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Direct Numerical Simulations (DNS) are conducted for turbulent flow through pipes
with three-dimensional sinusoidal roughnesses explicitly represented by body-conforming
grids. The same viscous-scaled roughness geometry is first simulated at a range of differ-
ent Reynolds numbers to investigate the effects of low Reynolds numbers and low R0/h,
where R0 is the pipe radius and h is the roughness height. Results for the present class
of surfaces show that the Hama roughness function ∆U+ is only marginally affected by
low Reynolds numbers (or low R0/h), and observations of outer-layer similarity (or lack
thereof) show no signs of sensitivity to Reynolds number. Then, building on this, a sys-
tematic approach is taken to isolate the effects of roughness height h+ and wavelength
λ+ in a turbulent wall-bounded flow in both transitionally rough and fully rough regimes.
Current findings show that while the effective slope ES (which for the present sinusoidal
surfaces is proportional to h+/λ+) is an important roughness parameter, the roughness
function ∆U+ must also depend on some measure of the viscous roughness height. A
simplistic linear–log fit clearly illustrates the strong correlation between ∆U+ and both
the roughness average height k+a (which is related to h+) and ES for the surfaces simu-
lated here, consistent with published literature. Various definitions of the virtual origin
for rough-wall turbulent pipe flow are investigated and, for the surfaces simulated here,
the hydraulic radius of the pipe appears to be the most suitable parameter, and indeed
is the only virtual origin that can ever lead to collapse in the total stress. First- and
second-order statistics are also analysed and collapses in the outer layer are observed for
all cases, including those where the largest roughness height is a substantial proportion
of the reference radius (low R0/h). These results provide evidence that turbulent pipe
flow over the present sinusoidal surfaces adheres to Townsend’s notion of outer-layer
similarity, which pertains to statistics of relative motion.
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1. Introduction

The case of turbulent wall-bounded flow over rough surfaces has been extensively
studied, owing to important practical implications. Such flows almost always produce
skin-friction coefficients, Cf (which is the ratio between the wall shear stress τw and the
dynamic pressure ρU2

b /2, where Ub is the bulk velocity and ρ the density of the fluid),
that are higher than those of smooth surfaces, and are thus of concern in a wide range
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of applications. For example, biofouling on a ship’s hull roughens the surface, causing an
increase in the drag which consequently decreases the fuel efficiency of the ship (see for
example Schultz et al. 2011). Roughness is also an important factor in meteorological
flows, where the atmospheric surface layer encounters changes in surface topology owing
to vegetation canopies, man-made structures and ocean waves (Raupach et al. 1991;
Thom 1971; Raupach & Shaw 1982; Yang et al. 2013). In biomedical flows also, roughness
can occur as plaque build-up in arteries, and as a result of the stents that are used to
treat such conditions (see for example Cunningham & Gotlieb 2004).
The increase in wall drag caused by the surface roughness is manifested in the stream-

wise mean velocity profile as a downward shift in the logarithmic region, ∆U+ ≡ ∆U/Uτ

(Uτ ≡
√

τw/ρ, the friction velocity), known as the roughness function. The roughness
function is itself a function of the roughness Reynolds number, k+ = kUτ/ν, where k
is some measure of the roughness height and ν is the kinematic viscosity. Note that for
rough-wall flows, Uτ and Cf are no longer composed solely of the skin-friction drag but
actually reflect the total wall drag which is composed of viscous and pressure drag com-
ponents. The engineering challenge is to predict the roughness function for a given surface
at operational conditions. If this is known, engineers can predict the drag coefficient and
hence the energy requirements or penalty due to the surface roughness, either using the
Moody chart (Moody 1944) for pipes and channels, or variants of this for developing
turbulent boundary layers (Prandtl & Schlichting 1955; Granville 1958). It should be
noted that both of these approaches require an assumed self-similar functional form for
the mean velocity profile. Hence the existence of outer-layer similarity (Townsend 1980)
for rough flows is pivotal to the process of extrapolating laboratory results to full-scale
applications.
Typically, the roughness function is predicted empirically, by testing a replica of the

surface roughness in the laboratory. Measurements of the mean velocity profile within the
turbulent boundary layer enable the determination of ∆U+ as a function of the roughness
Reynolds number. Alternatively, drag measurements on towed test surfaces, or pressure
drop measurements in roughened pipes or channels also enable a determination of the
coefficient of friction Cf and hence, via assumptions of self-similar velocity profiles, ∆U+.
The key point is that the relationship between ∆U+ and k+ is highly dependent on the
characteristics of the surface and is not trivial, requiring engineers to conduct scaled ex-
periments in order to predict full-scale performance. An overarching goal for roughness
research would be to bypass this costly empirical stage, and to produce a methodology
that is capable of predicting the relationship between ∆U+ and k+ directly from known
characteristics of the surface. In the past, many such attempts have been made, occasion-
ally suggesting new roughness parameters in order to characterise the surface. Jimenez
(2004) and Flack & Schultz (2010) provide overviews of some of these schemes. Schlicht-
ing (1936) introduces the solidity parameter, Λ, defined as the total projected frontal
roughness area per unit wall-parallel area. It has been a key parameter for characterising
the effect of various regular rough surfaces, such as spheres, cones, spherical segments and
spanwise fences. More recently, Napoli et al. (2008) who conducted numerical simulations
on channels with two-dimensional inhomogeneous roughness, suggest that the effective
slope ES, defined as the mean absolute streamwise gradient of the surface, scales well
with ∆U+ for a variety of non-regular rough walls, independent of the roughness height.
On the contrary, in a boundary layer experiment Schultz & Flack (2009) found that ∆U+

is sensitive to the roughness height and independent of ES if the surface has large values
of ES (> 0.35). Other work has suggested that combinations of more traditional surface
roughness parameters can yield predictions of ∆U+. For example, Flack & Schultz (2010)
propose that the equivalent sand grain roughness can be modelled as a function of the
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root-mean-square roughness height krms and skewness ksk. This proposed model works
very well in predicting the equivalent sand grain roughness ks of gravel, packed spheres
covered with grit and sandpaper (12 and 80 grit) in the fully rough regime. On the other
hand, the model overpredicts ks for honed and commercial pipes by approximately 100%.
Though some of these models have proven promising for certain classes of surfaces, none
has proven universally reliable (refer to Flack & Schultz (2010) for further information on
previously proposed roughness function correlations). Taylor et al. (1985) characterised
the rough surface using a discrete element model for uniform roughness. In this model,
the coefficient of friction of the surface can be estimated by modelling the coefficient of
drag CD of the individual roughness elements. This model has been used on sphere- and
cone-roughened surfaces and is able to accurately predict the skin-friction coefficient of
a surface Cf (Scaggs et al. 1988). However, for more complex, realistic-looking rough
surfaces, CD is not easily determined unless an experiment is carried out.
To achieve the aim of predicting the drag of a surface without conducting laboratory

experiments, a better understanding of roughness is needed. It is important to know how
the flow is affected by certain key roughness parameters. In the present study, we take a
simple building-block roughness (which could later form the basis of a decomposition of
a more complex geometry), and investigate the influence of the wavelength of the inner-
normalised roughness elements λ+, and also the roughness semi-amplitude height h+. By
systematically varying these parameters, we are also able to investigate the influence of
solidity Λ and effective slope ES. The aim here is to take a more systematic approach
in the spirit of the close-packed pyramids experiments of Schultz & Flack (2009) and
the ES simulations of Napoli et al. (2008) towards producing more reliable predictive
schemes.
In this study, DNS with a body-fitted grid is used to simulate the flow through a pipe

roughened with three-dimensional sinusoidal elements at low Reynolds number. A body-
fitted grid was chosen in favour of the immersed boundary method (IBM) to remove
uncertainties in the near-wall flow which may arise due to the unphysical oscillations
occurring in the vicinity of the virtual boundary (Iaccarino & Verzicco 2003). However, a
turbulent rough-wall simulation with a body-fitted grid is computationally more expen-
sive. The current simulation at Reτ = 540 requires 120 268 800 elements as compared to
35 000 000 nodes for an open channel simulation by Leonardi & Castro (2010) at compa-
rable Reynolds number (Reτ = 600) using IBM. For the current simulations, a decision
has been made balancing the need for high Reynolds number and the need to investigate
a range of surfaces using body-fitted grids. Based on the strong belief that a large number
of simulations covering a wide surface parameter space would produce more insight into
the problem than a limited number of simulations at high Reynolds numbers, we elect
after careful validation, to perform the majority of simulations at low Reynolds num-
bers. For comparison, the computational hours required for a rough-wall simulation at
Reτ = 180 would only be approximately 43 000 CPU hours using 256 Blue Gene/Q pro-
cessors while a simulation at Reτ = 540 would require 1 370 000 CPU hours using 1024
Blue Gene/Q processors if the statistics were collected for the same amount of time.
This computational burden can easily double for surfaces with large roughness, where a
smaller timestep ∆t has to be used (to ensure that the Courant number is approximately
0.8) and the lower bulk velocity Ub means that the flow has to be simulated for a longer
duration to obtain converged statistics. In § 4.3, we carefully investigate the validity of
the choice of low Reynolds number simulations and we observe only minor differences in
the calculated roughness function ∆U+ and similarity in the outer region. In addition,
we validate that the Reτ = 180 simulation successfully captures the variation in ∆U+

caused by parametric changes to the surface. Based on these results, a strategic decision is
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made to simulate the majority of the flows at Reτ = 180 to ensure that a comprehensive
range of test cases can be conducted. It should be highlighted that the roughness cases
simulated here are predominantly within the transitionally rough regime. This regime
is interesting since it covers the transition from the smooth-wall regime, where viscous
drag dominates as a result of the well-known near-wall cycle, to the fully rough regime,
where the drag coefficient becomes Reynolds number independent and the pressure drag
from the roughness elements is presumed to dominate.
While there has been extensive numerical study of turbulent flows in smooth-wall pipes

