
A systematic heuristic approach for feature selection for

melanoma discrimination using clinical images

Ying Chang1, R. Joe Stanley2, Randy H. Moss2, and William Van Stoecker3

1College Blvd, Lenexa, KS, USA

2Department of Electrical and Computer Engineering, University of Missouri-Rolla, Hall Rolla,

MO, USA

3Stoecker & Associates, Rolla, MO, USA

Abstract

Background—Numerous features are derived from the asymmetry, border irregularity, color

variegation, and diameter of the skin lesion of dermatology for diagnosing malignant melanoma.

Feature selection for the development of automated skin lesion discrimination systems is an

important consideration.

Methods—In this research, a systematic heuristic approach is investigated for feature selection

and lesion classification. The approach integrates statistical-, correlation-, histogram-, and expert

system-based components. Using statistical and correlation measures, interrelationships among

features are determined. Expert system analysis is performed to identify redundant features. The

feature selection process is applied to 19 shape and color features for a clinical image data set

containing 355 malignant melanomas, 125 basal cell carcinomas, 177 dysplastic nevi, 199

nevocellular nevi, 139 seborrheic keratoses, and 45 vascular lesions.

Results—Experimental results show reduced lesion classification error rates based on

condensing the shape and color feature set from 19 features to 13 features using the feature

selection process. Specifically, average test lesion classification error rates for discriminating

malignant melanoma from non-melanoma lesions were reduced from 26.6% for 19 features to

23.2% for 13 features over five randomly generated training and test sets.

Conclusions—The experimental results show that the systematic heuristic approach for feature

reduction can be successfully applied to achieve improved lesion discrimination. The feature

reduction technique facilitates the elimination of redundant information that may inhibit lesion

classification performance. The clinical application of this result is that automated skin lesion

classification algorithm development can be fostered with systematic feature selection techniques.
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Physicians’ low accuracy in diagnosing pigmented lesions has been well documented (1–4).

In three previous studies of diagnostic accuracy, sensitivity for malignant melanoma

detection by dermatologists without aids such as dermoscopy was 89%, 77%, and 81% (2–

4). Many physicians rely on guidelines such as asymmetry, border irregularity, color
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variegation, and diameter of the skin lesion, called the ABCD criteria (5). Conventional

educational programs can improve diagnostic accuracy, but some discriminations such as

melanoma vs. dysplastic nevi remain difficult (6).

Many factors affect the success of automated melanoma recognition systems. The quality of

the data is one such factor. If information is irrelevant or redundant, or the data are noisy and

unreliable, then knowledge discovery during training is more difficult. The performance of

the classification process depends on the quality of the features used in the process. So

feature selection is often an essential data-processing step prior to applying a classification

algorithm. Feature subset selection (feature reduction) is the process of identifying and

removing as much of the irrelevant and redundant information as possible. The purpose of

this feature subset selection is to select the smallest subset of features without degrading

lesion classification performance. By carrying out feature selection before feeding the whole

feature set into a classification system, the performance of the classification system can

often be improved. In this research, shape and color descriptors for clinical skin lesion

images are evaluated to determine which features contribute most successfully to

discriminating melanoma from benign lesions. Statistical-, histogram-, and rule-based

approaches are utilized for feature evaluation and feature set reduction to improve lesion

discrimination.

Numerous computer-based techniques have been applied to pigmented lesion images, both

clinical and dermoscopy, for investigating features to detect malignant melanoma (7–25). In

the research presented here, skin lesion shape and color feature analysis is examined for

clinical images. Skin lesion border irregularity has been analyzed by Golston et al. (13)

using circular indices. Skin lesion asymmetry has been analyzed by Stoecker et al. (12).

Irregularity and asymmetry measures have been reported to correlate with dermatologists’

measures of these features in 92% and 93% of instances, respectively (12, 13). Clinical

examination of color provides discriminating information in the diagnosis of malignant

melanoma (5). There are colors generally associated with melanocytic lesions, including

shades of tan, brown, or black and occasional patches of red, white, or blue. Colors

characteristic of melanoma can be represented using various color spaces (11, 17). Several

color descriptors have been applied to melanoma detection or discrimination, including

variation of hues (8), analytical color techniques for detecting color variegation (17), and

RGB color channel statistical parameters (23–25). Ercal et al. (11) utilized relative

chromaticity, spherical color coordinates, and (L, a*, b*) color coordinate features as part of

an overall neural network approach for melanoma detection. Ganster et al. (14) also used a

neural network-based melanoma detection scheme that utilized absolute, unnormalized

color-based percent melanoma color features for melanoma color discrimination in

dermoscopy images. The color features included the percentages of absolute color shades of

reddish, bluish, grayish, and blackish areas found within the skin lesion as well as the

number of these colors present within the skin lesion. Color quantization was performed

using the median-cut color quantization algorithm (26).

