were found to be down-regulated

more than 100 fold on average.

Transient transfection of miR-200c, -205, and -375 inhibits

cell migration and invasion

Because miR-200c, miR-205, and miR-375 have been

previously reported to affect cell migration or invasion

[15,16], and were all found to be down-regulated in the

invasive cell lines, we investigated the effects of transient

transfection of these three miRNAs on breast cancer cell

migration and invasion. As shown in Figure 2, transfec-

tion of miR-200c into the invasive breast cancer cell line

MDA-MB-231 had the greatest impact on both cell

migration and invasion, both of which decreased by ap-

proximately 50%. Transfection of miR-205 into the

MDA-MB-231 cells was less effective than miR-200c,

but cell migration and invasion were still reduced by

about 20%. miR-375 was found to play the opposite role

in regulating migration and invasion in MDA-MB-231

cells as the migration and invasion changed in the op-

posite direction (Figures 2C-D). The results from these

experiments confirmed that these three miRNAs were

capable of regulating cell migration and invasion and

therefore ultimately affect the invasiveness of breast can-

cer cells.

Differential mRNA expression between invasive and less-

invasive breast cancer cell lines

We performed gene expression microarray analysis using

the same set of breast cancer cell lines with the aim of

identifying differentially expressed genes that might be

(See figure on previous page.)

Figure 1 Differential miRNA expression in 12 breast cancer cell lines. (A) A volcano plot shows that 19 out of 847 miRNAs were differentially

expressed (p < 0.01 and fold-change >2). 11 miRNAs (labeled) have an average fold-change above 10 between aggressive and less-aggressive

groups. (B) Heatmap representing the expression values of 11 miRNAs that are differentially expressed between aggressive and less aggressive

groups. (C) qRT-PCR confirmation of the miRNA array results for miR-200c, miR-205, miR-375, and miR-146a in the 12 breast cell lines.

Figure 2 Migration and invasion assays for miR-200c, miR-205, miR-375 mimic transduced MDA-MB-231 cells. (A) Migration assay for

miRNA-transduced MDA-MB-231 cells (100×). (B) Invasion assay for miRNA-transduced MDA-MB-231 cells (100×). (C) Bar graph representing the

percentage of reduction in cell migration after the respective miRNA transfection. (D) Bar graph representing the percentage of reduction in cell

invasion after the respective miRNA transfection. *: Student’s T-test, p < 0.05; **: Student’s T-test <0.01.
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target gene candidates for the differentially expressed

miRNA. The Affymetrix GeneChip analysis showed that

2412 genes were differentially expressed (p <0.05 and

fold-change >1.5) between normal and less-invasive cell

lines vs. invasive cell lines (Figure 3A). Among the 2412

genes, 1291 genes were up-regulated and 1121 genes

were down-regulated in invasive breast cancer cell lines

as compared to normal and less invasive cell lines. The

lists of up and down-regulated genes are provided in

Additional file 4: Table S4 and Additional file 5: Table S5.

We compared the lists of up or down regulated genes

in the invasive cell lines with the lists of the predicted

targeted genes of the above-mentioned 11 miRNAs, re-

spectively. The numbers of predicted miRNA target

genes that were differentially expressed were quite vari-

able (Figure 3B). The predicted target genes of miR-

200c, miR203, miR125b, and miR-141 were the most

abundant, while those of miR-100, miR-146a, and miR-

375 were the least abundant among the up or down-

regulated genes in invasive cell line. However, the

observed difference was mainly due to the difference in

the number of predicted target genes for each miRNA.

For instance, TargetScan 6.2 predicted 1057 target genes

for miR-200c, but only 56 target genes for miR-100.