(Eggels et al. 1994; Loulou et al. 1997; Wu & Moin 2008; Wagner et al. 2001; Satake et al.
2000; Chin et al. 2010; Saha et al. 2011), there is limited literature for a turbulent flow in a
rough-wall pipe. Simulation of a turbulent flow in a pipe with two-dimensional roughness
was conducted by Blackburn et al. (2007) where the effects of the corrugation height
for a fixed corrugation wavelength were investigated. They found that flow separation
occurs when the corrugation height increases and that the pressure drag accounts for
approximately 85% of the total pressure drop in the turbulent flow. To the best of the
authors’ knowledge, the present work is the first simulation using a body-conforming grid
of turbulent flow within a pipe with three-dimensional roughness elements.
The choice of sinusoidal roughness elements was influenced by the recent work of Mejia-

Alvarez & Christensen (2010). In that study, the authors conducted experiments on a
realistic rough surface that was scanned and replicated from a turbine blade that had
experienced pitting during operation. They decomposed this surface into a series of basis
functions, following which they tested the ability of a reconstructed surface, generated
from a limited subset of the most energetic modes, to recreate key flow parameters.
Building from this background, one future direction we plan to pursue with the current
sinusoidal roughness would be to superimpose several modes of different height, wave-
length and phase to build towards modelling more complex and hence realistic rough
surfaces. However, the first step with such an approach is to understand the single mode,
which is rigorously detailed here.
Throughout this paper, we adopt the cylindrical coordinate system where r is the radial

direction measured from the centre of the pipe, θ is the azimuthal angle and x is in the
streamwise direction. As pointed out by Monty et al. (2009), the ‘spanwise’ (azimuthal)
lengthscale of the coherent structures in the pipe is measured along the arc length s = rθ.
Capitalised variables (e.g. U) indicate time- and plane-averaged quantities, referred to
as the global average. Over-bars indicate time-averaged quantities (e.g. u), and angle
brackets indicate in-fluid averages at fixed wall-normal locations (e.g. 〈u〉). Lower-case
primed symbols (e.g. u′) denote fluctuations about the global average and the subscript
‘rms ’ denotes the corresponding root-mean-square fluctuations. The ‘+’ superscript is
used to denote viscous scalings of length (e.g. r+ = rUτ/ν), velocity (e.g. u+ = u/Uτ)
and time (e.g. t+ = tU2

τ /ν).

2. Numerical procedure

The turbulent flow through a pipe is simulated by solving the Navier–Stokes equations
for incompressible flow in Cartesian coordinates:

∇ · u = 0, (2.1)

∂u

∂t
+ u · ∇u = −

1

ρ
∇p+ ν∇2

u+ Fxi, (2.2)

where u = (u, v, w) is the velocity in the x, y, and z directions, t is the time and Fx(t) is
the uniform, time-varying body force required to maintain a constant mass flux through
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Figure 1. (a) Sketch of the rough-wall pipe for case 20 141. The radial distance r is measured
from the centre of the pipe whereas y is measured from the virtual origin of the pipe wall:
y = (R0 − r − ǫ)/R0 where ǫ is the offset of the virtual origin from the reference radius of the
pipe. The four planes labeled I , II , A and B will be referred to in the subsequent discussion.
I : Rough cross-sectional plane, II : ‘Smooth’ cross-sectional plane, A: Rough streamwise plane
and B: ‘Smooth’ streamwise plane. Lx is the length of the computational domain. (b) O-grid
mesh along plane I , down-sampled by approximately 4.5:1 for clarity. (c) Zoom in view of the
cross-sectional plane illustrating the averaging annulus.

the pipe. The flows were simulated using CDP, a finite-volume unstructured-grid code
(Ham & Iaccarino 2004; Mahesh et al. 2004), where the diffusive and convective terms
are advanced in time using the second-order, fully implicit Crank–Nicolson scheme, and
continuity is enforced by the fractional-step method by Kim & Moin (1985).

For pipe-flow simulations, the finite-volume grid is typically aligned with cylindrical
coordinates. That is, the vertices of the cells coincide with the r and θ coordinates.
However, to ensure adequate resolution at the wall, especially in the azimuthal direction,
this grid would result in a significant and unnecessary number of cells in the centre of
the pipe. Hence, the Navier–Stokes equations are solved in Cartesian coordinates on an
‘O-grid’ mesh. In the centre region of the pipe a square-based grid is employed which
transitions to a cylindrical-based grid at the near-wall regions (refer to figure 1). Care
has been taken at the transition to ensure that cells are not significantly skewed. The
grid is uniformly spaced in the streamwise direction and a linear expansion is used in
the radial direction to ensure sufficient resolution at the wall of the pipe. At the centre
of the pipe, the cells are approximately cube shaped (∆r+ ≈ ∆rθ+ ≈ ∆x+). The size
of the grid elements in the rough cases at Reτ = 180 is approximately 20% smaller in
r, θ and x than the smooth-wall case to accurately capture the shape of the roughness
elements. In addition, the rough surface skews the grid cells near the wall, thus requiring
additional grid points to resolve the flow. The skewness of the grid at the wall also limits
the roughness-height-to-wavelength ratio, h/λx that can be simulated. Computational
details regarding the mean grid spacing near the wall for each case are given in table 1.
Statistics such as velocity profiles are determined by spatially and temporally averaging
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Case Symbol Reτ Nr,θ Nx Nλx
∆r+ ∆rθ+ ∆x+ ∆t+

Wu & Moin (2008) - 180 131072 512 - 0.17 2.2 5.3 0.37

Smooth 180 13685 384 - 0.33 6.5 6.1 0.14

Smooth 360 41904 768 - 0.27 5.2 5.8 0.07

Smooth 540 94752 1152 - 0.23 5.0 5.8 0.08
10 113 180 19872 512 26 0.14 3.3 3.5 0.09
10 141 / 180 19872 512 32 0.14 3.3 3.5 0.09
10 189 180 19872 512 43 0.15 3.4 3.8 0.09
10 283 180 19872 512 64 0.17 3.5 4.0 0.09
02 141 180 19872 512 32 0.18 3.8 4.3 0.09

02 018 180 24864 512 4 0.12 3.1 3.5 0.07

05 035 180 24864 512 8 0.12 2.9 3.4 0.07

10 070 / 180 24864 512 16 0.11 2.7 3.2 0.07

13 094 180 24864 512 21 0.11 2.8 3.3 0.07

16 113 180 24864 512 26 0.16 2.8 3.2 0.07

20 141 / / 180 19872 512 32 0.11 3.2 3.2 0.07

20 141 / 360 41904 768 24 0.17 4.4 4.3 0.07

20 141 / 540 104400 1152 24 0.14 4.0 4.3 0.05

40 283 540 104400 1152 48 0.13 3.8 4.1 0.05

60 424 540 104400 1152 72 0.15 3.7 4.0 0.05

80 565 540 104400 1152 96 0.14 3.5 3.8 0.05

Table 1. Computational details for the different roughness cases. Nr,θ is the number of elements
in an (r, θ) plane, Nx is the number of elements in the streamwise direction and Nλx

is the
number of elements per roughness wavelength. ∆r+, ∆rθ+ and ∆z+ are the mean grid spacings
in wall-units at the wall calculated using (the local) uτ and ∆t+ is the timestep. The largest cells
are located at the centre of the pipe where ∆r+ ≈ ∆rθ+ ≈ ∆x+. For reference, computational
details from the smooth-wall case of Wu & Moin (2008) are included.

the flow. Spatial averages are conducted along the streamwise and azimuthal directions.
Owing to the use of the hybrid O-grid, wall-normal profiles are calculated by using a
‘bin’ or ‘shell’ approach: the radial direction is divided into thin annular shells and an
average is performed over all the cells which fall inside that shell (see figure 1 (c)). The
spatial average of a quantity, σ, in the ith shell is defined as

