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of singular integrals 
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I. Introduction 

The formulation of problems in physics often leads to integral equations. 
The usual difficulties come when inverting those equations. Until now, both 
analytical and numerical techniques have been used to invert them. 

Numerical techniques usually discretize the boundaries of the domain, or 
the whole domain, where the problem has to be solved. This discretization leads 
to a system of algebraic equations which can be solved by using matrix inversion 
techniques. This method is powerful, well adapted to computers and therefore 
widely used. However, analytical solutions or approximations are useful too. To 
find such expressions is usually difficult. One way consists of finding an asymp- 
totic approximation of the exact solution. In that respect, in fluid dynamics, 
theories like the lifting-line (see [8]), the slender body, or the slender ship (see [7]) 
have been developed. In each case, one dimension of the considered body is 
substantially smaller than the others and a small parameter like the slenderness 
or the inverse of the aspect-ratio can be defined. Let ~ be that small parameter. 
That assumption always leads to a line-integral, performed along the "span" or 
the "length", for which an asymptotic expansion with respect to e has to be 
found. Let us consider this integral as: 

I = ~ f (x )  K(x,  5) d x .  (1) 
D 

Usually the weight function f(x) is unknown and the kernel K(x, 5) is 
singular when both e and x are null. Many useful techniques have been devised 
to find the asymptotic expansion of ! when the domain D and the kernel K(x, 5) 
have particular expressions: see N. Bleistein [2] and A. Erdelyi [4]. However, 
their use is limited in the sense that they generally impose strong restrictive 
hypotheses on the kernel. When the kernel is too complicated for this set of 
methods, then the Matched Asymptotic Expansion Method (MAEM) is widely 
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used (see ref. [1], [6]). This method consists of dividing the domain into an inner 
region where the variable of integration x is of the same order as a "boundary  
layer thickness" to be determined 6 (e), and an outer region where x is larger than 
6 (8). The asymptotic approximation is obtained by matching the two expansions 
corresponding to each of these regions. First, the M A E M  is laborious. As a 
result, when trying to develop high-order approximations, it is very likely that 
mistakes will be made. Second, a systematic theory for this method is not well 
established. Therefore the user might encounter many unexpected difficulties 
when applying it, especially when he proceeds with the matching of the inner and 
outer expansions. To avoid these difficulties, a new method is presented when the 
integral has the following form: 

I = FP I f (x)  K(x, 8) dx.  (2) 
13 

D is a domain containing zero, f (x)  is a function for which J + I derivatives 
can be defined and the (J + 1) st is continuous over D. The kernel K(x, 8) is 
assumed to be homogeneous of order fl, i.e. for any real a the following is true: 

K(ax, ae) = aP S(e) K(x, 8) (3) 

where S(e) is either the unit function or the sign function: sgn(e). The kernel is 
also assumed to have (L + 1) derivatives with respect to the second variable: 8, 
in D* x {0}. Furthermore,  the last derivative is assumed to be integrable in the 
Finite Part  sense with respect to 8, and may possess a finite number  of singular 
points in R with respect to x. The integral is defined by its Finite Part  (FP), as 
introduced by J. Hadamard  (see ref. [3], [5]). 

Under  these conditions which are satisfied in most  practical applications, we 
shall show in this paper that an asymptotic expansion of the integral I in terms 
of e r and e r log ]e I can be found, and we shall give it an explicit formulation. If 
M is the approximation order, then we show that logarithmic terms occur only 
if the following conditions are all satisfied: 

(i) fl is an integer. 
(ii) S(x) is the sign function sgn(x). (4) 

(iii) M is a positive integer. 

In the last section of this paper we shall treat two examples to demonstrate 
the efficiency of the new formula. In the first example we shall deal with an 
elliptic kernel. In the second one, we shall present an elegant new method to 
solve the asymptotic lifting-line problem. 

II. Preliminary statements 

We shall define in this section a set of expressions, which will be useful for 
the main demonstrat ion in the next section. Under  the conditions presented 
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above for f(x) and the Kernel K(x, e), the Mac Laurin's formula can be applied 
to f (x)  for any real x belonging in D, and to K(x, e) for any real x different from 
zero: 

' xJ i {x - t)' 
f(x) = j=0 ~ f(J)(O) ~-- + o J! f{a+l)(t) dt (6) 

j ~z 81 i (~ - v)L ~L+ 
K(x,e)= ~, ~ K(x,O)~. + FP L! evE+ I K(x,v) dv. 