The remainder of the paper is organized as follows: (1) description of skin lesion features,

(2) feature evaluation experiments performed, (3) experimental results, (4) discussion, and

(5) conclusions.

Skin Lesion Features

Based on the clinical ABCDs for melanoma, 19 shape and color features have been

examined and evaluated for discriminating melanoma from benign lesions. Table 1 provides

a listing of shape and color features examined in this research. For feature calculations, skin

lesion borders were determined using manually chosen points along the border that were
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joined with a least mean squares distance second-order spline curve. A dermatologist

working with a group of students found all borders, making every attempt to find accurate

borders, in spite of the absence of a known gold standard for border accuracy. Using the

manually determined borders, shape, and color features were computed as follows.

Shape Features

The shape features examined in this research are based on quantifying border irregularity

and lesion asymmetry. The lesion in Fig. 1, a nevocellular nevus, is an example of a

symmetric, regular lesion. Notice that it is more or less elliptical, without many protrusions.

The lesion in Fig. 2 is an example of an irregular lesion, an invasive melanoma, with the

border containing indentations and notches, often indicative of malignant melanoma.

Border irregularity index

In order to quantify border irregularity, an irregularity index is computed for each lesion.

The irregularity index is given by

(1)

where a and b are the lengths of the major and minor axes of the best-fit ellipse,

respectively, P is the perimeter of the lesion border, and A is the area of the lesion (26). The

correction factor provides the same index for similarly shaped lesions at different sizes. In

preliminary studies using this index, dermatologists’ assessment in 60 clinical image lesions

yielded two errors.

Lesion asymmetry measure

The second shape feature investigated is a lesion asymmetry measure. From Figs 1 and 2,

there is an axis about which a symmetrical lesion can be folded so the two halves match.

The symmetrical lesion in Fig. 1 is relatively elliptical and can be folded along its principal

axis of inertia with little difference between the two halves of the lesion. Folding the

melanoma lesion in Fig. 2 along its principal axis of inertia provides a significant disparity

between the two halves of the lesion, compared with the symmetrical lesion in Fig. 1.

Accordingly, an asymmetry measure is defined based on computing the principal axis of

inertia and reflecting half of the lesion across its principal axis. Let AX denote the exclusive

OR area between the two halves of the lesion resulting from the folding process. Then, the

asymmetry measure is given by

(2)

where At is the lesion area.

Solid pigment asymmetry index

The third shape feature examined addresses symmetry of solid pigment within the lesion,

which is quantified in the pigment asymmetry index (27). In some regions of the lesion, the

pigment network under the epidermis is dominant, imparting a dark color to the lesion. The

incidence of asymmetric patches of dark pigment is indicative of the irregular growth of

melanin cells that is characteristic of melanoma. Using histogram-based thresholding of the

luminance image, solid pigment areas are identified within the lesion. An example of solid

pigmented region segmentation is shown in Fig. 3. Figure 3 presents the original lesion in
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(a) and the segmented solid pigment regions in (b) shown in black. The pigment asymmetry

index is used to quantify the symmetry of the location of the solid pigmented regions within

the lesion.