〈σ〉i =

∑

j∈Ωi
σjVj

∑

j∈Ωi
Vj

(2.3)

where Vj is the volume of cell j, i is from 1 to the total number of shells in the radial
direction, and j is from 1 to the total number of cells in the corresponding shell Ωi. If a
cell spans the boundary of a shell, then the cell is included in the shell that contains the
cell centre. These spatial averages can then be averaged over time. The radial position of
each shell can be determined with the above averaging technique, i.e. by setting σ = r.
As a body-fitted grid is used for the simulations, only the in-fluid values are used for the
calculations of the statistics. The no-slip condition is applied to the walls of the pipe and
a periodic boundary condition is applied to the ends of the pipe. The length of the pipe
is selected to be Lx = 4πR0 where R0 is the reference radius of the pipe (see § 3). The
current domain length is longer than the domain used by Eggels et al. (1994), Fukagata
& Kasagi (2002) and Loulou et al. (1997) which had a length of 10R0. Wu & Moin
(2008) adopted a domain length of 15R0 as they argued that this length is required to
resolve the maximum wavelength of very large scale motions, reported to be around 12R0
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to 14R0. The domain length study conducted by Chin et al. (2010) found that whilst
the correlations and energy spectra are not fully converged, the velocity and turbulence
intensity profiles are sufficiently resolved when Lx = 4πR0. The chosen length of the pipe
is deemed sufficiently long to analyse the low-order statistics of the flow which is the main
focus of this paper. For a pipe with smooth wall, the flow is initialised using a parabolic
curve superimposed with random fluctuations. Owing to the low Reynolds number of
the flow, the random fluctuations can cause significant viscous dissipation and hence
relaminarise the flow (Eggels et al. 1994). Therefore, a smaller viscosity is temporarily
used to allow the perturbations to grow into turbulent fluctuations. This regime is run for
2500 timesteps with an initial timestep of ∆t+ = 0.036 to ensure stability. The timestep
is progressively increased up to ∆t+ = 0.144, where the Courant–Friedrichs–Lewy (CFL)
number is approximately 0.8. The simulation is then run for 30Tf (where Tf ≡ Lx/Ub,
the flow-through time based on bulk velocity) for the flow to become independent of the
initial condition before statistics of the flow field are gathered. The rough-wall simulations
are initialised by interpolating the flow field of the developed smooth-wall pipe flow.
Again, a small timestep and viscosity are initially used and progressively increased up
to ∆t+ = 0.09 (Reτ = 180). For the cases in which the roughness amplitude is large
(h+ = 20), a slightly smaller timestep of ∆t+ = 0.07 is used. Data are collected every
500∆t+ and at Reτ = 180 the flow is averaged for a duration of at least 20Tf to obtain
well-converged statistics (for simulations at Reτ = 360 and 540 this time is reduced to
15Tf and 10Tf respectively).

3. Surface roughness parameters

The rough surface of the pipe is described by a cosine function:

R(x, θ) = R0 + h cos

(
2πx

λx

)

cos

(
2πR0θ

λs

)

(3.1)

where R0 is the reference radius of the pipe, h is the semi-amplitude of the sinusoidal
roughness (half of the peak-to-trough height kt = 2h) and λx and λs are the wavelengths
of the roughness elements in the streamwise and azimuthal directions respectively. For all
of the rough cases, λx = λs. The rough-wall pipe for h

+ = 20 and λ+ = 141 is illustrated
in figure 1. In this figure, attention is drawn to four planes which embody two distinct
surface characteristics:
• The rough planes, taken through the maximum variation of roughness. These planes

are labelled I in the cross-sectional plane and A in the streamwise plane.
• The smooth planes, where the wall appears to be locally smooth. These planes are

labelled II in the cross-sectional plane and B in the streamwise plane.
For a rough-wall pipe, the inner-scaled wall-normal direction y+ is defined from the wall
as

y+ =
(R0 − r − ǫ)Uτ

ν
(3.2)

where r is the radial location measured from the centre of the pipe and ǫ the virtual
origin offset due to roughness (refer to § 4.2). Throughout the paper, the roughness cases
are identified by the following identifying code

1 0
︸ ︷︷ ︸

h+

1 4 1
︸ ︷︷ ︸

λ+

(3.3)

where the first two digits represent the roughness height and the last three digits represent
the streamwise or spanwise wavelength of the roughness elements. In this paper, the
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roughness height h+ and wavelength λ+ are systematically varied to fulfil three different
studies:-

(C1) A range of geometrically increasing roughness cases were simulated (i.e. h/λx =
constant while h+ varied). The geometrically scaled case is of relevance since this is the
case that is typically tested in laboratories, where the same surface is subjected to various
bulk flow velocities to map out the dependence of Cf on the bulk Reynolds number.

(C2) The wavelength of the roughness λ+ is varied while maintaining the roughness
height to determine the effects of wavelength alone on the roughness function (i.e. h+ =
constant while λ+

x varied).

(C3) The roughness height h+ is increased while maintaining a constant roughness
wavelength to investigate the effects of roughness height in isolation from changes in
wavelength (i.e. λ+

x = constant while h+ varied).

An additional range of cases is conducted to investigate the validity of the low Reynolds
number simulations (cases labelled RE). For this study, rough case 20 141 (the largest
rough case) and the smooth-wall pipe are simulated at Reτ = 180, 360 and 540. The
roughness cases are partitioned into these studies in table 2. A sketch of the pipe cross-
sections we have simulated through plane I are presented by the black curves in figure 2.
The corresponding cross-sections through plane II (which are always circular) are shown
by the dashed grey curves. Note that for cases 10 283 and 02 141, where the roughness
elements have a high roughness-wavelength-to-roughness-height ratio, the walls of the
pipe in plane I become faceted and do not appear to consist of roughness elements.
Rather, the flow is passing through a deformed square/circular pipe (from plane I to
plane II ) for case 10 283 and through a deformed octagonal/circular pipe for case 02 141.

Statistical parameters used to characterise the rough surface are tabulated in table 2.
Increasing h+ increases the roughness average height ka, defined by ASME (2009) as the
arithmetic average of the absolute values of the profile height deviations from the mean
line,

ka =
1

2πLx

2π∫

0

Lx∫

0

∣
∣R(x, θ)−R

∣
∣ dxdθ. (3.4)

For our pipe the mean line would be the reference radius of the pipe, i.e. R = R0. The
parameter ka is one of the most common measures used in general engineering practice as
it is easy to obtain. It is frequently used to analyse surface finish, where this single-value
parameter makes it simple to determine if the surface has met the required standard.
The value of ka, which is essentially a first-order moment of the absolute roughness
height, is not as sensitive to occasional peaks on the surface compared to higher-order
moments such as the root-mean-square krms (square root of the second-order moment),
skewness ksk (normalised third-order moment) and kurtosis kku (normalised fourth-order
moment). Thus, it is unlikely that ka alone will be sufficient to characterise the effect
of a sparse rough surface on a wall-bounded flow, although Acharya et al. (1986) do
collate k+a against ∆U+ for a limited selection of roughness geometries, showing quite
reasonable collapse for certain surfaces. For the current roughness geometries, constructed
from simple cosines, krms and ka are a constant multiple of the roughness height h
where h = 2krms = (π2/4)ka ≈ 2.46 ka, while the skewness for all the surfaces is zero.
Reductions in the wavelength of the roughness elements cause an increase in the density
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Figure 2. Cross-sectional sketch of the roughness cases for Reτ = 180. Sketches in black are
the cases simulated in this paper at plane I. Grey dashed lines show the simulated cases at plane
II. The classification under labels C1, C2 and C3 is also shown.

of roughness elements per unit wall-parallel surface area. Reductions in wavelength at
fixed h also cause a steepening of the roughness, which can be characterised by the
effective slope ES (Napoli et al. 2008). The equation for ES, which is the mean absolute
streamwise gradient of the surface, was defined by Napoli et al. (2008) for two-dimensional
rough surfaces. Here, this equation is generalised for three-dimensional roughnesses as

ES =
1

2πLx

2π∫

0

Lx∫

0

∣
∣
∣
∣

∂R(x, θ)

∂x

∣
∣
∣
∣
dxdθ. (3.5)

This parameter is also related to solidity Λ by the relationship ES = 2Λ (Napoli et al.
2008). For inhomogeneous roughness, ES is a more general parameter which can be easily
calculated with the use of a profilometer or if the equation of the surface is known. For
the present sinusoidal roughness, it can be shown that ES = (8/π)h/λx.
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Viscous scaled roughness (fixed λ+ and h+)

Case Sketch Symbol Reτ R0/h λx/R0 h/λx k+
a k+

rms ES ǫ1 ǫ2 ǫ3

RE







20 141 180 9 π/4 0.141 8.11 10.0 0.361 11.7 -4.1 1.7

20 141 360 18 π/8 0.141 8.11 10.0 0.361 6.9 -4.0 2.0

20 141 540 27 π/12 0.141 8.11 10.0 0.361 4.1 -3.8 2.2

Geometrically increasing roughness (fixed h/λ)

Case Sketch Symbol Reτ R0/h λx/R0 h/λx k+
a k+

rms ES ǫ1 ǫ2 ǫ3

C1







































































02 018 180 72 π/32 0.141 1.01 1.25 0.361 1.3 0.0 0.8

05 035 180 36 π/16 0.141 2.02 2.50 0.361 2.3 -1.4 1.3

10 070 180 18 π/8 0.141 4.05 5.00 0.361 5.8 -2.3 1.9

13 094 180 14 π/6 0.141 5.40 6.67 0.361 8.0 -2.8 2.0

16 113 180 11 π/5 0.141 6.48 8.00 0.361 10.0 -3.3 2.2

20 141 180 9 π/4 0.141 8.11 10.0 0.361 11.7 -4.1 1.7

20 141 540 27 π/12 0.141 8.11 10.0 0.361 4.1 -6.2 2.2

40 283 540 14 π/6 0.141 16.2 20.0 0.361 7.4 -9.5 0.1

60 424 540 9 π/4 0.141 24.3 30.0 0.361 4.6 -17.1 -2.7

80 565 540 7 π/3 0.141 32.4 40.0 0.361 1.0 -25.8 -6.0

Decreasing roughness wavelength λ+ (fixed h+)