1=0 0 

The last integral is defined by its Finite Part, defined below, because K(x, e) 
and its derivatives may have a finite number of singularities in the interval [0, e]. 
Let us call Rf, j(x) and RK, L(X, e) the two remainders. Since the (J  + 1)st deriva- 
tive of f(x) is continuous over D, it is possible to apply the mean value theorem 
to Rf, j(x). That is to say, there exists a function x 1 of x, which takes its values 
in the open interval: ]0, x[ and satisfies the following: 

X - -  X l )  J 
RAj(x ) = x j!  f ( s +  1}(x1).  (7) 

Because of the homogeneity condition (3), K(x, e) and its (L + 1) derivatives 
with respect to e can be defined almost everywhere over the set: R x R. There- 
fore, all the integrals which will be used with upper and lower limits which do 
not belong to D will be justified by this argument. Under the homogeneity 
condition, it is also easy to prove that for any integer 1 less than or equal to L + 1 
and x different from zero, the following expressions are true: 

~e ~ K(x, O) = x'~-'S(x) ~,K(1) (8) 

where we set the following definition: 

def ~1 
~,K{1) = ~ KO, 0). (9) 

Kernels of that kind are very common in physics problems where the 
homogeneity condition is fundamental. For  example, the following kernels satis- 
fy all the conditions 

Kl(x,e) = (x 2 -  2ex cos~ + e2) a 

I,;2{x, 8) = 
( x  - ~) I x  - ~l " 

(io) 

Finite Parts of integrals are commonly encountered when the Laplace equa- 
tion is solved by means of the Green function. The solution is usually expressed 
as a convolution product of the Green function, generally singular, with a 
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"regular" function. The integral is taken over a line, a surface or a more complex 
domain and sometimes the Green function is so singular that the integral cannot 
be defined as a "common"  integral. Actually it is possible to show that the 
integration associated with the convolution product has to be performed in the 
Distributions set, but not in the set of the "Common"  functions. As a result, the 
integral exists almost everywhere in the domain where the kernel, the Green 
function, is infinite. The physical meaning of this operation is recovered by 
performing on the integral as many integrations by part as it is necessary for the 
integrand to be integrable in the Reiman sense or at least in the generalized 
sense. The Distributions set is also called the Generalized Functions set by some 
authors. In this very useful set, integration by part is an elementary operation, 
since every Distribution is infinitely derivable. 

Let us illustrate this with some examples. Let us consider a function h(x) 
decreasing at infinity faster than any monomial, and admitting as many deriva- 
tives as necessary. If e is a real non-integer smaller than one, the Finite Part of 
the integral of the product of h(x) times 1/x ~ is defined by J. Hadamard as: 

+~ h(x) F(c~ -- n) + o~ 
F P _ ~  x ~' d x -  F ( c ~  -oo~ x"-~h(")(x)dx" (11) 

The integer n is the integer part of a; therefore, the integral used in the 
right-hand side of(11) is a generalized integral and is obtained by performing on 
the left-hand side n integrations by part. It is straightforward to see that this 
definition can be extended to a bounded interval by multiplying the function h (x) 
by the step function associated with this interval. If c~ is an integer m, the 
expression is slightly different, since the last integration leads to log lxl: 

FP h(X) d x -  - 1  +~o 
- co x 'n (m - 1)!  -Joo log Ixl h("~ dx .  (12 )  

I l l .  G e n e r a l  d e v e l o p m e n t s  

Using the Mac Laurin's formula (5), (6) for f ( x )  and K(x, ~), the integral I 
can be expressed as: 

L /3 l 

F P I f ( x  ) K(x, e) dx = Z ~ Olg(l)  FP I f ( x )  x~-~S(x) dx 
D / = 0  D 

s fcO(O) 
+ 52 - -  FP ~ x~R~,L(x, ~) dx 

j=o j! D 

+ FP ~ Rf, j(x) Rx,L(X, ~) dx .  (13) 
D 
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In the Appendix the last term is shown to be o (eM) where M is an integer 
which value is discussed farther. A direct consequence is that  the first sum over 
l can be t runcated for I = M. Now,  the problem consists of finding an asymptot ic  
expansion for the second term of (13). For  that  purpose, the integral is split over 
four intervals: 

FP~xJRK,L(X,e) d x = F P  f + f + I -  S xiRK, L( x'e) dx" (14) 
D -~ +1~1 -N R-o 

The last integral is proved in the Appendix to be o (e~t). Using (6), (8) and (9) 
the previous equat ion can rewritten: 

