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Summary

Mutation testing has been very actively investigated by researchers since the 1970s, and remark-

able advances have been achieved in its concepts, theory, technology, and empirical evidence.

While the most influential realisations have been summarised by existing literature reviews, we

lack insight into how mutation testing is actually applied. Our goal is to identify and classify the

main applications of mutation testing and analyse the level of replicability of empirical studies

related to mutation testing. To this aim, this paper provides a systematic literature review on the

application perspective ofmutation testing based on a collection of 191 papers published between

1981 and 2015. In particular, we analysed in which quality assurance processes mutation test-

ing is used, which mutation tools and which mutation operators are employed. Additionally, we

also investigated how the inherent core problems of mutation testing, ie, the equivalent mutant

problemand thehighcomputational cost, areaddressedduring theactual usage.The results show

thatmost studies usemutation testing as an assessment tool targeting unit tests, andmany of the

supporting techniques formakingmutationtestingapplicable inpracticearestill underdeveloped.

Based on our observations, wemade 9 recommendations for futurework, including an important

suggestion on how to report mutation testing in testing experiments in an appropriatemanner.
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1 INTRODUCTION

Mutation testing is defined by Jia andHarman [1] as a fault-based testing technique, which provides a testing criterion called themutation adequacy

score. This score can be used to measure the effectiveness of a test set in terms of its ability to detect faults [1]. The principle of mutation testing

is to introduce syntactic changes into the original program to generate faulty versions (called mutants) according to well-defined rules (mutation

operators) [2]. Mutation testing originated in the 1970s with works from Lipton [3], DeMillo et al. [4], and Hamlet [5] and has been a very active

research field over the last fewdecades. The activeness of the field is in part evidencedby theextensive surveyofmore than390papers onmutation

testing that Jia and Harman published in 2011 [1]. Jia and Harman's survey highlights the research achievements that have been made over the

years, including the development of tools for a variety of languages and empirical studies performed [1]. Additionally, they highlight some of the

actual and inherent problems ofmutation testing, among others: (1) the high computational cost caused by generating and executing the numerous

mutants and (2) the tremendous time-consuming human investigation required by the test oracle problem and equivalent mutant detection.

While existing surveys (eg [1,2,6]) provide us with a great overview of the most influential realisations in research, we lack insight into how

mutation testing is actually applied. Specifically, we are interested in analysing in which quality assurance processesmutation testing is used, which

mutation tools are employed andwhichmutation operators are used. Additionally, wewant to investigate how the aforementioned problems of the

high computational cost and the considerable human effort required are dealt with when applying mutation testing. To steer our research, we aim

to fulfil the following objectives:

• to identify and classify the applications of mutation testing in quality assurance processes;

• to analyse how themain problems are copedwith when applyingmutation testing;

• to provide guidelines for applyingmutation testing in testing experiments;

• to identify gaps in current research and to provide recommendations for future work.
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As systematic literature reviews have been shown to be good tools to summarise existing evidence concerning a technology and identify gaps

in current research [7], we follow this approach for reaching our objectives. We only consider the articles that provide sufficient details on how

mutation testing isused in their studies, ie,we requireat least abrief specificationabout theadoptedmutation tool,mutationoperators, ormutation

score. Moreover, we selected only papers that use mutation testing as a tool for evaluating or improving other quality assurance processes rather

than focusing on the development of mutation tools, operators, or challenges and open issues for mutation testing. This resulted in a collection

containing 191 papers published from 1981 to 2015.We analysed this collection in order to answer the following 2 research questions:

RQ1: How is mutation testing used in quality assurance processes?

This research question aims to identify and classify themain software testing tasks wheremutation testing is applied. In particular, we are inter-

ested in the following key aspects: (1) in which circumstances mutation testing is used (eg, assessment tool), (2) which quality assurance processes

are involved (eg, test data generation and test case prioritisation), (3)which test level it targets (eg, unit level), and (4)which testing strategies it sup-

ports (eg, structural testing). The above4detailed aspects are defined to characterise the essential features related to the usage ofmutation testing

and the quality assurance processes involved. With these elements in place, we can provide an in-depth analysis of the applications of mutation

testing.

RQ2: How are empirical studies related tomutation testing designed and reported?