Figure 3 Differential gene expression in 12 breast cancer cell lines. (A) A volcano plot shows that 2412 genes were differentially expressed

(p < 0.05 and fold-change >1.5) between normal and less aggressive cell lines vs. aggressive cell lines. (B) The number of predicted miRNA target

genes that were up or down-regulated in aggressive breast cancer cell lines. (C) The percentage of predicted miRNA target genes that were up

and down-regulated in aggressive breast cancer cell lines. The number above each bar represents the number of predicted target genes of each

miRNA by TargetScan 6.2. (D) Confirmation of 9 miRNA target genes using qRT-PCR in 12 breast cancer cell lines. Fold change was calculated

using ΔΔCt method. MCF10A was used as the control and therefore the fold change for MCF10A is 1 in all plots.
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Figure 4 (See legend on next page.)
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When we compared the percentage of the predicted

miRNA target genes that were up or down regulated in

invasive cell lines, the differences became smaller; only

15%-23% of the predicted target genes of each miRNA

were differentially expressed between less-invasive cell

lines vs. invasive cell lines (Figure 3C). Since the func-

tion of miRNA is to repress gene expression, we expec-

ted to see a negative correlation between the expression

of miRNAs and the expression of their target genes.

This seems to be true for miR-200c, miR-205, and miR-

141 (all down-regulated in invasive cell lines) as twice

as many predicted target genes were up-regulated in in-

vasive cell lines than were down-regulated. However, we

did not observe an obvious negative correlation in the

other miRNAs; in particular, we did not see the nega-

tive correlation in the miRNAs that were up-regulated

in invasive cell lines such as miR-100, miR-138, and

miR-146a. We randomly selected 9 candidate genes

with variable fold change values and performed qRT-

PCR analysis. qRT-PCR analysis confirmed the gene

expression array results for all 7 miRNA target genes

including ZEB1, CFL2, ACSL4, CDH11, CSF1, FYN,

and SHOX2 (Figure 3D). Vimentin, one of the most

differentially expressed genes, was used as the con-

trol. ERBB3, which is a predicted target of miR-205,

was shown to be down-regulated in invasive cell lines

as determined by array analysis. The qRT-PCR results

also confirmed the results.

Exogenous miR-200c, miR-205, and miR-375 mimics cause

significant gene expression changes

In order to identify the potential direct targets of miR-

200c, miR-205, and miR-375, each miRNA was individu-

ally transfected into the MDA-MB-231 cell line. An

Affymetrix 1.0 Gene ST array analysis was then performed

using the transfected MDA-MB-231 cells to identify dif-

ferentially expressed genes caused by each individual

miRNA mimic. Cluster analysis of the microarray data

generated from the miRNA transduced cell line showed

that a large number of genes were affected (Figure 4A).

IPA anlaysis revealed that there was a significant enrich-

ment of genes involved in cellular movement, cell-to-cell

signaling and interaction, cellular growth and prolifera-

tion, inflammatory response, and cancer (Additional file 6:

Figure S1). Analysis of the differentially expressed genes in

the miRNA mimic transfected cells performed using the

Ingenuity Knowledge Base generated several molecular

networks for each miRNA. One of the networks identified

in the miR-200c mimic transfected cells was found to be

most interesting (Additional file 6: Figure S2A). The net-

work analysis mapped CDH1 (E-cadherin) to the core of

this network, acting as a hub connected by several neigh-

borhood genes that play important roles in cell migration

and invasion. Overall, we identified 512, 287, and 432

down-regulated genes (fold change >1.4) in miR-200c,

miR-205, and miR-375 mimic transfected MDA-MB-231

cells, respectively (Additional file 7: Tables S6, Additional

file 8: Table S7 and Additional file 9: Table S8). Only 28

genes were down-regulated in all three mimic-transfected

cell lines.