The following procedure is used to compute the pigment asymmetry index. Rather than

simply compute the distance of pigment centroids from lesion centroids, pigment asymmetry

is computed by quadrants. This gives extra weighting to two-axis asymmetry, which is more

indicative of melanoma than single-axis asymmetry. First, compute the first-order, second-

order, and product inertia moments for the segmented lesion. Let mx and mxx represent the

first- and second-order moments with respect to the horizontal axis, respectively, and my and

myy denote the first- and second-order moments with respect to the vertical axis,

respectively. Let mxy represent the product inertia for the lesion based on the manually

segmented border. Second, computing the axes of inertia and the angle of elevation of the

axis of symmetry for the lesion. Third, partition the lesion into four quadrants based on the

principal axes of inertia. Fourth, compute the area and centroid location of the lesion within

each quadrant. For quadrant i (i = 1, …,4), let  denote the area and centroid

of the lesion region contained in quadrant i, respectively. Fifth, compute the area and

centroid location of the segmented dark pigment region within each quadrant. For quadrant

i, let  denote the area and centroid of the segmented dark pigment region

contained in quadrant i, respectively. Sixth, compute the distance from the lesion and dark

pigment centroid locations in each quadrant to the centroid of the entire lesion. Let

 represent the Euclidean distances from the centroids of the lesion and dark

pigment in quadrant i, respectively, to the centroid of the entire lesion (mx, my). Seventh,

compute the pigment asymmetry index for each quadrant. Let λi represent the asymmetry

index for quadrant i, which is given by

(3)

Finally, determine the pigment asymmetry index (α) for the lesion as the variance of the

pigment asymmetry indices given by

(4)

where µ i is the mean pigment asymmetry index over the four (N = 4) quadrants. Figure 4

gives a visual representation of the pigment asymmetry feature based on identifying the

lesion and dark pigment regions in each quadrant.

Color Features

From the ABCDs of dermatology, color is an important discriminator of malignant

melanoma from benign lesions. Table 1 lists the color features evaluated in this research,

which are presented in the following sections.

Relative color and surrounding skin color

The relative color of a skin lesion pixel is the difference between the actual pixel value and

the average color value of representative surrounding skin. For a Y row by X column RGB

image, I, the actual value of each pixel is given by I(x, y) = (r(x, y), g(x, y), b(x, y)), where 1 ≤ x
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≤ X and 1 ≤ y ≤ Y. The algorithm to determine the surrounding skin color has been applied

in other research (28, 29). Surrounding skin color is represented as the average RGB value

of pixels outside the lesion but within a circular region with center point at the lesion

centroid. The circular region size is dependent on the skin lesion size (28, 29). Within the

surrounding skin region, non-skin colored pixels such as from clothing, hair, teeth, direct

camera flash reflections, shadows, etc., must be removed in order to achieve a reliable

sample of the surrounding skin color. Based on prior research for skin lesion border

segmentation, normal skin color appears to fall within a small region of the RGB color space

with R>80, R>G, and R>B (17). Let O denote the skin lesion region within the color clinical

image, defined as

(5)

Then, the relative color for all skin lesion pixels is given as

(6)

where −255 ≤ rrel(x, y), grel(x, y), brel(x, y) ≤ 255. rskin, gskin, and bskin are the average RGB

values computed from the surrounding skin. Thus, the relative color space is of size 511 ×

511 × 511, where each (rrel, grel, brel) refers to a bin in a relative color histogram.

Requantizing the relative RGB histogram bins is performed in order to represent discrete

ranges of colors that are characteristic of melanoma and benign lesions. The resolution of

the relative color histogram is reduced by combining 4 × 4 × 4 blocks of bins into a single

bin, making the resulting histogram of size 128 × 128 × 128. The range of requantized

relative color bins for each color is −63 to 64. Each relative color bin contains 64 relative

colors (4 × 4 × 4) except for the bin (−63, −63, −63), which contains 27 relative colors (3 ×

3 × 3). This irregularity in bin size causes no problem because those relative colors are

infrequently observed in skin lesions.

Percent melanoma color, percent non-melanoma color, color clustering ratio features

The percent melanoma color, percent non-melanoma color, and color clustering ratio

features require the mapping of colors within the relative color histogram as melanoma and

benign colors (28, 29). For the algorithm, training images are used to populate the relative

color histogram one image at a time. For each training image, a minimum percentage of the

skin lesion area (0.125%) must be contained within a histogram bin for that bin to be

considered populated by that image (28).