The objective of this question is to synthesise empirical evidence related tomutation testing. The case studies or experiments play an inevitable

role in a research study. The design and demonstration of the evaluationmethods should ensure the replicability. For replicability, wemean that the

subject, the basic methodology, and the result should be clearly pointed out in the article. In particular, we are interested in how the articles report

the following information related tomutation testing: (1)mutation tools, (2)mutationoperators, (3)mutant equivalenceproblem, (4) techniques for

reduction of computational cost, and (5) subject programs used in the case studies. After gathering this information, we can draw conclusions from

the distribution of related techniques adopted under the above 5 facets and thereby provide guidelines for applyingmutation testing and reporting

the used setting/tools.

The remainder of this review is organised as follows: Section 2 provides an overview on background notions on mutation testing. Section 3

details the main procedures we followed to conduct the systematic literature review and describes our inclusion and exclusion criteria. Section

4 presents the discussion of our findings, particularly Section 4.3 summarises the answers to the research questions, while Section 4.4 provides

recommendations for future research. Section 5 discusses the threats to validity, and Section 6 concludes the paper.

2 BACKGROUND

To level the playing field, we first provide the basic concepts related tomutation testing, ie, its fundamental hypothesis and generic process, includ-

ing the Competent Programmer Hypothesis, the Coupling Effect,mutation operators, and themutation score. Subsequently, we discuss the benefits and

limitations of mutation testing. After that, we present a historical overview of mutation testing where we mainly address the studies that concern

the application of mutation testing.

2.1 Basic concepts

2.1.1 Fundamental hypothesis

Mutation testing starts with the assumption of the Competent Programmer Hypothesis (introduced by DeMillo et al. [4] in 1978): “The competent pro-

grammers create programs that are close to being correct.” This hypothesis implies that the potential faults in the programs delivered by the competent

programmers are just very simple mistakes; these defects can be corrected by a few simple syntactical changes. Inspired by the above hypothesis,

mutation testing typically applies small syntactical changes to original programs, thus implying that the faults that are seeded resemble faultsmade

by “competent programmers.”

At first glance, it seems that the programs with complex errors cannot be explicitly generated by mutation testing. However, the Coupling Effect,

which was coined by DeMillo et al. [4] states that “Test data that distinguishes all programs differing from a correct one by only simple errors is so sensitive

that it also implicitly distinguishesmore complex errors.” Thismeans complex faults are coupled to simple faults. This hypothesis was later supported by

Offutt [8,9] throughempirical investigations over thedomain ofmutation testing. In his experiments, he used first-ordermutants,which are created

by applying themutation operator to the original program once, to represent simple faults. Conversely, higher-ordermutants, which are created by

applyingmutation operators to the original programmore than once, stand for complex faults. The results showed that the test data generated for

first-order mutants killed a higher percentage of mutants when applied to higher-order mutants, thus yielding positive empirical evidence about

the Coupling Effect. Besides, there has been a considerable effort in validating the coupling effect hypothesis, among others the theoretical studies

ofWah [10,11,12] and Kapoor [13].

2.1.2 The generic mutation testing process

After introducing the fundamental hypotheses of mutation testing, we are going to give a detailed description of the generic process of mutation

testing:



ZHU ET AL. 3 of 39

Given a program P and a test suite T, a mutation enginemakes syntactic changes to the program P: the rule that specifies syntactic variations

are defined as a mutation operator, and the result of one application of a mutation operator is a set ofmutants M. After that, each mutant

Pm ∈ M is executed against T to verify whether test cases in T fail or not.

Here is an example of a mutation operator, ie, Arithmetic Operator Replacement, on a statement X=a+b. The producedmutants include X=a-b,

X=a×b, and X=a÷b.

The execution results of T on Pm ∈ M are compared with P: (1) if the output of Pm is different from P, then Pm is killed by T; (2) otherwise, ie,

the output of Pm is the same as P, this leads to either (2.1) Pm is equivalent to P, which means that they are syntactically different but functionally

equivalent; or (2.2) T is not adequate to detect themutants, which requires test case augmentation.