FP~xJRK,L(X,e) d x = F P  + " K(x,e) ~ -1S(x)~zK(1 dx 
D - o ~  l 

+N 
+ FP ~ xJK(x,e) dx 

-M 
L ~l +1~1 S(x) 

-,=o2 ~. OzK(1) FP -N ~ xl-J-~ dz +o (eM). (15) 

Then a new variable of integration is used: X = x/e for all the integrals of 
the r ighthand side. However,  this rescaling is valid for the two integrals with 
infinite limits only if the integrand decreases at the infinity faster than l/]x[. 
Therefore the integer J has to be less than L -- ft. In the second term of (15) the 
rescaling is valid for any value of j. This is no longer true for the third term if 
the exponent  1 - j  - fi equals 1, because in this case the integrand behaves like 
l/x, and the integration leads to: (1 - S( - 1)) log[el. Finally, after the rescaling 
and some simplifications, the final result is: 

M FSzK(1 ) f (x )  S(x) 
F P I f (x) K (x, ~) dx = ~. F P ~ dx �9 J 

D t=0[_ l! o x ~-~ J 

J V f`J)(O) +~ x] + Z F P o x J K ( x ,  1) d "d+~+~ 
j:o L-)Y-. 

J [[ f(J)(O) a 1 +fl+jK(l!~. ~j+fl+l 
- Z L l - S ( - 1 ) ]  J! R(fl)j>= _ l_~ logle[ 

j=0 
+ o(#) (16) 

where R(fl) is a function which equals one, if fl is an integer, and equals zero, if 
fl is not. For  practical cases it is convenient  first to choose M, which defines the 
approximat ion  order;  then the value of J is necessarily given by: 

J = M - [fl] - 1. (17) 
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Hence, the results stated in the introduction have been proved. Formula (1 6) 
gives directly the asymptotic expansion of (2) without any further development. 
The only difficulty of this procedure consists of evaluating the Finite Parts of the 
two integrals of the right-hand side. This can be done by using the technique 
presented in Section II of this paper. To a certain extent, the calculation of these 
two integrals can be compared to the evaluation of the Mellin transform of f (x )  
and K(x, 1), which is commonly used in some other methods devoted to the 
study of asymptotic expansions of integrals (see N. Bleistein [2]). 

I V .  E x a m p l e s  

IV-1. First example 

We shall illustrate the use of formula (16) in this section. Let us first consider 
an integral I for which both the weight function and the kernel are known. We 
shall show that formula (16) leads easily to the asymptotic expansion of I, even 
though the kernel is as complicated as the first one in (10). Let us define F(e) as: 

d- GO e - X 2  

F(e) t "  dx.  (18) 
200 x /x  2 - 2ex cos(e) + e2 

All the required conditions are satisfied for both the weight function and the 
kernel. The real fl equals - 1, and if M is the chosen approximation order, then 
according to (17), J equals M. Thus, the asymptotic expansion of F(e) is: 

u [p 2 +~~ x] F(e) = ~2 t[cos(ct)] FP j x21+ 1 d �9 e 21 
1=0 --oo 

+ ~_, FP d �9 e 2j 
- x / x  2 -  2 x  cos( ) + 1 

- 2 Y' P/i[cos(cO �9 e 2J log[el + o (e 2u) (19) 
j=o j! 

where P,(x) is the Legendre polynomial of degree n. If instead of a square-root, 
the kernel exponent had been a real 2, then instead of the Legendre polynomials 
we would have used the Gegenbauer polynomials: CZ,(x) in formula (19). The 
only difficulty, here, consists of expressing the Finite Parts of the two integrals 
of the right-hand side. The first one is evaluated by applying to it the integration 
by part procedure explained in Section II. The following result is found: 

+ ~ e-~2 sgn (x) - 1 + ~ e-~2 sgn (x) 
FP f X2/+ 1 dx = ~ -  FP I x2,_ 1 dx 

- - o 0  - - o 0  

= 4 ( -- 1)1 + ~ e -x2 x log(x) dx (20) 
1! ! 
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The last integral in (20) is a constant independent of both e and the approx- 
imation order, and can be numerically determined. The second Finite Part  of 
(19) is found by replacing the kernel by its series representation in terms of 
Legendre polynomials: 

] 
FP _ N / x 2  - 2x cos(a) + 1 k=0 2j + 2k + 1 - -  -- " 

(21) 

The asymptotic expansion of (18) is now completely determinated and has 
required a very limited amount of algebra. 