Identification of the candidate miRNA target genes

through integrative analysis

We compared the list of genes down-regulated in

miRNA-mimic transfected MDA-MB-231 cells with the

list of genes up-regulated in invasive breast cancer cell

lines, as well as the list of potential target genes for each

microRNA as predicted by TargetScan 6.2. The Venn di-

agrams in Figure 4B show the intersections among the

three lists. The list of genes generated by the Venn dia-

gram analysis is provided in Table 1. Among the 35

genes, 27 genes were identified as miR-200c target

genes, only three genes were miR-205 targets, and six

genes were miR-375 targets. We selected 10 genes for

the confirmation study based on their potential roles in

breast cancer and ZEB-1 was used as a control. The

qRT-PCR analysis demonstrated that the expression of

CDH11, CFL2, LAMC1, PRKCA, SEC23A, TIMP2, ZEB-1

(miR-200c target genes), PTPRM, PTPRJ (miR-205

target genes), SEC23A and LDHB (for miR-375 target

genes) decreased by more than 30% in the MDA-MB-231

cells transfected with each individual miRNA mimic

(Figure 4C-E), respectively. SEC23A was found to be

down-regulated by both miR-200c and miR-375 mi-

mics. Since we only performed array analysis using

MDA-MB-231 cells, we tested to see if the miRNA

mimics could down-regulate their target genes in three

other invasive cell lines. CFL2 and ZEB1 (miR-200c target

genes), PTPRJ (miR-205 target gene), and LDHB (miR-375

target gene) were consistently down-regulated in all four

(See figure on previous page.)

Figure 4 Integrative analysis of mRNA and miRNA expression in breast cancer cells. (A) Heatmap representing the differentially expressed

genes in miR-200c, miR-205, and miR-375 mimic transfected MDA-MB-231 cells. (B) Venn diagrams showing the intersection between: green

circle, mRNA transcripts displaying at least a 1.4-fold decrease in expression in miR-200c, miR-205, and miR-375 mimic transfected MDA-MB-231

cells; blue circle, mRNA transcripts (p < 0.05 and fold change >1.5) that showed an increased expression in aggressive vs. normal and less

aggressive cell lines. red circle, likely mRNA targets for miR-200c, miR-205, and miR-375 predicted using TargetScan6.2. The grey area indicates the

intersection of all 3 circles. (C-E) qRT-PCR analysis of 11 candidate target genes of miR-200c (C), miR-205 (D), and miR-375 (E) in miR-200c,

miR-205, and miR-375 transduced breast cancer cell lines, BT549, HS578T, MDA-MB-231 and SUM159, respectively.
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cell lines transfected with the corresponding miRNA

mimics; however, the remainder of the genes displayed

variable results (Figures 4C-E).

In order to determine whether the candidate miRNA

targeted genes are regulated by each miRNA through dir-

ect 30-UTR interaction, we cloned the 30-UTR of CDH11,

CFL2, SEC23A, ZEB-1 (miR-200c target), PTPRM (miR-

205 target), and LDHB (miR-275 target) into the reporter

plasmid pmirGLO to generate gene-specific 30-UTR

luciferase reporter vectors. These plasmids and the vector

control plasmid were transiently co-transfected into Hela

cells with the corresponding miRNA mimics. After

48 hours, a dual-luciferase reporter assay system was

used to measure luciferase expression. Overexpression

of each individual microRNA resulted in a significant

decrease of luciferase activities (Figure 5). These re-

sults further confirmed that these genes were the true

targets of the corresponding miRNAs.

Table 1 List of target genes of miR-200c, miR-205, and miR-375 identified in breast cancer cell lines

miR Target Gene Accession No. Name

miR-200c ANKH NM_054027 ankylosis, progressive homolog (mouse)

AP1S2 NM_003916 adaptor-related protein complex 1, sigma 2 subunit

CDH11 NM_001797 cadherin 11

CFL2 NM_021914 cofilin 2 (muscle)

CRTAP NM_006371 cartilage associated protein

DPY19L1 NM_015283 dpy-19-like 1 (C. elegans)

DENND5B NM_144973 DENN/MADD domain containing 5B

EMP1 NM_001423 epithelial membrane protein 1

FAM46C NM_017709 family with sequence similarity 46, member C

FN1 NM_212474 fibronectin 1

FOXF2 NM_001452 forkhead box F2

FSCN1 NM_003088 fascin homolog 1, actin-bundling protein (Strongylocentrotus purpuratus)

KANK2 NM_001136191 KN motif and ankyrin repeat domains 2

LAMC1 NM_002293 laminin, gamma 1 (formerly LAMB2)

LHFP NM_005780 lipoma HMGIC fusion partner

LOX NM_001178102 lysyl oxidase

MCFD2 NM_139279 multiple coagulation factor deficiency 2

PAG1 NM_018440 phosphoprotein associated with glycosphingolipid microdomains 1microdomains 1