The result of mutation testing can be summarised using themutation score (also referred to as mutation coverage or mutation adequacy), which

is defined as follows:

mutation score =
# killed mutants

# nonequivalent mutants
. (1)

From the equation above, we can see that the detection of equivalentmutants is done before calculating themutation score, as the denominator

explicitly mentions nonequivalent mutants. Budd and Angluin [14] have theoretically proven that the equivalence of 2 programs is not decidable.

Meanwhile, in their systematic literature survey, Madeyski et al. [6] have also indicated that the equivalent mutant problem takes an enormous

amount of time in practice.

A mutation testing system can be regarded as a language system [15] since the programs under test must be parsed, modified, and executed.

The main components of mutation testing consist of the mutant creation engine, the equivalent mutant detector, and the test execution runner.

The first prototype of amutation testing system for Fortranwas proposed by Budd and Sayward [16] in 1977. Since then, numerousmutation tools

have been developed for different languages, such as Mothra [17] for Fortran, Proteum [18] for C, Mujava [19] for Java, and SQLMutation [20]

for SQL.

2.1.3 Benefits and limitations

Mutation testing is widely considered as a “high end” test criterion [15]. This is in part due to the fact that mutation testing is extremely hard to

satisfy because of themassive number ofmutants. However,many empirical studies found that it ismuch stronger than other test adequacy criteria

in terms of fault exposing capability, eg, Mathur andWong [21], Frankl et al. [22], and Li et al. [23]. In addition to comparing mutation testing with

other test criteria, there have also been empirical studies comparing real faults and mutants. The most well-known research work on such a topic

is by Andrews et al. [24]: they suggest that when using carefully selected mutation operators and after removing equivalent mutants, mutants can

provide a good indication of the fault detection ability of a test suite. As a result, we consider the benefits of mutation testing to be

• better fault exposing capability comparedwith other test coverage criteria, eg, all use;

• a good alternative to real faults, which can provide a good indication of the fault detection ability of a test suite.

The limitations of mutation testing are inherent. Firstly, both the generation and execution of a vast number of mutants are computationally

expensive. Secondly, the equivalent mutant detection is also an inevitable stage of mutation testing, which is a prominent undecidable problem,

thereby requiring human effort to investigate. Thus, we consider themajor limitations of mutation testing to be

• the high computational cost caused by the large number of mutants;

• the undecidable equivalent mutant problem resulting in the difficulty of fully automating the equivalent mutant analysis.

To deal with the 2 limitations above, a lot of research effort has been devoted to reduce the computational cost and to propose heuristics to

detect equivalent mutants. As for the high computational cost, Offutt and Untch [25] performed a literature review in which they summarised the

approaches to reduce computational cost into 3 strategies: do fewer, do smarter, and do faster. These 3 types were later classified into 2 classes by

Jia and Harman [1]: reduction of the generated mutants and reduction of the execution cost. Mutant sampling (eg [26,27]), mutant clustering (eg

[28,29]), and selectivemutation (eg [30,31,32]) are themostwell-known techniques for reducing the number ofmutantswhilemaintaining efficacy

of mutation testing to an acceptable degree. For reduction of the execution expense, researchers have paid much attention to weak mutation (eg

[33,34,35]) andmutant schemata (eg [36,37]).

Toovercome theequivalentmutant problem, there aremainly 3 categories classifiedbyMadeyski et al. [6]: (1) detecting equivalentmutants, such

as Baldwin and Sayward [38] (using compiler optimisations), Hierons et al. [39] (using program slicing), Martin and Xie [40] (through change-impact

analysis), Ellims et al. [41] (using running profile), and duBousquet andDelaunay [42] (usingmodel checker); (2) avoiding equivalentmutant genera-

tion, such asMresa and Bottaci [31] (through selective mutation), Harman et al. [43] (using program dependence analysis), and Adamopoulos et al.

[44] (using co-evolutionary search algorithm); (3) suggesting equivalent mutants, such as Bayesian learning [45], dynamic invariants analysis [46],

and coverage change examination (eg [47]).



4 of 39 ZHU ET AL.

2.2 Historical overview

In this subsection,we are going to present a chronological overviewof important research in the area ofmutation testing. As the focus of our review

is the application perspective of mutation testing, we mainly address the studies that concern the application of mutation testing. In the following

paragraphs, wewill first give a brief summary of the development ofmutation testing, and—due to the sheer size of the research body—wewill then

highlight some notable studies on applyingmutation testing.