After bin population for each melanoma and benign training image is completed, melanoma

and benign relative color bin probability densities are determined based on the number of

melanoma and benign images that populate each histogram bin. Each bin is labeled as

melanoma, benign, uncertain, or unpopulated based on comparing the corresponding

melanoma and benign probabilities at each bin. The rules for bin labeling are given in detail

in (28). The percent melanoma color, percent non-melanoma color, and color clustering ratio

features are computed after the relative color histogram bins have been labeled based on a

training set of images and the lesion region for feature analysis of the test image has been

identified. For the percent melanoma color feature, a count denoted as U is maintained for

the number of pixels within the lesion region of interest with relative color values that map

as melanoma colors. Let At denote the area in pixels of the lesion region of interest. The

percent melanoma color within a lesion region of interest of area At is given as
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(7)

The percentage of non-melanoma colored pixels is given by

(8)

where Q is the number of benign-colored pixels within the skin lesion region of interest.

The color clustering ratio feature gives an indication of the grouping of melanoma-colored

pixels within the lesion region. The color clustering ratio feature is computed as follows. Let

M denote the set of relative color values that map into relative color histogram bins labeled

as melanoma colors from the training set of images. Let L denote the set of pixel locations

within the skin lesion region of interest with relative color O that map into melanoma colors,

formally

(9)

Let N(x, y) denote the number of eight-connected neighbors and NM(x, y) denote the number of

melanoma-colored eight-connected neighbors that are contained in the lesion region of

interest for pixel (x, y)∈L. The eight-connected neighbors for (x, y)∈L that lie outside of the

lesion region of interest are excluded from calculating N(x, y) and NM(x, y). Then,

(10)

represents the total number of melanoma color neighbors for all pixels within the skin lesion

with relative color values that map as melanoma colors. The cumulative total number of

eight-connected neighbors for all (x, y)∈L is denoted as

(11)

T includes all neighbors of melanoma color pixels within the skin lesion regardless of

whether the neighbor is mapped to a melanoma color. The color clustering ratio for a skin

lesion is given as

(12)

Red, green, and blue variance

Variegated coloring plays an important role as one of the most predictive features in

identification of malignant melanoma. The variance of red within the lesion is defined as
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(13)

Variances of green and blue are defined similarly.

Relative chromaticity of red, green, and blue

The next set of color features are relative chromaticity measures. The relative chromaticity

of red is defined as

(14)

where rLesionr, gLesion, bLesion are the average red, green, and blue of the lesion area,

respectively.

Ratio in red, green, and blue

The ratio of colors is the average color of the lesion divided by the average color of the

background skin. The ratio of red is defined as

(15)

The ratios of green and blue are defined similarly.

Difference in lightness, chroma, color, and hue

The final set of color indices are the differences in lightness, chroma, color, and hue

between the average lesion values and the corresponding surrounding skin values. Lightness,

chroma, and hue are denoted as L*, C*, and H, respectively, and are defined (30). The

differences in lightness, chroma, color, and hue are given as

(16)

(17)

(18)

(19)

where
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(20)

and

(21)

Experiments Performed

Overview of feature evaluation

In this research, statistical-, histogram-, and expert system-based approaches are used to

evaluate the 19 shape and color features for feature reduction and rule-based discrimination

between malignant melanoma and benign lesions. A correlation-based expert system filter is

used as the feature selection method. It uses a correlation-based heuristic to evaluate the

worth of features. This heuristic takes into account the usefulness of individual features for

predicting the class label along with the level of correlation among them. The hypothesis on

which the heuristic is based is that good feature subsets contain features highly correlated

with the class, yet uncorrelated with each other.

Data set description

The relative color technique attempts to address some of the variations in the acquired

photographs (because of lighting, film types, and digitizing techniques, etc.) and also helps

in correcting for different skin coloration (pigmentation).

Three image data sets were used in the experiments here. Data set 1 was photographed and

digitized at the University of Sydney. Data set 2 was photographed at New York University

and Dr Stoecker’s clinic in Rolla, Missouri and digitized with a Nikon Coolscan®. Data set 3

was acquired at a private practice in New York and New York University and similarly

digitized. All sets used 35mm slides, with the Rolla Clinic using Kodachrome and the other

sites using Ektachrome and Kodachrome. Accordingly, there was no way to directly control

color variations from the different light sources, film types, and film processing used for the

acquired 35mm slides. The following lesion types were included in the data sets: invasive

malignant melanoma (Mel), basal cell carcinoma (bcc), dysplastic nevus (dys), nevus (n),

and seborrheic keratosis (sk), and vascular lesions consisting of hemangiomas and pyogenic

granulomas (Vasc). Table 2 presents the three data sets examined, including the number of

each lesion type. A total of 1040 lesions were examined. For expert system evaluation, the

total data set was randomly separated into five disjoint subsets, each with the same

percentage from each lesion category. Four subsets were combined to form the training set

(80% of the total data set) while the remaining subset was used as the test set. This process

was repeated a total of five times, with each subset used exactly one time as a test set.