PDE7B NM_018945 phosphodiesterase 7B

PPP1R18 NM_133471 protein phosphatase 1, regulatory subunit 18

PRKCA NM_002737 protein kinase C, alpha

RGL1 NM_015149 ral guanine nucleotide dissociation stimulator-like 1

SEC23A NM_006364 Sec23 homolog A (S. cerevisiae)

SPRED1 NM_006931 sprouty-related, EVH1 domain containing 1

TIMP2 NM_003255 TIMP metallopeptidase inhibitor 2

ZEB1 NM_030751 zinc finger E-box binding homeobox 1

ZEB2 NM_014795 zinc finger E-box binding homeobox 2

miR-205 CALU NM_001219 calumenin

PTPRJ NM_002843 protein tyrosine phosphatase, receptor type, J

PTPRM NM_001105244 protein tyrosine phosphatase, receptor type, M

miR-375 DIP2C NM_014974 DIP2 disco-interacting protein 2 homolog C

KIAA1199 NM_018689 KIAA1199, colon cancer secreted protein 1

LDHB NM_002300 lactate dehydrogenase B

QKI NM_006775 quaking homolog, KH domain RNA binding

SEC23A NM_006364 Sec23 homolog A (S. cerevisiae)

SLC7A11 NM_014331 solute carrier family 7
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Knockdown of CFL2 inhibits cell migration and invasion

CFL2, which encodes cofilin-2, was significantly down

regulated by miR-200c (Figures 4C and 5C). In addition,

transfection of a miR-200c inhibitor in miR-200c-ex-

pressing cell lines, MCF7 and ZR-75-1 up-regulated

CFL2 expression (Additional file 6: Figure S3). In order

to further investigate the functional role of cofilin-2 in

the migration and invasion of breast cancer cells, the

MDA-MB-231 cells were transiently transfected with a

CFL2-specific siRNA. Knockdown of CFL2 led to inhib-

ition of both migration and invasion by approximately

40% (Figures 6A). To further elucidate the specific role

of miR-200c in regulating breast cancer cell migration

through CFL2 regulation, we co-transfected a miR-200c

mimic with a plasmid encoded with CFL2 cDNA in

MDA-MB-231 cells. 48 hours after co-transfection, the

MDA-MB-231 cells transfected with miR-200c mimic

alone or co-transfected along with CFL2 cDNA were an-

alyzed for changes in cell migration. The CFL2 cDNA

does not contain the 3-UTR of endogenous CFL2, and

therefore was not affected by miR-200c. As shown in

Figure 6B, overexpression of CFL2 partially reversed the

effect of miR-200c on cell migration. These results indi-

cate that miR-200c inhibited the migration of MDA-

MB-231 through specific down-regulation of CFL2, and

overexpression of CFL2 can compensate the negative ef-

fect of miR-200c on cell migration. Because one of the

functions of the cofilin gene family is to regulate F-actin

turn over, we performed F-actin staining to examine the

effect of CFL2 knockdown on MDA-MB-231 cells. The

depletion of cofilin-2 from MDA-MB-231 cells signifi-

cantly increased F-actin levels (Figure 6C). Similarly, the

miR-200c transfected MDA-MB-231 cells also displayed

an increased level of F-actin staining although it was not

as strong as in cells transfected with CFL2 siRNA. Most

CFL2 knockdown cells were also larger relative to the

wild-type cells. The increase in cell size may partly result

from a flattened cell shape.

CFL2 expression in primary breast cancer patient samples

positively correlated with tumor grades

To determine if CFL2 is associated with breast tumor

progression, we performed TMA analysis on 205 pri-

mary breast tumor and 5 normal breast tissue samples.

The CFL2 expression can be seen to increase dramatic-

ally along with the grade of the tumor (p = 0.001,

Figures 6D-E). The increase in CFL2 expression likely

assists the higher-grade tumor cells in obtaining their

migratory propensity by allowing for considerably higher

F-actin turnover.