Mutation testingwas initially introduced as a fault-based testingmethod, whichwas regarded as significantly better at detecting errors than the

coveringmeasure approach [48]. Since then,mutation testing has been actively investigated and studied thereby resulting in remarkable advances in

its concepts, theory, technology, and empirical evidence. The main interests in the area of mutation testing include (1) defining mutation operators

[49], (2) developing mutation testing systems [17,19,33], (3) reducing the cost of mutation testing [30,36], (4) overcoming the equivalent mutant

detection problem [6], and (5) empirical studieswithmutation testing [24]. Formore literature onmutation testing, we refer to the existing surveys

of DeMillo [50], Offutt and Untch [25], Jia andHarman [1], andOffutt [2].

In the meanwhile, mutation testing has also been applied to support other testing activities, such as test data generation and test strategy eval-

uation. The early application of mutation testing can be traced back to the 1980s [51,52,53,54]). Ntafos is one of the very first researchers to use

mutation testing as ameasure of test set effectiveness. Ntafos appliedmutation operators (eg, constant replacement) to the source code of 14 For-

tran programs [52]. The generated test suites were based on 3 test strategies, ie, random testing, branch testing, and data flow testing, and were

evaluated regardingmutation score.

DeMillo and Offutt [35] are the first to automate test data generation guided by fault-based testing criteria. Their method is called

constraint-based testing (CBT). They transformed the conditions under which mutants will be killed (necessity and sufficiency condition) to the

corresponding algebraic constraints (using constraint template table). The test data were then automatically generated by solving the constraint

satisfaction problem using heuristics. Their proposed constraint-based test data generator is limited and was only validated on 5 laboratory-level

Fortran programs. Other remarkable approaches of the automatic test data generation includes a paper by Zhang et al. [55], who adoptedDynamic

SymbolicExecution, anda frameworkbyPapadakisandMalevris [56] inwhich3techniques, ie, symbolicexecution, concolic testingandsearch-based

testing, were used to support the automatic test data generation.

Apart from test data generation, mutation testing is widely adopted to assess the cost-effectiveness of different test strategies. Thework above

byNtafos [52] is oneof the early studies on applyingmutation testing. Recently, there has been a considerable effort in the empirical investigationof

structural coverageand fault-findingeffectiveness, includingNaminandAndrews [57] and Inozemtsevaet al. [58]. ZhangandMesbah [59] proposed

assertion coverage, whileWhalen et al. [60] presented observable modified condition/decision coverage (OMC/DC); these novel test criteria were

also evaluated via mutation testing.

Test case prioritisation is one of the practical approaches to reducing the cost of regression testing by rescheduling test cases to expose the

faults as earlier as possible.Mutation testing has also been applied to support test case prioritisation. Among these studies, 2 influential papers are

Rothermel et al. [61] and Elbaum et al. [62] who proposed a new test case prioritisation method based on the rate of mutants killing. Moreover, Do

andRothermel [63,64]measured the effectiveness of different test case prioritisation strategies viamutation faults sinceAndrews et al.'s empirical

study suggested that mutation faults can be representative of real faults [24].

The test suite reduction is another testing activitywe identified, which is supported bymutation testing. The researchwork ofOffutt et al. [65] is

the first to target test suite reduction strategies, especially for mutation testing. They proposed Ping-Pong reduction heuristics to select test cases

based on their mutation scores. Another notable work is Zhang et al. [66] that investigated test suite reduction techniques on Java programs with

real-world JUnit test suites via mutation testing.

Anotherportionof theapplicationofmutation testing isdebugging, suchas fault localisation. Influential examples includeanarticlebyZhangetal.

[67] in which mutation testing is adopted to investigate the effect of coincidental correctness in the context of a coverage-based fault localisation

technique, and a novel fault localisationmethod by Papadakis et al. [68,69] who usedmutants to identify the faulty program statements.

2.3 Comparisons with existing literature surveys

In this section, we summarise the existing literature surveys on mutation testing and compare these surveys to our literature review. Table 1 lists 7

literature surveys, which we have found so far, including the years which the survey covered, whether the survey is a systematic literature review

and the survey's main idea.