IV-2. Second example 

Let us now illustrate the present method with the asymptotic lifting-line 
problem. This model, introduced by M. D. Van-Dyke [8], is now very classical 
in incompressible aerodynamics. It is mainly a matter of finding the asymptotic 
approximation of the pressure distribution on an unswept zero-thickness wing 
of large aspect ratio. We shall show that formula (16) leads to a very elegant 
solution of this problem. Let us call S the wing surface in the plan x O y, x being 
the downstream direction, and y the spanwise direction. If ~(x, y) is the camber 
distribution of this wing (known function), and 7 (r t~) the loading distribution 
(unknown function), then the integral equation to invert is: 

[ 1 1 I + 
~(x, y) = ~ FP S! (y _//)2 x/(Y -- t/) 2 + (x -- ~)2 dqd4 .  (22) 

In order to solve asymptotically this problem, M.D. Van-Dyke proposed 
the concept of a high aspect-ratio wing for which the span-scale is very large 
compared with the chord-scale. If e is the ratio of the chord to the span, then he 
found that the beginning of the asymptotic expansion of the loading function is: 

~(4, /I) = 70(4,  t/) q- s  t/) --[- e272(~,  /1) "-[- e 2 log(t) 73(4, t/) + o  (e2).  (23) 

He did not use (22) to prove this result, but applied the MEAM to the 
velocity potential, and worked on the set of differential equations and boundary 
conditions. In their paper [6], T. Kida and Y. Miyai showed that the procedure 
used by M. D. Van-Dyke was unnecessarily complicate and had probably led the 
author to a miscalculation. They proved that the solution can be simply recov- 
ered by expanding Eq. (22) with respect to e. They defined the new set of vari- 
ables 4 - x = u and/7 - y = v; then they rewrote (22) with these new variables: 

o~(x, y) = ~ F P I du F P S 7(u, v) u C,ora Sp,, - - 7 -  dr .  (24) 
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Here, the point is that the ratio: u over v, is order of e almost everywhere on 
the wing, as a result, in the integral over the span u can be considered as a small 
parameter. Therefore, after having integrated by part the integral over the span, 
T. Kida and Y. Miyai expanded it with respect to the small parameter u. To carry 
out the expansion they used MAEM. They reached the order u 2 log(u) after a 
great deal of algebra and were limited to this order by the calculation complex- 
ity. But, as we shall see, by applying formula (16) to this integral, we can reach 
any approximation order we want in only one step. The application of (16) is 
straightforward and yields to: 

7(u' v) [ 1 ~ 1  7(u, 0) 87 v)dV FP ~ ~ f -  d v = - B _ 2 - - + F P  ~ -~v(u, V 
S p a n  U S p a n  

M 7(u, v) sgn(v) dv + B2t 7(u, 0 u 2t -- ~ 21FP ~ /)21+3 ~/)2(/+1) 
l = 0 S p a n  

- - ~  21 av2a+a) Y(u, 0 u2t loglul 
I=0 

where the constants A21, Bzt, and C2~ are given by: 

(25) 

( -  1 ) z (2 / -  1)!! 
A2t = P2t[0] = 2tl! (26) 

2 Pz k[0] (27) 
- -  ( 2 / + 2 k + 1 )  B2z ( 2 / +  2)! k=o 

2 
Czt = P2, [0] (28) 

(2t + 2)! 

B_ 2 = - -  2 (29) 

These results are obtained by using the series representation of the kernel 
in terms of the Legendre polynomials. After setting the new variable 
u = a (E - X), and performing the chordwise integration o n  (25), we come up 
with an original asymptotic representation of (22) 

1 ?(~'Y) d E -  a FP ~ F(y) a(x, y)= ~ r P ~ ~ 4~ y ~-tl dq 
Chord ~ - -  S p a n  

1 s eat+ ' F p i l  7(E,Y) 2l y)2t+3 sgn(3 - X) dr /dE 
4n t :o s (1 / -  

~2q+1) 31 + B2*chordS at/2a+l) 7(3, Y) (3 - X)2~+ld 

1 Z e2~+llog(e) at/2(/+1 ) y(~,y)(3--X)Z*+lloglE-XI d 
4n ,=o c rd 

(30) 
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where F(y) is the circulation, that is to say the integral of 7(S, y) over the chord. 
Our goal, in the present paper, is not to give a complete solution to this problem; 
however, we can briefly outline it. By following the same procedure as the one 
proposed in [6], it is possible to asymptotically solve this equation, step by step. 
Basically, for each step of approximation of 7 (S, y) we have to solve the following 
Cauchy problem: 