Feature evaluation experiments

Preliminary histogram, statistical, and correlation analysis was performed on the 19 shape

and color features to assess the interrelationships among features and the discrimination

capability of those features to distinguish melanomas from benign lesions. In order to

evaluate the separability of individual features for melanoma and benign lesion

discrimination, histogram and statistical analysis was carried out on the entire data set. The

statistics examined for each feature included the minimum, maximum, mean, and standard

deviation values. Pearson’s correlation was used to assess the interrelationships among

features based on the evaluation of the entire data set.
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Finally, expert system analysis was performed to assess feature interrelationships and

discrimination capability. C4.5 is an algorithm introduced by Quinlan for extracting decision

trees from data (31). C4.5 works with a set of records, each of which has the same structure,

consisting of a number of attribute/value pairs. One of these attributes represents the goal of

the record, i.e. the attribute whose values are most significant. The problem is to determine a

decision tree that, on the basis of answers to questions about the non-goal attributes, predicts

correctly the value of the goal attribute.

The feature selection process is carried out in a backward elimination fashion. It is a

multiple step procedure. At each step, correlation-based expert system evaluation of a subset

of features is performed. The data are randomly selected from the whole data set. And, the

selected data set is divided into a randomly picked training set and a testing set. Using this

procedure, error rates were determined using the C4.5 algorithm from training and test sets

for each of the data sets for different feature combinations.

Experimental Results

Evaluation of 19 shape and color features was performed over a data set of 1040 clinical

images containing 355 melanomas and 685 non-melanoma lesions. Statistical-, histogram-,

correlation-, and expert system-based approaches were investigated to determine which

features contributed most successfully to lesion discrimination.

Results from statistical analysis of shape and color features

In order to assess the distribution of the shape and color features, statistical analysis was

performed over the combined 1040 image data set. Table 3 presents the minimum,

maximum, mean, and standard deviation values for each of the 19 features. Because of the

wide clinical variation of the lesions, even within a diagnostic class, the different sources of

the data, and the noise introduced during the extraction process, several features presented a

wide range and large standard deviation. In particular, the color variance features (variance

in red, green, blue) yielded the widest range and standard deviation of the features inspected.

The wide range of feature values makes feature normalization for classifier development

more difficult. The solid pigment asymmetry index and the relative chromaticity of red,

green, and blue features have relatively narrow ranges, compared with the other features,

which makes separation of benign lesions and melanomas based on these features more

difficult. Although the classifier can accommodate to various feature ranges and

distributions, normalization might yield some improvement in the classifier.

Results from Pearson’s correlation analysis

The second set of experiments focused on correlation analysis of the 19 features over the

image data set. There are three purposes for these experiments: (1) determine

interrelationships among variables, (2) evaluate which individual variables are most strongly

correlated with melanoma, and (3) evaluate which individual variables are most strongly

correlated with the six different non-melanoma lesion categories. Pearson’s correlation is

performed between each feature and the other features, each feature and the melanoma class,

and each feature and the non-melanoma lesion categories. The resulting Pearson’s

correlations are presented in Table 4 (a) and (b). ‘Class 1’ corresponds to the exact

diagnosis, i.e. the diagnosis related to the six lesion categories shown in Table 2. ‘Class 2’

refers to categorizing lesions as melanomas/non-melanomas, i.e. the bcc, dys, n, sk, and

Vasc lesion types are combined into the non-melanoma category.