First of all, the scope of our literature review is different from the existing literature surveys. The surveys ofDeMillo [50],Woodward [70], Offutt

andUntch [25],Offutt [2], and Jia andHarman [1] focusedon thedevelopmentofmutation testing,where they summarisedandhighlighted themost

influential realisations and findings on mutation testing. In the insightful works of Offutt and Untch [25], Offutt [2], and Jia and Harman [1], they

onlymentioned someof themost crucial studies,which appliedmutation testing to support quality assuranceprocesses, thus, the relevant research

questions posed by us could not be answered by their reviews. Madeyski et al. [6] reviewed the equivalent mutant problem, which is a subarea of

mutation testing. Compared with their survey work, we are more interested in how approaches for detecting equivalent mutant are actually used

in a research context. Hanh et al. [71] analysed the literature onmutation-based test data generation, which is a subset of our literature review.Our

literature review not only covers the test data generation but also other quality assurance processes, eg, test case prioritisation and debugging.
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TABLE 1 Summary of existing surveys onmutation testing

Survey Covered years SLR? Main idea

DeMillo [50] 1978-1989 No Summarise the conceptual basis, development

of themutation testing at the early stage

Woodward [70] 1978-1989 No Review themutation testing techniques

of strong, weak, and firmmutation

Offutt and Untch [25] 1977-2000 No Review the history of mutation testing and

the existing optimisation techniques for mutation testing

Offutt [2] 1977-2010 No Review past mutation analysis research starting with the

Mothra project and summarise new

trends of applications of mutation testing

Jia andHarman [1] 1977-2009 No Provide a comprehensive analysis and survey ofMutation

Testing, including theories, problems, cost reduction

techniques, applications, empirical evaluation, and tools

Madeyski et al. [6] 1979-2010 Yes Present a systematic literature review in

the field of the equivalent mutant problem

Hanh et al. [71] 1991-2014 No Analyse and conduct a survey on generating

test data based onmutation testing

Moreover, our literature review follows the systematic literature review (SLR) methodology [72]: which is not the case for 6 other literature

reviews (Madeyski et al. [6] being the exception): we aim to review the existing articles in a more systematic way and provide a more complete list

of the existing works on how mutation testing is actually applied in quality assurance processes. It is important to mention, though, that taking a

subset ofOffutt andUntch [25],Offutt [2], and Jia andHarman [1]'s results regarding quality assurance applicationswill not give as complete a view

on quality assurance applications as our SLR actually does.

3 RESEARCH METHOD

In this section,wedescribe themain procedureswe took to conduct this review.Weadopted themethodology of the systematic literature review.A

systematic literature review [7] is ameans of aggregating and evaluating all the related primary studies under a research scope in an unbiased, thor-

ough and trustworthyway. Unlike the general literature review, the systematic literature review aims to eliminate bias and incompleteness through

a systematicmechanism [73]. Kitchenham [7] presented comprehensive and reliable guidelines for applying the systematic literature review to the

field of software engineering. The guidelines cover 3 main phases: (1) planning the review, (2) conducting the review, and (3) reporting the review.

Each step iswell-defined andwell-structured. By following these guidelines, we can reduce the likelihood of generating biased conclusions and sum

all the existing evidence in amanner that is fair and seen to be fair.

The principle of the systematic literature review [72] is to convert the information collection into a systematic research study; this research

study first defines several specific research questions and then searches for the best answers accordingly. These research questions and search

mechanisms (consisting of study selection criteria and data extraction strategy) are included in a review protocol, a detailed plan to perform the

systematic review.After developing the reviewprotocol, the researchers need tovalidate this protocol for further resolving thepotential ambiguity.

Following themain stages of the systematic review,wewill introduceour reviewprocedure in 4parts:wewill first specify the researchquestions,

and then present the study selection strategy and data extraction framework. In the fourth step, we will show the validation results of the review

protocol. The overview of our systematic review process is shown in Figure 1.

3.1 Research questions

The researchquestions are themost critical part of the reviewprotocol. The researchquestions determine study selection strategy anddata extrac-

tion strategy. In this review, our objective is to examine the primary applications ofmutation testing and identify limitations and gaps. Therefore, we

can provide guidelines for applyingmutation testing and recommendations for future work. To achieve these goals and starting with our most vital

interests, the application perspective of mutation testing, we naturally further divide it into 2 aspects: (1) howmutation testing is used and (2) how

the related empirical studies are reported. For the first aspect, we aim to identify and classify themain applications of mutation testing:

RQ1: How is mutation testing used in quality assurance processes*?