Case Sketch Symbol Reτ R0/h λx/R0 h/λx k+
a k+

rms ES ǫ1 ǫ2 ǫ3

C2



























10 283 180 18 π/2 0.035 4.07 5.00 0.090 2.8 -7.8 -2.6

10 189 180 18 π/3 0.053 4.07 5.00 0.135 3.8 -5.5 -0.9

10 141 180 18 π/4 0.071 4.07 5.00 0.181 4.5 -4.4 0.0

10 113 180 18 π/5 0.088 4.07 5.00 0.225 5.0 -4.0 0.6

10 070 180 18 π/8 0.141 4.05 5.00 0.361 5.8 -2.3 1.9

Increasing roughness height h+ (fixed λ+)

Case Sketch Symbol Reτ R0/h λx/R0 h/λx k+
a k+

rms ES ǫ1 ǫ2 ǫ3

C3







02 141 180 72 π/4 0.018 1.01 1.25 0.045 0.5 -2.5 -0.3

10 141 180 18 π/4 0.071 4.07 5.00 0.181 4.5 -4.4 0.0

20 141 180 9 π/4 0.141 8.14 10.0 0.361 11.7 -4.1 1.7

Table 2. Description of the different roughness elements analysed at Reτ ≈ 180, 360 and 540.
h is the roughness mean to peak amplitude, λx the roughness wavelength and h/λx the aspect
ratio of the roughness elements. k+

a is the roughness average height, k+
rms is the root-mean-square

height of the roughness and ES is the effective slope of the surface. The virtual origin offsets are
calculated using ǫ1, the mean momentum absorption plane method; ǫ2, where U+ = 0; and ǫ3,
where U+ = 1 and then shifted by y+ = −1.

4. Results and discussion

4.1. Smooth-wall validation

The accuracy of the code CDP in simulating pipe flows is first validated by comparing our
results against other published DNS results for the smooth-wall case at similar Reynolds
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Figure 3. (a) Mean streamwise velocity profile for the smooth-wall pipe. Dash-dotted lines
show U+ = y+ and U+ = (1/κ) log (y+) + C, where κ = 0.40 and C = 5.3. (b) Radial,
azimuthal and streamwise components of turbulence intensity for the smooth-wall pipe. (c)
Reynolds shear stress for the smooth-wall pipe. Viscous stress −dU+/dr+ and total stress of the
current simulation are denoted by the dotted and dash-dotted line respectively. (d) Root-mean
squared pressure fluctuations for the smooth-wall pipe. Solid lines: second-order finite difference
code at Reτ = 180. Dashed lines: spectral code at Reτ ≈ 170 (Chin et al. 2010) and Reτ ≈ 190
(Loulou et al. 1997).

numbers. The mean velocity profile and the turbulence intensities are shown in figures
3 (a) and 3 (b) respectively. It can be seen that the present mean velocity profile has
excellent agreement with other existing literature (both second-order and spectral codes).
The velocity profiles do not fall on the high-Re log law owing to the low Reynolds number
of the flow. Comparing the turbulence intensities, we also obtain good agreement with
data in the existing literature. The largest discrepancy (2.8%) occurs in the comparison
of the peak values of the streamwise and azimuthal turbulence intensities with those of
Eggels et al. (1994). An explanation for this is offered by Wu & Moin (2008) who argue
that this is due to the relatively coarse mesh and shorter domain used by Eggels et al.
(1994). The variation from Chin et al. (2010) and Loulou et al. (1997) is likely to be due
to the slightly different Reynolds numbers, Reτ = 170 and Reτ = 190, respectively, and

possibly also because of the spectral code. The Reynolds shear stress 〈u′
ru

′
x〉

+
is shown

in figure 3 (c) as a function of wall-normal distance. The agreement with Eggels et al.
(1994), Fukagata & Kasagi (2002) and Wu & Moin (2008) is good and the differences
observed with Chin et al. (2010) and Loulou et al. (1997) are due to the different Reynolds
number. Also shown in figure 3 (c) are the viscous stress and the total shear stress for the
current simulation. It can be seen that the total shear stress is a linear function, which
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gives confidence that all relevant statistics have converged. There is some variation of
p′

+
rms, present in the literature. The peak p′

+
rms is found to be fairly consistently located

at y+ = 30: however the value ranges from 1.82 to 2.01. The present DNS results have a
peak p′

+
rms of 1.95 (figure 3 (d)), which is closer to the values obtained by Loulou et al.

(1997) and Wu & Moin (2008). Generally, the agreement with other similar simulations
from the literature is good. Even with p′

+
rms, for which the literature exhibits substantial

variation, data from the current simulation are within the reported scatter.

4.2. Investigation of the virtual origin

Defining the virtual origin (y = 0) for a rough wall is not straightforward. For a smooth
surface y = 0 is easily defined as the point at which the no-slip condition acts. For a
rough surface, the virtual origin depends on roughness geometry, and is typically located
somewhere between the peak and trough of the rough surface. Knowledge of the virtual
origin is critical for the ability to compare statistics from different surfaces. This is
especially so for the current simulations where the ratio of the reference radius of the pipe
R0 to the roughness height h is low. However, for flows with large R0/h ratios, the virtual
origin offset ǫ, which lies somewhere between the peak and trough of the roughness, only
occupies a very small fraction of the boundary layer and therefore has less influence on
the profiles of turbulent statistics. Typically, the only method to determine the virtual
origin offset experimentally is via the modified Clauser chart method. For example, Perry
& Li (1990) link the virtual origin with the expected log-region collapse. For the present
low Reynolds number DNS data, the logarithmic region is not sufficiently defined to
reliably use this technique. However, we do have the option of employing the mean
momentum absorption plane method to determine the virtual offset. This method was
introduced by Thom (1971) to determine the virtual origin of a vegetation canopy. The
method essentially considers the virtual origin ǫ1 to be the point at which the integrated
resultant force acts, and can be expressed as

ǫ1 =

h∫

−h

yFtot(y)dy/

h∫

−h

Ftot(y)dy (4.1)

where Ftot(= 〈fp+fν〉) is the time and spatial (azimuthal and streamwise) average of the

total drag force acting on the roughness elements due to the viscous (fν) and pressure
forces (fp). Data on the spatial distribution of the drag and the ratio between the pressure
and viscous drag on the surface of rough walls are difficult to obtain experimentally but
can be easily assessed when simulated numerically. Figures 4 (a) and 4 (b) respectively
show the normalised time-averaged pressure and viscous drag acting on the roughness
elements for case 20 141 simulated at Reτ = 180. The maximum viscous drag is located
at the crest of the roughness element due to the large streamwise velocity gradient in the
wall-normal direction. The location of the maximum pressure drag is located on the slope
of the forward face of the roughness element. Calculating the virtual origin using this
method results in a positive virtual origin offset for all roughnesses tested here (ǫ1 > 0).
An alternative method which could be used to determine the virtual origin is to locate

the position where the mean streamwise velocity is zero (U+ = 0), a condition which
is satisfied by the no-slip condition at the surface of the smooth wall. The difficulty of
this method is that this location is not always uniquely defined since larger roughness
heights will often exhibit flow reversal in the roughness troughs, in which case multiple
points satisfy this condition. The virtual origin offset obtained using this method (taking
the outermost point that satisfies the condition) differs from the results from the mean
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momentum absorption methods, yielding a value, ǫ2, which is always negative. A variation
of this method is to find the location where U+ = 1 and then shift it by y+ = −1 to
obtain the offset of the virtual origin (ǫ3). The offset obtained using this method is fairly
consistent for all roughness cases with values fluctuating around 0 from −2.6 < ǫ+3 < 2.2
(except for case 80 565).

A final suggested technique to determine the virtual origin is to collapse the total
stress profile outside the roughness layer regardless of whether the pipe is smooth or not.
The total stress τ(r) across the pipe is the sum of the viscous stress −ν dU/dr and the
Reynolds stress 〈u′

ru
′
x〉 and can be expressed as

τ(r) = −ν
dU

dr
+ 〈u′

ru
′
x〉 =

1

2
Fxr (4.2)

where Fx is defined as the streamwise driving pressure gradient, as in (2.2), and r is
taken above the roughness elements. Rearranging (4.2) and dividing both sides with the
radial location of the virtual origin of the pipe Rv (currently arbitrary), we obtain

τ(r)

RvFx/2
=

τ(r)

τw
=

r

Rv

(4.3)

where τw = FxRv/2, identified as total wall stress which is balanced by the pressure drop
in the pipe. Equation (4.3) shows that Rv can be chosen arbitrarily to ensure collapse,
i.e. there is no unique solution. However, if, in analogy with a smooth wall, one insists
that the wall friction is defined as the drag per plan area, then a unique definition for Rv

emerges. To see this, consider the volume integral of the streamwise momentum equation:
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ρ
dUb

dt
= ρFxV +

∫

∂S

(−pnx + νn · ∇u)dS = ρFxV − Fdrag = 0 (4.4)

⇒ Fx = Fdrag/(ρV ) (4.5)

where n denotes the normal components, V is the volume occupied by the fluid region,
which is well defined, and ∂S is the corresponding surface described by the roughness
geometry. We can define the hydraulic radius of the pipe to be Rh =

√

V/(πLx). Sub-
stituting the expression for Fx into the equation for τw gives

τw =
RvFx

2
=

RvFdrag

2ρV
=

RvFdrag

2ρπRh
2Lx

=

Constant
︷ ︸︸ ︷

(Rv/Rh)
2 Fdrag

ρ (2πRvLx)
︸ ︷︷ ︸

Plan area based
on virtual radius

(4.6)