Discussion

The complications arising from metastasis are the major

causes of death from cancer. Mounting evidence sug-

gests that miRNAs may promote or suppress tumor me-

tastasis [12], thus offering a new perspective on the

metastatic process. However, there has not been a sys-

tematic evaluation of the role of each miRNA, or a

Figure 5 30-UTR reporter assays confirming the interaction of individual miRNA with the 30-UTR of candidate target genes. (A) Schema

of the pmirGLO dual luciferase vector carrying the 30-UTR regions of 6 selected genes. The entire 30-UTR of 6 genes: CDH11, CFL2, SEC23A, ZEB-1,

PTPRM, and LDHB were cloned into the pmirGLO dual luciferase vector. (B) The alignments of miRNA and their predicted target genes. (C)

Percent relative luciferase activity 48 hours post-transfection with the indicated reporter vector.
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combination of coordinately expressed miRNAs, in the

metastatic process of breast cancer cells. In this study,

we attempt to perform a systematic evaluation of the

role of miRNAs in the invasiveness of breast cancer cells

using a group of 12 well-characterized breast cancer cell

lines. Previous gene expression studies have shown that

these cell lines resemble the primary tumor cells and

can be grouped as basal or luminal-like breast cancer

subtypes [17]. These cell lines are highly variable in their

migration and invasion capability; BT474, MDA-MB-468,

T47D, ZR-75-1, MCF7, SK-BR3 represent less-invasive

breast cancer cell lines, while MDA-MB-231, HS578T,

BT549, SUM159 are more invasive. MCF10A and

MCF12A are two immortalized breast epithelial cell

lines that are non-tumorigenic, but were classified as

basal-like cell lines based on gene expression profiles.

Using highly stringent criteria, we identified a group

of 11 miRNAs that were most differentially expressed

between the invasive and less-invasive cell lines, including

several miRNAs that have been linked to breast cancer

Figure 6 CFL2 and breast cancer cell migration. (A) Bar graph representing the normalized number of migratory or invaded cells after the

respective siRNA transfection. (B) Overexpression of CFL2 can compensate the effect of exogenous miR-200c. Bar graph represents the

normalized number of migratory cells after the respective transfection of miRNA mimic control, miR-200c mimic, and co-transfection of miR-200c

and a plasmid encoding CFL2, respectively. *: Student’s T-test, p < 0.05. (C). Rhodamin-phalloidin staining of F-actin in the CFL2-siRNA and miR-

200c transfected MDA-MB-231 cells. (D) Immunohistochemical analysis of TMA of primary breast tumors using antibodies against CFL2.

Representative images of TMA cores are presented showing normal breast tissue, grades I, II, and III breast tumors with increasing staining

intensities. (E) Bar graph representing the quantification of CFL2 immunostaining from blindly scored tissue microarray sections. Staining intensity

of each sample was given a modified histochemical score (MH-score) that considers both the intensity and the percentage of cells stained at

each intensity level. The intensity of each grade is the average of MH-score of all samples in that grade. Data were analyzed by one-way ANOVA

with p-values as noted in the figure.
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previously, such as miR-200c, miR-203, miR-205, miR-375,

miR-141, and miR-146a [15,16,18]. Introduction of exogen-

ous miR-200c, miR-205, and miR-375 mimics in the inva-

sive breast cancer cell line MDA-MB-231 inhibited cell

migration and invasion suggesting that these miRNAs may

play important roles in maintaining the invasiveness of this

cell line.

Using gene expression array analysis, we also identified

candidate genes affected by the exogenous miRNA

mimics in MDA-MB-231 cells. IPA analysis revealed that

genes affected by miR-200c, miR-205, and miR-375 are

involved in cellular movement and cell-to-cell signaling.

Most significantly, our integrated analysis suggested that

miR-200c might play a pivotal role in regulating cell mi-

gration and invasion, as 27 of the 35 differentially

expressed genes were miR-200c targets. This is consist-

ent with the migration and invasion experimental results

showing that the miR-200c mimic is more potent than

miR-205 and miR-375 mimics in inhibiting the mi-

gration and invasion of MDA-MB-231 cells. CDH1

(E-cadherin) was found to be at the core of the molecu-

lar network regulated by miR-200c. CDH1 acts as a hub

connected by several neighborhood genes that play im-

portant roles in cell migration and invasion (Additional

file 6: Figure S2A).