*The quality assurance processes include testing activities and debugging in general. Inmore specific, the quality assurance processes include all the dailywork responsibilities of test engineers (eg,

designing test inputs, producing test case values, running test scripts, analysing results, and reporting results to developers andmanagers) [15].
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FIGURE 1 Overview of the systematic review process [74]

To understand how mutation testing is used, we should first determine in which circumstances it is used. The usages might range from using

mutation testing as a way to assess how other testing approaches perform ormutation testingmight be a building block of an approach altogether.

This leads to RQ1.1:

RQ1.1: Which role doesmutation testing play in quality assurance processes?

There is a broad range of quality assurance processes that can benefit from the application ofmutation testing, eg, fault localisation and test data

generation. RQ1.2 seeks to uncover these activities.

RQ1.2: Which quality assurance process doesmutation testing support?

InJiaandHarman's survey [1]ofmutationtesting, they foundthatmostapproachesworkat theunit testing level. InRQ1.3,we investigatewhether

the application of mutation testing is alsomostly done at the unit testing level, or whether other levels of testing have been also investigated in the

literature.

RQ1.3: Which test level doesmutation testing target?

Jia and Harman [1] have also indicated that mutation testing is most often used in a white box testing context. In RQ1.4, we explore what other

testing strategies can also benefit from the application of mutation testing.

RQ1.4: Which testing strategies doesmutation testing support?

For the second aspect, we are going to synthesise empirical evidence related tomutation testing.

RQ2: How are empirical studies related tomutation testing designed and reported?

A plethora of mutation testing tools exist and have been surveyed by Jia and Harman [1]. Little is known which ones are most applied and why

these aremore popular. RQ2.1 tries to fill this knowledge gap by providing insight intowhich tools are usedmore frequently in a particular context.

RQ2.1: Whichmutation testing tools are being used?

The mutation tools that we surveyed implement different mutation operators. Also, the various mutation approaches give different names to

virtually the samemutation operators. RQ2.2 explores what mutation operators eachmethod or tool has to offer and howmutation operators can

be compared.

RQ2.2: Whichmutation operators are being used?

Theequivalentmutantproblem, ie, thesituationwhereamutant leads toachange that isnotobservable inbehaviour, isoneof themost significant

open issues inmutation testing. Both Jia andHarman [1] andMadeyski et al. [6] highlighted some of themost remarkable achievements in the area,
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but we have a lack of knowledge when it comes to how the equivalent mutant problem is coped with in practice when applying mutation testing

during quality assurance activities. RQ2.3 aims to seek answers for exactly this question.

RQ2.3: Which approaches are used to overcome the equivalent mutant problemwhen applyingmutation testing?

Asmutation testing is computationally expensive, techniques to reduce costs are important. Selectivemutation andweakmutation are themost

widely studied cost reduction techniques [1], but it is unclear that reduction techniques are actually usedwhen applyingmutation testing, which is

the exact topic of RQ2.4.

RQ2.4: Which techniques are used to reduce the computational cost when applyingmutation testing?

To better understand in which context mutation testing is applied, we want to look into the programming languages that have been used in the

experiments. However, also the size of the case study systems is of interest, as it can be an indication of the maturity of certain tools. Finally, we

are also explicitly looking at whether the case study systems are available for replication purposes (in addition to the check for availability of the

mutation testing tool in RQ2.1).

RQ2.5: What subjects are being used in the experiments (regarding programming language, size, and data availability)?

3.2 Study selection strategy

3.2.1 Initial study selection

Westartedwith search queries in online platforms, includingGoogle Scholar, Scopus, ACMPortal, IEEEExplore, and Springer,Wiley, ElsevierOnline

libraries, to collect papers containing the keywords “mutation testing” or “mutation analysis” in their titles, abstracts, and keywords. Meanwhile, to

ensure the high quality of the selected papers, we considered the articles published in 7 top journals and 10 top conferences (as listed in Table 2)

dating from1971asdatasources.Theabove17venuesarechosenbecause theyreportahighproportionof researchonsoftware testing,debugging,

software quality, and validation. Moreover, we excluded article summaries, interviews, reviews, workshops,† panels and poster sessions from the

search. If the paper's language is not English, we also excluded such a paper. After this step, 220 papers were initially selected.