Here, to ensure that τw physically represents the drag acting on the wall-plan area, the
virtual radius has to be equal to the hydraulic radius Rv = Rh such that the value of
the constant is 1. It can be shown that, even for the largest roughness case simulated
here (R0/h = 9), the reference radius of the pipe is approximately equal to the hydraulic
radius of the pipe R0 ≈ Rh with 0.15% relative difference. Therefore using the reference
radius R0 as the location of the virtual origin is also valid (ǫ+4 = 0).
The different methods used to obtain the virtual origin offset are tested by applying

ǫ to the total stress, velocity defect and radial turbulence intensity profiles. The virtual
origin offset is applied to case 20 141 using values of ǫ1

+ = 11.7, ǫ2
+ = −4.1 and ǫ4

+ = 0
as illustrated in figure 5. Figure 5(a) is a plot of the total stress of the fluid. Unlike a
smooth wall where the normalised total stress approaches 1 at the wall, the total shear
stress of the fluid for a rough wall within the roughness elements reduces and is balanced
by the pressure and viscous stress acting on the elements of the rough surface (the sum
of the pressure and viscous stress acting on the elements is shown by the grey solid line
on figure 5( a)). Setting the virtual radius to the reference radius of the pipe, we obtain
an unsurprising collapse in the total stress of the rough-wall cases with the smooth wall
case. In addition, a good collapse in the radial turbulence intensity with the smooth-wall
is observed almost immediately above the roughness elements for ǫ4 (figure 5( c)). While
a better collapse of the velocity defect is observed for ǫ2 compared to ǫ4 (figure 5( b)),
using ǫ1 as the virtual origin offset does not result in a better collapse in any of the
three statistics considered. Scotti (2006) observed that a virtual origin determined from
the mean momentum absorption plane provided a good collapse in mean statistics. It is
possible that the small differences reported here between ǫ4 and ǫ1 would not be easily
discernible in the higher Reynolds number results presented by Scotti (2006) (where the
Reynolds shear stress or the total stress were also not shown).
Overall, for the cases considered here, the virtual origin offset of the pipe ǫ4 seems to

offer the most consistently reliable estimate of the virtual origin for the roughness cases
simulated. Good collapse in the turbulent statistics, total-stress profile and velocity defect
are also obtained for all the roughness cases in the outer region of the flow when ǫ4 = 0.
It should, however, be noted that the analysis presented above in (4.2–4.6) that leads
to ǫ = 0 would not be true for an external boundary layer where the flow is unbounded
in the wall-normal direction and the boundary layer thickness of a rough wall differs
greatly from the smooth-wall case. This would suggest that the same roughness tested
at the same Reynolds number in a pipe and an external boundary layer would probably
exhibit different virtual origins as well as different flow close to the roughness elements.
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Effectively, the constrained pipe geometry would lead to more flow within the roughness
canopy, compared to the boundary layer, where the flow is effectively able to ride over
the roughness elements through changes in the virtual origin. For all subsequent plots,
the virtual origin of the wall is defined as the reference radius of the rough-wall pipe.

4.3. Investigation of low Reynolds number and low ratio of reference radius to
roughness height R0/h

In this section, we investigate the feasibility of simulating the three-dimensional sinusoidal
roughness at low Reynolds number using case RE. Roughness causes a downward shift
in the viscous-scaled mean velocity profile, which is typically expressed as a modified
logarithmic law,

U+ =
1

κ
ln(y+) + C −∆U+ (4.7)
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Figure 6. Streamwise velocity profile for smooth wall and case 20 141 at Reτ = 180, 360 and
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Inset: roughness function ∆U+ against y+ for the different Reynolds number simulation. Note
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where ∆U+ is known as the Hama roughness function (Hama 1954). To determine if the
roughness function ∆U+ obtained in the low Reynolds number simulations is applicable
to flows at higher Reynolds number, case 20 141 (the case with the largest roughness) is
simulated at three different Reynolds numbers (Reτ = 180, 360 and 540). In this study,
where Townsend’s outer-layer similarity (Townsend 1980) seems to be conserved (see $ 4.5
& 4.4.5), ∆U+ is determined 50 wall units above the crest of the roughness elements for
all of the cases simulated since the log layer of the flow at low and moderate Reynolds
numbers is poorly defined. As the roughness elements have the same viscous scale, the
physical geometrical size of the roughness element relative to the pipe radius reduces with
increasing Reynolds number. The sketches of the rough pipe in figure 6 clearly illustrates
this where R0/h increases from 9 at Reτ = 180 to 27 when Reτ = 540. Hence, these
experiments also address the influence of R0/h for this particular roughness.
Examining the mean velocity profiles for the smooth wall in figure 6, the low Reynolds

number effect at Reτ = 180 is apparent causing an upward shift from the logarithmic re-
gion (shown by the dot-dashed line for κ = 0.4 and C = 5.3). This is the well-documented
pressure gradient effect of low Reynolds number turbulent pipe flow (see for example
Nickels 2004). However, for the rough cases, a closer collapse is obtained for the mean
velocity profile simulated at all three Reynolds numbers. Although the low Reynolds
number effect is still observable for case 20 141 at Reτ = 180, it is not as significant as
for the smooth wall simulated at the same Reynolds number. Calculating the difference
in the mean velocity profile between the smooth and rough cases at the same Reynolds
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number (inset of figure 6), we observe that the profiles remain fairly constant above
the roughness elements, particularly so above y+ = 70, indicating that the shape of the
mean velocity profile in the outer part of the flow for both the smooth and rough cases
is similar. Due to the low Reynolds number effect of the smooth pipe at Reτ = 180,
the roughness function ∆U+ is slightly overestimated. However, the maximum difference
obtained in ∆U+ between the Reτ = 180 and 540 simulation is only approximately 0.7.
This error can be relatively insignificant in high Reynolds number flows which are of
engineering interest.

An overestimation of ∆U+ by some amount ε, causes an overestimation of ks for a
surface by approximately exp(κε), which is approximately 33% when ε = 0.7. For full-
scale moderate to high Reynolds number flows in the fully rough regime, this translates to
an overestimation of the total drag coefficient by only approximately 5%. Such an error is
rather insignificant when one considers the traditional error associated with determining
Cf experimentally, and also that a fully rough surface can lead to O(100%) increases
in drag coefficient. More important for the current simulations is that the low Reynolds
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number simulations are able to capture the correct trends in ∆U+ with varying roughness
geometry. This is confirmed for the case of varying effective slope in figure 10 below. An
improved method which could be used to obtain a more accurate value of ∆U+ for large
roughnesses simulated at low Reτ would be to calculate the shift in the log-law from a
higher Reynolds number smooth-wall simulation.
For the transitional roughness cases which have been simulated, the observance of

outer-layer similarity in the outer part of the flow appears to be insensitive to changes in
the R0/h ratio. The total stress profiles of the smooth and rough cases are shown in figure
7 (a), and as expected show an excellent collapse for all the cases when the virtual origin
is set to be the reference radius of the pipe. In addition, very good collapse is observed
in the radial turbulence intensity between the smooth and rough cases as illustrated in
figure 7 (c). Reasonable collapse is also obtained when the mean velocity profile is plotted
in defect form in figure 7 (b), with no pronounced difference in this collapse with varying
R0/h. Overall, the adherence to Townsend’s outer-layer similarity of the mean statistics
for the rough cases is invariant with Reynolds number and hence also with the ratio
R0/h.
Based on these observations, the decision was made to run the majority of our sim-

ulations at Reτ = 180. Although Reτ = 360 would give a slightly more accurate rep-
resentation of ∆U+ (by avoiding the low Reynolds number pressure gradient effect),
these simulations are approximately 8 times more expensive. In this instance, we believe
that the contribution from this study would be maximised by testing an increased num-
ber of surface geometries and thus we choose to deploy our computational resources in
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this manner. However, throughout this study, certain surfaces will also be computed at
Reτ = 360, to continually verify that the important results and trends observed in this
study are not artifacts of low Re or low R0/h.

4.4. Mean velocity profiles

4.4.1. Case C1: Geometrically scaled roughness (fixed λ/h)

The mean streamwise velocity profile for the geometrically scaled roughness cases (C1)
are plotted in figure 8 for the cases simulated at Reτ = 180 and figure 9 for the cases
simulated at Reτ = 540. Geometrically increasing the size of the roughness increases the
roughness average height with proportionate increases in λx and λs. The aspect ratio
and average slope of the surface (and hence ES) remains unchanged. An increase in the
geometric scaling factor yields an increase in the roughness function as observed in the
insets of figure 8 and 9. It is important to highlight that for cases 02 018 and 05 035, there
are only four and eight grid points per roughness wavelength and hence the topological
features of the sinusoidal surface are not fully resolved (a more faceted version of the
roughness is effectively simulated). Thus, this may result in some minor discrepancies in
the obtained ∆U+ (which can be confirmed by conducting a grid sensitivity analysis).
It appears that the flow reaches the fully rough regime when h+ ≈ 60 which corresponds

to an equivalent sand grain roughness of k+s = 4.1h+. Hence this dataset spans the full
transitional regime, from smooth up to fully rough. To the best of the authors knowledge
this is the first time that k+s verses ∆U+ has been mapped from smooth up to the fully
rough regime using DNS with a body-conforming grid.
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Figure 10. Streamwise velocity profile for cases with decreasing roughness wavlength
λ+.Dash-dotted lines show U+ = y+ and U+ = (1/κ) log (y+)+C, where κ = 0.40 and C = 5.3.
Inset: roughness function ∆U+ against roughness wavelength λ+. Circled symbols in shades of
red are simulated at Reτ = 360. Refer to table 1 for symbol key).