From Table 4, there are several observations. First, some features have higher correlation

with the melanoma/benign lesion classes compared with other features, including the
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percentage of melanoma color (F4) and color clustering ratio (F6) with correlation values of

0.34 and 0.33, respectively, with class 2. The percentage of melanoma color and color

clustering ratio features have been shown to achieve high melanoma discrimination in

clinical images as individual features (28, 29). Second, there are many features that are

strongly interrelated. The features that are strongly interrelated (or strongly inversely

related) include: (1) relative chromaticity of red (F10) and green (F11) with difference of

chroma (F17), (2) relative chromaticity of red (F10), green (F11), blue (F12), (3) variance in

green (F8) and blue (F9), (4) percentage of melanoma color (F4) and color clustering ratio

(F6), (5) ratio of red (F13), green (F14), and blue (F15), (6) ratio of red (F13), green (F14),

and blue (F15) with the difference in lightness (F16), and (7) relative chromaticity of blue

(F12) with the difference in chroma (F17). The strongly correlated (or inversely correlated)

features provide sources of redundant information that can be eliminated for determining a

final feature set used for classifier development.

Feature histogram analysis

Based on the correlation analysis, interrelationships among features and the relationships

between the individual features and the melanoma and benign lesion classes were examined.

The next goal with feature analysis was to determine the discrimination capability of

features found to be most strongly correlated with melanoma/benign lesion classification.

The percentage of melanoma color (F4) feature was found to have the strongest correlation

with melanoma/benign lesion discrimination. Figure 5 presents the histograms for the

percentage of melanoma color feature for the different benign lesion categories and

melanoma. The histograms present the number of images for the lesion type in the data set

with the percentage of melanoma color feature that falls within the specified range on the

horizontal axis. The histograms for the bcc lesions are given in (a), Vasc in (b), sk in (c),

nevus in (d), dys in (e), and melanomas in (f).

From Fig. 5, there is a different distribution of the percentage of melanoma color feature

among the different categories. Melanoma lesions have higher frequencies for greater than

20% for the percentage of melanoma color than the benign lesion categories. For nevus, a

large number of lesions of this type have the percentage of melanoma color falling into the

less than 10% category. Other features have similar histograms. But certainly one feature

does not contain enough information for the classification task. There are a certain number

of melanoma cases with percentage of melanoma color falling into the less than 20% bins.

These are mostly amelanotic/hypomelanotic melanomas and are difficult cases to diagnose.

Expert system example

In the previous sections, statistical-, correlation-, and histogram-based approaches were

examined for evaluating the 19 shape and color features. The final set of experiments

focused on expert system-based feature evaluation and lesion discrimination using C4.5.

Figure 6 presents an example of the output from C4.5 for developing a tree structure for

feature selection and lesion discrimination using the entire data set.

In this example, a decision tree is built based on the data. At each level, one attribute is

selected to divide subgroups. For example, at the first level, Var Red is selected and then the

data are divided into two groups according to the threshold 2139.310. The breakdown of the

decision tree shows the features and thresholds used to achieve the best classification at each

level of the tree.

Expert system feature evaluation and discrimination results

The first step in the feature evaluation process using C4.5 was to examine the error rates for

melanoma discrimination using all 19 features. First, an expert system evaluation of the
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original feature space is carried out. Table 5 shows the error rate results for all 19 features

for five randomly generated training/test sets over the entire data set.

Based on Pearson’s correlation results shown in Table 4 and the error results given in Table

5, several highly correlated features were found. The absolute values of correlation among

percentage of melanoma color (F4), percentage of non-melanoma color (F5), and clustering

ratio (F6) are greater than or equal to 0.90. From the hypothesis for a good feature subset,

only a subset of highly correlated features should be used as a predictor. Comparison on

performance is carried out first among these three features using C4.5. Table 6 shows the

error results for 17 features based on leaving out the percentage of non-melanoma color and

color clustering ratio features. Table 7 gives the error results for 17 features based on

leaving out the percentage of melanoma color and color clustering ratios. Table 8 presents

the error results for 17 features based on leaving out the percentage of melanoma color and

percentage of non-melanoma color features. The error results in Tables 6–8 are shown for

five randomly generated training and test sets and are given as the combined melanoma and

non-melanoma training and test error percentages.

From Tables 6–8, the percentage melanoma color feature yielded overall error rates lower

than the other two features. For determining the feature set used for classifier development,

the percentage of melanoma color feature is retained over the percentage of non-melanoma

color and clustering ratio features. A similar process was carried out for all the features, so

after the backward elimination process, a sub-optimum subset of features was chosen to

achieve better performance in the sense of correct classification rate. Accordingly, the final

feature set contained 13 features, including irregularity index (F1), asymmetry index (F2),

solid pigment asymmetry index (F3), percentage of melanoma color (F4), variance of red

(F7), variance of blue (F9), relative chromaticity in red (F10), relative chromaticity in blue

(F12), ratio in red (F13), ratio in blue (F15), difference in lightness (F16), difference in

chroma (F17), and difference in hue (F19). Note that the selection process is not unique.