1 7. (S, y) 
R.H.S(y0,71 . . . . .  ? , - 1 ) = 2 n n F P  S ~ 5 2  dS.  (31) 

Chord  

The left-hand side depends only on the former approximations, and the 
right-hand side is the dominant term of (30). In this particular case, the Finite 
Part of the integral is its Cauchy Principal value. This 2-D problem is very 
classical insofar as the n th approximation of the loading distribution is analytic 
in the vertical plan. It is straightforward to check, up to the second order, that 
(31) yields to the same solution as the one obtained by Eqs. (7) and (8) in [6]. The 
present result confirms the small miscalculation found by T. Kida and Y. Miayai 
in M.D. Van-Dyke's work (ref. [8], formula (9.15)). Moreover, the asymptotic 
expansion can be calculated up to any order M, step by step, and it is possible 
to show that the general solution at this order can be written as follows: 

M M M M - 2  

7(M! = S~, ]lkek~i - Z ~n, 1 en log(e)+ Z Z ?.,,,,e" logm(Q. (32) 
k = O  n = 2  n = 4  m = 2  

re<n-2  

V. Conclusions 

The present method is useful in expanding an integral with a singular 
homogeneous kernel in terms of a small parameter, up to any order where the 
derivatives of the weight function are defined. The formula (16) which gives the 
asymptotic expansion is simple and does not need any further mathematical 
development. Moreover, the occurrence of logarithmic terms is explained and 
can be predicted under the conditions stated in the introduction. 

Two examples have been presented. In the first one, the weight function has 
an explicit expression. The asymptotic expansion of the integral has been found 
up to any order. As long as the kernel is homogeneous, this method generalizes 
all the previous methods dealing with such a class of kernels (see [2], [4]). The 
amount of algebra is restricted to the evaluation of the Finite Part of two 
integrals. In the second example the weight function is unknown, and we have 
shown that formula (16) is useful for finding its asymptotic expansion. Such a 
method can be helpful to elegantly solve asymptotic problems like lifting-line, 
slender wing or body, or slender ship, where most of the analytical work is 
concentrated on the asymptotic expansion of a line-integral with respect to the 
small parameter introduced. 



726 Jean Luc Guermond ZAMP 

It certainly would be of great interest to investigate in what direction this 
method could be generalized, and to determine the radius of convergence of the 
series given by formula (16). It is likely that more general answers are underlying 
every problems in which MAEM is used. 
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Appendix 

A.1 It is proved below that the Finite Part of the integral of the product of 
the two remainders Rf, j and RK, L is o (~M). 

Let us call R 1 this term; then, using (5) to (7), a new expression is found 
for RI: 

(x -- x l ) S f ( j + l ) ( x l )  Fp~fj (~ _ v)L ~L+I 
R 1 = F P  S x j !  o L!  ~/3L+l K ( x ,  v) d v d x .  (A-l) 

D ~1 

L ~L+I 
Let {xi}, i = 1, . . . ,  N be the finite set of singularities of ~ K ( x ,  1). The 

infinity is eventually excluded from this set. Then, according to the homogeneity 
of the (L + 1)th derivative of K,  the set { l /x i} ,  i =  1, . . . ,  N represents the 

~L+ 1 
singularities of ~ K(1, x). Let Xma x be the real defined by the expression: 

{ Xma x = sUp [Xi[ + 1 if N # O; 
i :  1, N (A-2) 

Xma ~ 1 otherwise. 

Hence, it is valid to define the real SL as: 

~,~+ 1 v) . 
= sup 8vL+ ~ K (1, (A-3) 

S L  v~O, 1/Xmax 

If e is small enough for the interval I~ = [ - eXmax, eXm,x] to be included in 
D, then the integral in (A-l) can be divided into two parts: 

~L+ 1 
R1 = L~ J~ F P  ~ S ( x ) ( x -  X l )Sx~-Lf~S+I) (Xa)  

�9 D -- I~ 

�9 -- t) ~ K , d t d x  
0 
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~J+f l  + 2 + X m a x  

+ S(e) L ' J ~  FP ~ (u-- uOJuf(J+*)(eul) 
�9 . - - X m a  x 

1 ~ L +  1 

�9 F P  5 (1 - -  1) L + ,  K ( u ,  v) dv du 
0 ~ v L  " 