4.4.2. Case C2: Decreasing roughness wavelength λ+ (fixed h+ = 10)

Figure 10 shows mean streamwise velocity profiles for the cases where the wavelength
of the roughness elements is varied while maintaining a constant roughness height (case
C2). Decreasing the wavelength of the roughness elements increases the ES of the surface
and allows us to analyse the effects of ES on the roughness function independently of
roughness height. In addition, the roughness elements become ‘more dense’ with decreas-
ing wavelength (increased solidity Λ). Despite reducing the wavelength of the roughness
elements by about a quarter (four times the number of roughness elements), there was
only an increase of ≈ 1.56 in ∆U+ between case 10 283 and 10 070. The very gradual
increase in the roughness function observed in the inset of figure 10 when the rough-
ness wavelength decreases suggests that ES has only a secondary importance in the flow
compared to the average roughness height for the current surface geometry in the tran-
sitionally rough regime. It is interesting to consider the asymptotic limits that we might
expect for variations in λ. When λ → ∞ we would expect the surface to approach the
smooth case. We might expect a similar behaviour as λ → 0 (although with this case,
the pipe radius will be altered). Selected duplicated cases were simulated at Reτ = 360
(circled symbols) and a similar trend is observed with varying wavelength, further as-
suaging any doubts that the low Re (and low R0/h) of these simulations is influencing
observed trends.
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Figure 11. Streamwise velocity profile for cases with increasing roughness height h+. Dash–
dotted lines show U+ = y+ and U+ = (1/κ) log (y+) + C, where κ = 0.40 and C = 5.3. Inset:
roughness function ∆U+ against roughness height h+. Circled symbols and dotted symbols show
the same cases simulated at Reτ = 360 and 540 respectively. Refer to table 1 for symbol key.

4.4.3. Case C3: Increasing roughness height h+ (fixed λ+ = 141)

Figure 11 plots the mean streamwise velocity profile for the cases where roughness
height is increased while the wavelength remains fixed (case C3). This yields increasing
aspect ratio (and increasing ES) as h increases. Not surprisingly, increasing h+ leads
to increments in ∆U+. Comparing the inset of figure 11 with figure 9 shows that the
geometrically scaled surfaces (case C1) yield a much higher ∆U+ at low h+ than the fixed
wavelength case C3. This is an expected result from figure 10, since the geometrically
scaled cases have a higher value of effective slope, and therefore a higher ∆U+, than the
C3 cases at low h+.

4.4.4. Consolidated mean velocity results

Figures 10 and 11 show that increasing the roughness height h+ (with fixed λ) or
decreasing the wavelength of the roughness λ+ (with fixed h) both lead to an increase
in ∆U+. Both of these experiments are varying the ES of the surface. On figure 12 we
further investigate these data, showing ∆U+ as a function of ES in plot (a) and as a
function of k+a (which is proportional to h+) in plot (b). Additional data from Blackburn
et al. (2007) (corrugated pipe, Reτ = 314), De Marchis & Napoli (2012) (2D and 3D in-
homogeneous rough channel, Reτ = 395), Napoli et al. (2008) (2D inhomogeneous rough
channel, Reτ = 395), Bhaganagar et al. (2004) (‘egg-carton’ asymmetric rough channel,
Reτ = 400) and Schultz & Flack (2009) (close-packed pyramids) are also included in the
plots for a more comprehensive comparison. A horizontal line at ∆U+ = 9 is added to
mark the approximate start of the fully rough regime.
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Figure 12. ∆U+ as a function of (a) ES ; (b) k+
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demarcates the start of the fully rough regime. Solid coloured symbols show results of the current
study (symbols as defined in table 1). Light shaded symbols show results from the literature ⊗,
⊕, ⊙- Close packed pyramids of Schultz & Flack (2009) (for ES = 0.19, 0.4 and 1 respectively),
×- ‘Egg-carton’ roughness of Bhaganagar et al. (2004), ∗- 2D and 3D inhomogeneous roughness
of De Marchis & Napoli (2012), ⊡- Corrugated pipe of Blackburn et al. (2007) and ⋄- 2D
inhomogeneous roughness of Napoli et al. (2008).

In figure 12 (a), it is clearly observed that ∆U+ does not scale solely with ES. This
is especially true for data obtained by Schultz & Flack (2009) where the same rough
surfaces were tested at various Reynolds numbers, thus changing the value of k+a while
maintaining constant ES. It is clearly visible in their data that ∆U+ increases as k+a
increases for a given ES. Our current simulations, which are mostly in the transitionally
rough regime, also do not collapse onto the trend reported by Napoli et al. (2008) (⋄
symbols). Yuan & Piomelli (2014) also did not find a collapse onto the curve given by
Napoli et al. (2008), observing that the plateau in ES vs. ∆U+ can occur at larger
values of ES for different surfaces. In figure 12 (b), we plot ∆U+ against k+a , which in
§ 4.4.1 and 4.4.3 were found to be strongly correlated. When scaled in this manner, a
reasonable collapse in the data is observed in the fully rough regime as the roughness
function follows a log function of ∆U+ = (1/κ) log(Ceqk

+
a ) + 5.3− 8.5 where Ceq is the

multiplicative factor for the roughness function to fall on to the fully rough asymptote
of the sand grain roughness. However, there is still considerable scatter in the data,
notably in the transitionally rough regime. Cases with low effective slope (ES < 0.2), do
not appear to approach the fully rough regime and contribute to the scatter. Obvious
outliers are the pyramid data from Schultz & Flack (2009) for the cases when ES = 0.19
(⊗ symbols). The small gradients of these close-packed pyramids resemble more a gently
undulating (‘wavy’) surface rather than a sawtooth roughness, thus indicating that ES
has a significant role in determining the asymptotic behaviour of the rough surface (eg. if
it approaches the fully rough regime). This is also observed in the experiments conducted
by Acharya et al. (1986) where the ∆U+ profile does not have the same slope as the fully
rough sand grain roughnesses for the tested surface with the largest λ/ka ratio, which
might be in the ‘wavy’ regime. Results from their experimental data also appear to
suggest that the multiplicative factor Ceq might depend on ES. In addition, the study
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of Napoli et al. (2008) clearly demonstrates that ES is an important parameter. They
simulated 6 different roughnesses with the same k+a = 19.75, but varying ES, reporting
a large variation in the measured roughness function (0.78 < ∆U+ < 10.29). To a
lesser extent, we find a similar (yet weaker) dependence on ES for our three-dimensional
roughness (as shown in figures 10 and 12 (a)). Despite highlighting the fact that both k+a
and ES are important roughness parameters, it would appear that neither ES nor k+a
alone is suitable for quantifying the roughness function.

To better understand the relationship of ∆U+ with k+a and ES, a three-dimensional
plot is drawn in figure 13 (a). Though there is some scatter, the data seem to lie approx-
imately on the surface

∆U+
est = α log k+a + β logES + γ (4.8)

where ∆U+
est is the predicted roughness function for known values of k+a and ES and

α = 1/κ, β = 1.12 and γ = 1.47 are the coefficients obtained from the curve fit. This
fit at least captures the basic behaviour observed from figures 10–12 (namely that ∆U+

increases with increasing h+ or increasing ES). However, the fit is simplistic, and lacks
the correct behaviour in the limits. For large k+a , we would expect ∆U+ to increase as
the log of k+a , which is captured. However, at very large or very small ES, we might
expect ∆U+ to tend to zero and this is not reflected in the fit. Despite these limitations,
the fit embodies the basic behaviour and will be used to demonstrate that ∆U+ is highly
dependent on both k+a and ES.

In figure 13 (b) we compare the actual roughness function ∆U+ of numerically simu-
lated turbulent flows (Napoli et al. 2008; De Marchis & Napoli 2012; Blackburn et al.
2007; Bhaganagar et al. 2004) with the roughness function ∆U+

est predicted from equation
(4.8) based on k+a and ES. Even with this simple linear-linear surface fit, we observe a
clearer trend than using either k+a or ES alone (as shown in figure 12). More surprisingly,
this surface fit also seems to predict the behaviour of the roughness function within the
transitionally rough regime. The roughness function for the asymmetric channel of Bha-
ganagar et al. (2004) (× symbols) is consistently underpredicted by the surface fit but
still follows the same approximate trend. A further notable outlier is the data of Napoli
et al. (2008) for the two dimensional roughness case which has very low ES but high k+a
(⋄ symbol). Despite this, the correlation coefficient of determination of the curve fit with
the results of Napoli et al. (2008) is good with r2 = 0.763 as compared to r2 = 0.850 for
current simulations. A strong correlation is also observed for the experimental data of
Schultz & Flack (2009) as illustrated in figure 13 (c) where r2 = 0.819. One would also
wonder if the curve fit model which is based on data (mostly) from three-dimensional reg-
ular and homogeneous roughness would be applicable to more realistic looking irregular
surfaces. In figure 13 (d), the roughness function model is applied to the roughness data of
Yuan & Piomelli (2014) who simulated a variety of irregular roughnesses. Again, a good
correlation is observed with r2 = 0.827. This clearly indicates that the roughness function
for the rough surfaces tested, either homogeneous or inhomogeneous, depends on both
ES and k+a . It is important to note that while the roughness function ∆U+ = f(ES, k+a )
is applicable to the data which we have tested, this model will not be able to quantify the
alignment (sheltering) of the roughness elements, since neither k+a which is a statistical
parameter nor ES which is a gradient, contain any information on the organisation of the
surface points (Note: ES only has compressed (mean) information on the location of the
downstream surface point relative to the current point). There are certainly additional
roughness parameters that need to be considered in order to improve functions such as
(4.8).
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Figure 13. (a) Surface plot showing ∆U+ as a function of ES and k+
a . (b− d) Comparison of

measured ∆U+ and prediction from equation 4.8 with (b) numerical simulations of De Marchis
& Napoli (2012), Napoli et al. (2008), Bhaganagar et al. (2004) and Blackburn et al. (2007).; (c)
experimental data of Schultz & Flack (2009).; (d) numerical simulations of realistic roughness of
Yuan & Piomelli (2014). See Yuan & Piomelli (2014) for definition of symbols. Other symbols are
as in figure 12. Sketches of (i) corrugated roughness of Blackburn et al. (2007), (ii) close-packed
right angle pyramids and (iii) sand grain roughness of Yuan & Piomelli (2014).