There is a compromise on the performance and time needed for the feature selection stage.

Table 9 presents the 13-feature error rate results using C4.5 over the five randomly

generated training and test sets. From Table 9, the error rate results using 13 features provide

slight improvement over the 19- and 17-feature results given in Tables 6–8. These results

show the impact of feature selection on discrimination capability. The feature selection

process fosters the development of more sophisticated classifier development to improve

lesion discrimination.

Discussion

This research was conducted using data sets acquired from different sources, and diagnostic

results from individual sets were higher than that of the combined set. Although this lowered

diagnostic accuracy somewhat, non-homogenous sets may better represent the real-world

variability in lesion acquisition, and better represent the problem of diagnosis at a distance,

increasingly encountered with internet transmission of images.

In recent years, computerized automatic diagnosis of pigmented lesions has been mostly

applied to digital dermoscopy images (24, 32) and hyperspectral images, including visible

light and infrared images (33). However, most American dermatologists still do not

routinely use dermoscopy in clinical practice, and those who do, tend to favor non-contact

dermoscopy because of the ease of image acquisition. And for now, hyperspectral imaging is

largely confined to pigmented lesion centers. Thus, the images that are exchanged in formats

such as the dermatology internet discussion group are almost all either clinical images, such

as this report describes, or non-contact dermoscopy images, which share some features with

the images discussed here. Therefore, the techniques discussed here may be directly applied
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to these images. It has been shown that the combination of clinical examination and

dermoscopy allows a higher diagnostic accuracy in screening, than either method alone, as

the two techniques play a complementary role (34). Thus, techniques presented here for

clinical image analysis could potentially be combined with dermoscopy image analysis in

screening.

There are several limitations with the expert system approach. First, the systematic expert

system approach may be feasible when d, the number of features, is small. However, the

feature selection results depend on the value of d. There are many ways to select m features

out of d, namely, d!/(m!(d − m)!). Second, the results depend on the test sets selected. If one

test data set is repeatedly used, features obtained might well be suited for that particular test

set, but might not be the best in general. Third, the feature selection results also depend on

the value of m. The process with various values of m may also have to be repeated to make a

choice. However, there are some heuristic approaches that are often useful. A common

practice for avoiding the consideration of all subsets is to use stepwise selection using

forward selection or backward elimination. Finally, the expert system-based method for

feature selection does not guarantee the optimum feature subset. The measure may be good

in some classes but bad in other classes. Other methods or measures could be used to select

a good feature set. However, it is unclear how to perform this optimization systematically. A

more systematic method for feature subset selection may yield further improvements.

Conclusions

In this research, a statistical-, correlation-, histogram-, and expert system-based approach

was used for feature selection for malignant melanoma discrimination. Statistical and

correlation measures provide an initial basis to find interrelated features. The expert system

was used for decision tree-based lesion discrimination for feature evaluation in a backward

elimination manner. From the initial 19 shape and color features examined, the systematic

approach yielded 13 features that provided lower error classification rates than the original

feature set. The systematic approach is heuristic and suboptimal. However, the approach

provides the basis for feature selection that can be applied to more sophisticated lesion

discrimination techniques.
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Fig. 1.

A regular skin lesion (nevocellular nevus) (a) and corresponding manually segmented lesion

(b).
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Fig. 2.

An irregular skin lesion (invasive melanoma) (a) and corresponding manually segmented

lesion (b). The arrows points to notches and indentions in the lesion border.
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Fig. 3.

Solid pigment asymmetry lesion example (invasive melanoma). (a) Original lesion. (b)

Marked solid pigment regions (shown in black).
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Fig. 4.

Pigment asymmetry calculation example. The principal axes of inertia are shown along with

the quadrant lesion centroids (boxes in dark gray) and quadrant pigment dark pigment

centroids (boxes in light gray).
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Fig. 5.