(A-4) 

Let I 0 be a bounded interval including Is, independent of e and belonging 
to D. Let Sj be the real as: 

Sj = sup [fa+t)(xO[. (A-5) 
x ~ I o  

Then [Rt] can be bounded as: 

IRa[ <= LVj~ j" (x - xl)Jxfl-Lf(J+l)(Xl)f(a - t ) L ~  K , d tdx  
�9 �9 D - l o  0 

+ SLSj L!J! ~ Ix dx 
Io-X, (A-6) 

i~lJ+~+2 ] +x.,ox 1 ~L+I 
+ L!J[ [ f (U--Ul)Juf(J+I)(gul)FPI(I--v)J~zTTK(u,v)dvdu 

-- X m a x  0 

Then choosing the integers J, L, and M such as M = L and 

J = M - [fl] + 1, it is straightforward to see that lim IR, i 
the expected result: ~-+ o 1 - ~  = O; hence we have 

R1 = ~  (eM). (A-7) 

A.2 Let R 2 be the second remainder, as: 

R 2 = ~ xJRK, L(X,e) dx. (A-8) 
R - D  

Using the same method as before, it is easy to obtain the following inequal- 

ity for R2: 

r  1 ~L+I ( ; t )  J 
IR2] = < L!J! J" # I ( 1  -- t)L ~ K 1, --  dtdx . (A-9) 

R - D  0 

The final result is now obvious: 

IR21 = ~  (eM). (A-IO) 

N o m e n c l a t u r e  

D 
f (x)  
FP 

domain of integration 
weight function 
Finite Part  
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h(x)  

I~, I o 
j , J  

K (x, 5) 
l ,L  
M 

R 
R (fi) 
Re,  j ,  RK, L 

t, u, v, x 

fl 

8 
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weight function 
bounded intervals 
integers 
singular kernel 
integers 
integer defining the approximation order 
Legendre polynomial 
set of real numbers 
equals 1 if fl is an integer and 0 if not 
remainders of Taylor developments 
equals either 1 or the sign function: sgn(o 0 
variable of integration 

real numbers 
homogeneity order of the kernel 
Euler's integral (gamma function) 
"small" parameter 

[. ] integer part of. 
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Abstract 

Asymptotic theories like the lifting-line, the slender body or the slender ship lead to line- 
integrals with singular kernels. Sometimes these integrals are " improper" ,  that is to say that they 
are defined only by their Finite Part. To find asymptotic expansions of these integrals, the Matched 
Asymptotic Expansion Method is widely used along with other more specific methods depending 
on the kernel type. The first method is laborious and not systematic, and the other methods are 
sometimes too much specific to treat general cases. Moreover, all of them are not well adapted to 
deal with Finite Part integrals. 

Here, a new method is proposed to avoid the previous difficulties. This method is systematic 
for homogeneous kernels and gives approximations up to any order, as long as the derivative of the 
weight function exists at this given order. Moreover the occurrence of logarithmic terms in the 
expansion is explained and easily predictable. An elliptic integral and the classical lifting-line theory 
are treated to illustrate the ease of this method. 
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R~sum~ 

Les th6ories asymptotiques telles que la ligne portante, le corps 61anc6 ou le navire de grand 
aUongement conduisent/l des int6grales curvilignes/t noyaux singuliers. Parfois, ces int6grates sont 
"impropres" c'est ~i dire qu'elles sont d6finies en Parties Finies. Diff6rentes m~thodes ont 6t6 mises 
au point pour trouver les d6veloppements asymptotiques de ces int6grales. G6n~ralement elles 
d6pendent fortement de la nature du noyau, et c'est finalement la m6thode des d6veloppements 
raccord6s qui est utilis6es quand le noyau est trop compliqu& Cependant, cette m6thode est labori- 
euse et comme les pr6c+dentes non adapt6e aux int6grales d6fines par leur Partie Finie. 

Une nouvelle m6thode est propos6e pour surmonter ces difficult6s. Cette m6thode est sys- 
t+matique pour les noyaux homog6nes et donne les approximations ~ tout ordre pourvu que les 
d6riv6es de la fonction poids existent jusqu'fi cet ordre. De plus la pr6sence de termes logarithmiques 
dans le d6veloppement est expliqu6e et ais6ment pr6dictible. 

Une int6grale elliptique, ainsi que la fameuse th6orie de ta ligne portante sont trait6s pour 
illustrer les possibilit~s de la m6thode. 
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