Roughness height and wavelength in turbulent pipe flow 25

Viscous scaled roughness (fixed λ+ and h+)

Case Reτ Recl ReD U+

cl U+

b U+

cl /U
+

b ∆U+

20 141 180 4498 2858 12.52 7.96 1.574 7.093
20 141 360 10502 7207 14.59 10.01 1.457 6.652
20 141 540 17254 12096 15.97 11.20 1.426 6.530

Geometrically increasing roughness (fixed h/λ)

Case Reτ Recl ReD U+

cl U+

b U+

cl /U
+

b ∆U+

Smooth 180 7019 5333 19.49 14.81 1.316 0.000
02 018 180 6305 4569 17.69 12.82 1.380 1.651
05 035 180 5979 4357 16.39 11.94 1.372 3.126
10 070 180 5664 3987 15.54 10.94 1.421 4.160
13 094 180 5151 3479 14.24 9.62 1.480 5.447
16 113 180 4773 3125 13.21 8.65 1.528 6.426
20 141 180 4498 2858 12.52 7.96 1.574 7.093
20 141 540 17199 12113 15.90 11.20 1.420 6.419
40 283 540 14087 9027 13.20 8.46 1.561 9.054
60 424 540 12820 7848 11.84 7.25 1.633 10.468
80 565 540 11539 6901 10.63 6.36 1.672 11.362

Decreasing roughness wavelength λ+ (fixed h+)

Case Reτ Recl ReD U+

cl U+

b U+

cl /U
+

b ∆U+

10 283 180 6102 4500 16.90 12.46 1.356 2.595
10 189 180 5786 4192 16.11 11.67 1.380 3.303
10 141 180 5701 4059 15.87 11.30 1.405 3.675
10 113 180 5632 3993 15.63 11.08 1.411 3.918
10 070 180 5664 3987 15.54 10.94 1.421 4.160

Increasing roughness height h+ (fixed λ+)

Case Reτ Recl ReD U+

cl U+

b U+

cl /U
+

b ∆U+

Smooth 180 7019 5333 19.49 14.81 1.316 0.000
02 141 180 6784 5152 18.96 14.40 1.316 0.424
10 141 180 5701 4059 15.87 11.30 1.405 3.675
20 141 180 4498 2858 12.52 7.96 1.574 7.093

Table 3. Bulk flow properties for the different cases simulated. Reτ , Recl and ReD are the
viscous scaled, centreline and bulk Reynolds number which are calculated using the reference
radius of the pipe R0. U

+

cl is the normalised centreline mean velocity, U+

b is the normalised bulk
velocity and ∆U+ is the Hama roughness function.

4.4.5. Summary of mean statistics

The mean flow properties for the various roughness cases are summarised in table 3.
Figure 14 shows the velocity defect for all tested surfaces at (upper plots) Reτ = 180 and
(lower plots) Reτ = 540, on both (left) linear and (right) semi-logarithmic axes. For all
cases tested, which cover the transitionally rough to the fully rough regimes, the mean
streamwise velocity profiles, in velocity defect form, collapse in the outer layer regardless
of the roughness height and wavelength. Even for the highest roughness amplitude (h+ =
80), simulated at Reτ = 540, the velocity defect profile collapses when y/δ > 0.2 (y+ >
108 at Reτ = 540), offering support (for this particular roughness) for Townsend’s outer-
layer similarity hypothesis (Townsend 1980).
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Figure 14. Mean velocity defect profiles for the simulated rough and smooth pipes at (a, b)
Reτ = 180 and at (c, d) Reτ = 540. (a, c) Linear y+ axis; (b, d) semi-logarithmic. Symbols are
as given in table 1.

4.5. Second-order statistics

For this section, the turbulence intensities in the radial, azimuthal and streamwise di-
rections are analysed. The velocity fluctuations are calculated about the global average
velocity of the flow (temporally and spatially averaged). The turbulence intensity in the
radial or wall-normal direction is important in understanding the physics of the flow as it
plays a major role in the momentum transfer of high-speed fluid from the outer layer to
the wall and low-speed fluid from the wall to the outer layer. Orlandi (2013) found a pro-
portionality between the wall-normal turbulence intensity at the top of the roughness and
the roughness function ∆U+ for simulated two- and three-dimensional cube roughness.
This observation formed the basis of an alternative Moody’s diagram where the equiva-
lent sand grain height is replaced by the wall-normal turbulence intensity. This finding
is interesting since it suggests that roughness can be modelled at the wall by introducing
some magnitude of wall-normal turbulence intensity. The wall-normal intensities for the
current pipe flow simulations are shown in figure 15. It can be seen that the conclusion
of Orlandi (2013) approximately holds for the current data. However, for the group of
simulations in the transitionally rough regime where the wavelength is altered (while h+

remains constant) there is a noticeable change in the roughness function (see figure 10)
while the radial turbulence intensities at the peak of the roughness elements (y+ = 10)
remain virtually unchanged (see figure 15 b). However, in general there is a pronounced
increase in the radial turbulence intensities at the peak of the roughness elements with
increasing roughness size and increasing ∆U+. There is a pronounced variation in the ra-
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Figure 15. Radial turbulence intensities for various rough-wall pipe at (upper plots (a, b))
Reτ = 180 and at (lower plots (c, d)) Reτ = 540. Left plots have a linear y+ axis while the right
plots are semi-logarithmic. Symbols are as given in table 1.

dial turbulence intensities within the roughness elements (for y < h): however the profiles
collapse on to the smooth-wall case very quickly and convincingly above the roughness
elements (for y+ & 2h+). This is contrary to the experiments conducted by Krogstad
& Antonia (1999) and George & Simpson (2000) for a rough-wall boundary layer where
the authors found that the wall-normal fluctuation increases in the inner region of the
rough wall compared to a smooth-wall boundary layer. Krogstad & Antonia (1999) also
found that the wall-normal fluctuation in the outer region is significantly different from
the smooth-wall fluctuation for matched Reynolds numbers. It should be noted that the
collapse, or lack thereof, of statistics in the near-wall region can be extremely sensitive
to the choice of virtual origin, which in the case of the roughened pipe is relatively well
defined (see § 4.2), but for external boundary layers is very challenging to accurately
determine experimentally. The azimuthal turbulence intensities are shown in figure 16.
The collapse in azimuthal intensities is very convincing for both Reynolds numbers be-
yond y+ ≈ 60. For an external flow, the height of the boundary layer increases in the
presence of the rough surface. However, for a pipe, this is not an option as the bound-
ary layer cannot thicken and the fixed virtual origin (see §4.2) ensures that the flow is
channelled between the roughness elements. At the front of the roughness elements, flow
is diverted in either the positive of negative spanwise direction which gives rise to strong
azimuthal fluctuations. This is clearly visible in the contour plot of the azimuthal tur-
bulence intensity in the streamwise rough plane (A) which is shown in figure 17 (a) for
case 20 141. This fluctuation causes the appearance of a secondary peak observed below
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Figure 16. Azimuthal turbulence intensity for various rough-wall pipe at (a, b) Reτ = 180 and
at (c, d) Reτ = 540. (a, c) Linear y+ axis; (b, d) semi-logarithmic. Symbols are as given in table
1.
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Figure 17. Contours of time-averaged azimuthal fluctuation intensities, u′+

θ,rms, for case 20 141

at (a) plane A and (b) plane B. The occurrence of the secondary peak is due to the high
fluctuations at the leading edge of the roughness elements. Flow is from left to right.

the roughness crest in figure 16 (a) and (b) which seems to move further outwards as h+

increases.
There is significant variation in the streamwise turbulence intensity for the inner region

of the flow (figure 18). However, for y/R0 & 0.33 there is good collapse in the outer region.
The maximum streamwise turbulence intensity reflects the radial momentum transfer,
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Figure 18. Streamwise turbulence intensity for various rough wall pipe at (a, b) Reτ = 180
and at (c, d) Reτ = 540. (a, c) Linear y+ axis; (b, d) semi-logarithmic. Symbols are as given in
table 1.