Histograms for percentage of melanoma color for different lesion categories. (a) Basal cell

carcinomas (bcc). (b) Vascular lesions (Vasc). (c) Seborrheic keratoses (sk). (d)

Nevocellular nevi (Nevus). (e) Dysplastic nevi (dys). (f) Melanoma. Frequency represents

the number of lesions satisfying the feature constraint.
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Fig. 6.

Example of decision tree from C4.5 algorithm.
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TABLE 1

Shape and color features examine for lesion discrimination

Shape feature Label Color feature Label

Border irregularity index F1 Percent melanoma color F4

Asymmetry index F2 Percent non-melanoma color F5

Solid pigment asymmetry index F3 Color clustering ratio F6

Variance red, green, blue F7–F9

Relative chromaticity of red, green, blue F10–F12

Ratio in red, green, blue F13–F15

Difference in lightness, chroma, color, hue F16–F19
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TABLE 2

Data set summary

Data set 1 Data set 2 Data set 3 Total

Mel 50 136 169 355

bcc 3 43 79 125

dys 24 49 104 177

n 12 107 80 199

sk 6 57 76 139

Vasc 1 0 44 45

Total 96 392 552 1040
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TABLE 3

Summary statistics of features

Minimum Maximum Mean SD

Irregularity index (F1) 0.940 5.877 1.291 0.353

Asymmetry index (F2) 0.000 32.652 6.911 4.361

Solid pigment asymmetry index (F3) 0.000 0.462 0.063 0.078

Percentage of melanoma (F4) 0.060 100.000 25.383 26.676

Percentage of non-melanoma (F5) 0.000 99.920 71.823 26.968

Clustering ratio (F6) 0.000 99.580 44.609 26.747

Variance red (F7) 23.496 4653.328 1157.177 838.205

Variance green (F8) 2.493 3600.404 839.636 618.305

Variance blue (F9) 0.063 4233.125 863.551 727.933

Relative chromaticity of red (F10) −0.150 0.286 0.009 0.066

Relative chromaticity of green (F11) −0.194 0.091 −0.013 0.032

Relative chromaticity of blue (F12) −0.118 0.133 0.003 0.037

Ratio red (F13) 0.231 2.032 0.800 0.226

Ratio green (F14) 0.014 2.494 0.780 0.314

Ratio blue (F15) 0.001 2.979 0.820 0.346

Difference in lightness (F16) −37.815 25.115 −7.847 8.979

Difference in chroma (F17) −26.552 29.257 −0.468 8.462

Difference in color (F18) 0.004 25.925 4.719 4.489

Difference in hue (F19) 0.924 41.150 14.141 7.508
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TABLE 5

Training and test error rate results for 19 features using C4.5

Error rate

19 features Train set (%) Test set (%)

Set 1 3.3 26.7

Set 2 5.2 25.5

Set 3 2.6 26.7

Set 4 2.6 28.6

Set 5 2.2 25.5
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TABLE 6

Error rate results using C4.5 using 17 features including the percentage of melanoma color feature and leaving

out the percentage of non-melanoma and color clustering ratio features

Error rate

17 features Train set (%) Test set (%)

Set 1 2.1 21.4

Set 2 6.2 23.2

Set 3 2.4 25.5

Set 4 4.3 30.3

Set 5 2.4 25.5
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TABLE 7

Error rate results using C4.5 using 17 features including the percentage of non-melanoma included and leaving

out the percentage of melanoma color and clustering ratio features

Error rate

17 features Train set (%) Test set (%)

Set 1 3.6 25.5

Set 2 5.2 25.5

Set 3 5.0 23.2

Set 4 2.6 32.1

Set 5 2.6 23.2
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TABLE 8

Error rate results using C4.5 including the clustering ratio feature and leaving out the percentage of melanoma

color and percentage of non-melanoma color features

Error rate

17 features Train set (%) Test set (%)

Set 1 3.0 25.5

Set 2 5.2 26.7

Set 3 3.2 17.9

Set 4 3.9 23.2

Set 5 3.7 26.7
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TABLE 9

C4.5 error rate results using 13 features

Error rate

13 features Train (%) Test (%)

Set 1 4.5 21.4

Set 2 2.3 17.9

Set 3 2.7 26.7

Set 4 5.5 26.7

Set 5 3.4 23.2
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