To further understand the function of the three

miRNAs, it was necessary to identify their true targets in

breast cancer cells. The computational prediction of

miRNA targets still faces significant challenges. The most

widely used tools (miRanda, TargetScan, PicTar, PITA, and

RNAhybrid) are characterized by a significant proportion

of false-positive interactions because post-transcriptional

regulation is context-dependent. On the basis of increas-

ing experimental evidence supporting the hypothesis that

miRNAs can act through target degradation, it has been

proposed that target predictions could be integrated with

miRNA and gene expression profiles to select functional

miRNA-mRNA relationships [19-24]. In this study, we

performed an integrated analysis by combining multiple

data sets: 1) differentially expressed miRNA between inva-

sive and less invasive cell lines; 2) differentially expressed

genes between the two groups of cell lines; 3) miRNA tar-

get genes predicted by TargetScan; 4) genes significantly

down-regulated upon forced expression of a miRNA. The

integrated analysis yielded 35 genes that satisfied the

selection criteria. Out of the 27 differentially expressed

target genes identified for miR-200c, 17 have been shown

to influence the migration, invasion, or metastasis of

cancer cells both in vitro and in vivo (Table 1). Of these

genes, LOX, which encodes Lysyl oxidase, is essential for

hypoxia-induced metastasis [25] and it was reported that

breast cancer cell metastasis can be attenuated by lysyl

oxidase inhibitors [26]. EMP1 may represent a novel

immunohistochemical marker helpful in distinguishing

between invasive ductal and lobular carcinomas [27].

Fascin (FSCN1) is a key regulator of breast cancer inva-

sion [28]. CDH11 may play a role in recruiting Trio to the

plasma membrane where Trio activates Rac, leading to cell

migration [29]. SEC23A, which mediates the secretion of

metastasis-suppressive proteins including IGFBP4, has been

shown to be a direct target of miR-200c, and the subse-

quent down-regulation has been correlated to an increase

in metastatic colonization [30]. Interestingly, SEC23A was

identified as a target of both miR-200c and miR-375

(Table 1), suggesting crosstalk can occur between these two

miRNAs. PRKCA overexpression is strongly associated with

a more invasive and metastatic phenotype in breast cancer

[31]. Furthermore, it has been shown that PRKCA expres-

sion is increased in the invasive breast cancer cell lines

MDA-MB-231 and HS578T, and overexpression can lead

to a significant increase in both the migration and invasion

ability of the cell lines [32]. Finally, SLC7A11, which is

functional subunit of the cystine/ glutamate transporter,

plays an important role in breast tumor metastasis and

maybe a potential target for cancer therapy [33].

Among the target genes identified, CFL2 was most

significantly down-regulated by miR-200c. Hurteau et al.

first indicated that CFL2 as a potential target gene of

miR-200c [30], and later re-reported by Gregory et al

[34]. Korpal et al showed recently that knockdown of

Cfl2 in a mouse mammary tumor cell lines 4TO7 signifi-

cantly decreased cell migration [35]. In this study, we

further revealed that CFL2 plays a crucial role in regulat-

ing actin turnover and is intimately linked to the cell

migration and invasion ability. An increased level of

CFL2 would allow for a much higher F-actin turnover

rate, thus allowing the cell to become much more

mobile [36]. Therefore by slowing the F-actin turnover

rate, miR-200c helps to maintain the anchoring

filaments that tend to hold the cells in place, leading to

the decreased migration and invasion ability. CFL2

expression was also noted to increase significantly along

with the grade of the tumor. This increase in CFL2 pro-

duction likely assists the tumor in spreading both locally

and metastatically at a much greater rate.

In summary, we have performed the first systematic

screening of miRNA-mRNA target pairs that are differen-

tially expressed between invasive and less-invasive breast

cancer cells. We identified a group of negatively correlated

miRNA-mRNA target pairs via integrated analysis of

miRNA and mRNA expression profiles. The subsequent

confirmation studies demonstrated that this integrated

approach is very effective. Our results further emphasize

the important role of miR-200c and its target genes in

maintaining the invasiveness of breast cancer cells. Further

analysis of the candidate miRNAs and their target genes

identified in this study may ultimately lead to the identifica-

tion of novel prognostic biomarkers and therapeutic targets.
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