which pulls high-speed fluid from the centre of the pipe towards the wall, and ejects low-
speed fluid radially outwards from the near-wall region. For a smooth wall, the maximum
streamwise turbulence intensity is located at y+ = 15, but in a rough wall there appears
to be two competing factors. For the transitionally rough cases, there are signs that a
peak or local maximum in streamwise intensity persists at y+ = 15, albeit of diminishing
strength as h+ increases. There are also signs of a further local maximum or bump in
the streamwise intensity occurring close to, or just beneath the roughness crest height
h+. This is difficult to discern when h+ is close to 15, but is subtly visible for cases with
h+ < 10, becoming very pronounced for the higher Reynolds number cases where h+

becomes large (figure 18 b). Figure 19 shows planar views of the streamwise intensity on
planes A and B for case 20 141. The maximum streamwise turbulence intensity occurs
above the roughness crest at y+ = 27 in plane A and at y+ = 12 in plane B, yielding a
spatially averaged value that lies very close to the crest of the roughness elements.
The Reynolds shear stresses are plotted in figure 20. The profiles for the rough surfaces

in the transitionally and fully rough regime collapse onto the smooth-wall case almost
immediately above the peak of the roughness elements. It is surprising how convincingly
the Reynolds stress of the rough surfaces collapses onto the smooth-wall pipe data for
the cases tested, and how close to the roughness crest this collapse occurs. This collapse
occurs within the region that is classically considered to be the roughness sublayer.
Figures 15–20 demonstrate that the mean statistics for all three fluctuating compo-

nents, along with the Reynolds shear stress, collapse in the outer region, providing ap-
parent evidence in support of Townsend’s outer-layer similarity hypothesis. Various other
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Figure 19. Contours of time-averaged streamwise velocity fluctuation intensities, u′+
x,rms, for

case 20 141 at (a) plane A and (b) plane B. Dotted lines: Location of maximum turbulence
intensity (y+ = 27 and y+ = 12). Flow is from left to right.

numerical and experimental studies have provided similar support for Townsend’s outer-
layer hypothesis (Leonardi & Castro 2010; Flack et al. 2007; Wu & Christensen 2007;
Efros & Krogstad 2011). For a boundary layer, outer-layer similarity is typically believed
to depend on the blockage ratio δ/k, which should usually be large for any similarity to
be present (i.e. > 40, see Jimenez (2004)). In an open rough-wall channel where a free-slip
boundary condition is imposed on the upper surface, outer-layer similarity was observed
by Leonardi & Castro (2010) and Coceal et al. (2006) for δ/k = 8 and δ/k = 4 respec-
tively. These values are significantly smaller than the values proposed for a boundary
layer. The present rough-pipe simulations offer support for outer-layer similarity in the
mean statistics even for our largest roughness cases which have δ/k = 6.75. It should be
highlighted that, throughout this study, we have only considered notions of outer-layer
similarity in terms of mean statistics (and only up to second-order statistics). This type of
similarity is important for the prediction of rough-wall flows at application-type Reynolds
numbers. However, there are certain notable instances in the literature, where more sub-
tle differences have been observed in the instantaneous coherent structure between rough
and smooth flows (see for example Hong et al. 2011)
It is notable that our sinusoidal pipe roughness, which is geometrically quite similar to

the ‘egg carton’ roughness elements used by Bhaganagar et al. (2004) in their one-sided
rough-channel simulations (h+ = 5.4, 10.8, 21.6 and λ+ = 100), produced such different
results. Bhaganagar et al. (2004) did not obtain a collapse in the outer layer of the flow
for any intensities and found that the location of the peak turbulence intensity moves
further away from the rough wall as the roughness height is increased. It should be noted
that the asymmetry in their channel gives rise to a number of differences with respect to
standard symmetrical internal flows, that could influence the perception of outer-layer
similarity. (i) The boundary layer at the rough side grows at the expense of the smooth
side. As a result of this growth, it is possible that the virtual origin may differ for an
asymmetric channel. (ii) The total wall drag on the rough surface is higher than that on
the smooth surface. At the edge of the layer, this precludes the possibility of true outer-
layer similarity, since the same variance values are normalised by different Uτ values for
the smooth and rough wall. Therefore, in this asymmetric case, there can be no collapse
obtained in the outer layer of the flow when the statistics are viscously scaled. (iii) In
comparing rough-wall statistics from one side of the channel, to smooth-wall statistics
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Figure 20. Reynolds shear stress for various rough wall pipe at (a, b) Reτ = 180 and at (c, d)
Reτ = 540. (a, c) Linear y/R0 axis; (b, d) semi-logarithmic y+ axis. Symbols are as given in
table 1.

from the other, one is not comparing flows at matched Reynolds number. (iv) In light of
the interaction that is known to take place between the two walls of turbulent channel
flow (Antonia et al. 1992; Sabot & Comte-Bellot 1976; Kwon et al. 2014), it is doubtful
whether the ‘smooth’ wall in such asymmetric simulations is really representative of the
smooth-wall canonical turbulent channel.
Pressure statistics are examined in figure 21. Bhaganagar et al. (2007) noted that for

their ‘egg carton’ roughness, the increased pressure drag due to the roughness elements
is associated with the intensity of the pressure fluctuations, where the intensity of the
pressure fluctuations of the rough wall were higher than of the smooth wall of their
asymmetric channel. However, when the pressure fluctuations of the rough wall were
scaled locally with the friction velocity of the rough side, the pressure intensity of the
rough wall was lower than the pressure fluctuations of the smooth wall. The results
in figure 21 contradict the primary observation of Bhaganagar et al. (2007), where the
current simulations exhibit significant increases in pressure fluctuations for the rough
pipes above the smooth-wall level when scaled with local Uτ . The outer region of the
pipe is not affected by the intense pressure fluctuations occurring in the vicinity of the
roughness elements and collapses for all cases for y/R0 ≈ 0.33).

5. Conclusions

Turbulent flow through a three-dimensional sinusoidal rough-wall pipe is simulated
using DNS, with a body-conforming grid. The first step of this study was to confirm that
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Figure 21. Root mean square pressure fluctuation profile for various rough wall pipe at (a, b)
Reτ = 180 and at (c, d) Reτ = 540. (a, c) Linear y+ axis; (b, d) semi-logarithmic. Symbols are
as given in table 1.

the Hama roughness function ∆U+ could be accurately determined for our surface using
low Reynolds number simulations. The rationale here was that the significant reductions
in computational costs associated with low Reynolds number simulations would enable
us to refocus our resources on testing a wider range of surfaces, which would lead to
greater insight. The same surface was simulated at Reτ = 180, 360 and 540. Results
show that the lowest Reynolds number simulations (and consequent low R0/h ratio), do
not unduly alter the estimate of ∆U+, and do not influence the collapse in statistics in
the outer region. Of particular importance for this study, we have also carefully confirmed
that the trends associated with alterations to surface geometry parameters are faithfully
reproduced at low Reynolds numbers. Using this range of Reynolds numbers we have
simulated a geometrically scaled rough surface from near dynamically smooth, through
the transitionally rough regime up to the fully rough regime, mimicking for the first time
using DNS with a body-conforming grid, the process by which the equivalent sand grain
roughness is determined experimentally.
By systematically varying the roughness height independently of the roughness wave-

length (and vice verse), we are able to separate the influence of these two parameters.
Of particular interest here is the influence of the height/wavelength ratio or effective
slope ES. We found (not surprisingly) that average roughness height k+a has a signif-
icant effect on the roughness function ∆U+. The roughness wavelength λ also has an
effect on ∆U+ although it seems to be of secondary importance for the cases tested.
Decreasing the roughness wavelength (at fixed roughness height) increases the effective
slope ES and causes an increase in ∆U+ for the range of ES simulated. Based on these
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results, we suggest that the roughness function must be a function of some combination
of roughness height and effective slope. Indeed, when these three quantities are plotted
three-dimensionally, we note that our data from this well-controlled study, along with
a selection of data from the literature, nominally collapse onto an approximate surface.
By fitting a surface to this three-dimensional plot, we obtain a roughness function model
which performs significantly better than just roughness height or ES individually. At
present, this model is primarily intended to illustrate the reliance of ∆U+ on both some
measure of roughness height and effective slope, and is not intended as a practical predic-
tive model (except for the well-defined regular sinusoidal roughness tested in this study).
Further investigation is required to confirm the applicability of this model to a wider
range of rough surfaces and it is likely that other surface parameters would need to
be included to enhance this fit (eg. sheltering or alignment of the roughness elements,
sparseness etc).

The virtual origin of the wall for a rough pipe has been investigated using three different
methods. From a cursory analysis of the total shear stress and the streamwise momentum
equations, we suggest that the most promising candidate for the virtual origin of the pipe
is the mean hydraulic radius. When scaled in this manner, the sum of the Reynolds and
viscous stresses of the rough wall are guaranteed to collapse onto the smooth-wall profile
above the roughness elements. With this origin, a convincing collapse in the outer layer
of the flow is observed for all higher-order statistics. This analysis, though convincing for
pipe flows, poses obvious questions regarding variability of the virtual origin in external
flows, where the boundary layer thickness can vary above the rough surface.

First- and second- order turbulent statistics in the flow are also analysed. For all
roughness cases simulated, which are in both the transitionally rough and fully rough
regimes, a convincing collapse in the outer layer of the flow is observed, supporting
Townsend’s outer-layer similarity hypothesis for this class of roughness, at least in terms
of mean statistics. A remarkable collapse in the radial turbulent intensity and Reynolds
stresses is also observed, even in the vicinity of the roughness elements. This finding
is contrary to results reported for similar surfaces in asymmetric channels (Bhaganagar
et al. 2004).

The authors would like to gratefully thank the Australian Research Council for the
financial support and the Victorian Life Science Computational Institute (VLSCI) for
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