3.2.2 Inclusion/exclusion criteria

Sincewe are interested in howmutation testing is applied in a research context, thereby not excluding industrial practice, we need selection criteria to

include the papers that usemutation testing as a tool for evaluating or improving other quality assurance processes and exclude the papers focusing

on the development of mutation tools and operators, or challenges and open issues for mutation testing. Moreover, the selected articles should

also provide sufficient evidence for answering the research questions. Therefore, we define 2 inclusion/exclusion criteria for study selection. The

inclusion/exclusion criteria are as follows:

1. The article must focus on the supporting role of mutation testing in the quality assurance processes. This criterion excludes the research solely

onmutation testing itself, such as definingmutation operators, developingmutation systems, investigating ways to solve open issues related to

mutation testing, and comparisons betweenmutation testing and other testing techniques.

2. The article exhibits sufficient evidence thatmutation testing is used to support testing related activities. The sufficient evidencemeans that the

article must clearly describe how the mutation testing is involved in the quality assurance processes. The author(s) must state at least one of

the following details about the mutation testing in the article: mutation tool, mutation operators, mutation score.‡ This criterion also excludes

theoretical studies onmutation testing.

The first author of this SLR then carefully read the titles and abstracts to check whether the papers in the initial collection belong to our set

of selected papers based on the inclusion/exclusion criteria. If it is unclear from the titles and abstracts whether mutation testing was applied, the

entire article especially the experiment part was read as well. After we have applied the inclusion/exclusion criteria, 97 papers remained.

3.2.3 Snowballing procedure

After selecting 97 papers from digital databases and applying our selection criteria, there is still a high potential to miss articles of interest. As

Breretonetal. [72]pointedout,mostonlineplatformsdonotprovideadequate support for systematic identificationof relevantpapers. Toovercome

this shortfall of online databases, we then adopted both backward and forward snowballing strategies [75] to find missing papers. Snowballing

refers to using the list of references in a paper or the citations to the paper to identify additional papers [75]. Using the references and the citations

respectively are referred to as backward and forward snowballing [75].

†In the snowballing procedure, we took the “mutation testing” workshop series into consideration, since this is the closest venue tomutation testing.
‡The studies thatmerely adopted hand-seeded faults, which are not based on a set of mutation operators, are not part of this survey.
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TABLE 2 Venues involved in study selectiona

Type Venue name No. of No. of No. of

papers after papers after papers after

applying applying snowballing

search In./Ex. procedure

queries criteria

Journal Journal of Empirical Software Engineering (EMSE) 4 3 6

Information and Software Technology (IST) 0 0 3

Journal SoftwareMaintenance and Evolution (JSME) 0 0 0

SoftwareQuality Journal (JSQ) 0 0 2

Journal of Systems and Software (JSS) 17 8 9

Journal on Software Testing, Verification and 33 16 23

Reliability (STVR)

Transaction on Software Engineering and 3 2 4

Methodology (TOSEM)

Transaction on Reliability (TR) 1 1 1

Transaction on Software Engineering (TSE) 19 9 21

Conference Proceedings Asia Pacific Software Engineering 0 0 1

Conference (APSEC)

International Conference on 7 3 7

Automated Software Engineering (ASE)

European Software Engineering 6 1 9

Conference / International Symposium

on the Foundations of

Software Engineering (ESEC/FSE)

International Symposium on 2 1 3

Empirical Software Engineering

andMeasurement (ESEM/ISESE)

International Conference on 29 9 22

Software Engineering (ICSE)

International Conference on 6 3 9

SoftwareMaintenance and

Evolution (ICSME/ICSM)

International Conference on Software Testing, 45 23 22

Verification, Validation (ICST)

International Symposium on 26 10 20

Software Reliability Engineering (ISSRE)

International Symposium on 14 3 12

Software Testing and Analysis (ISSTA)

Proceedings International Conference 8 5 6

onQuality Software (QSIC)

Proceedings International Symposium 0 0 1

on Search-Based Software Engineering (SSBSE)

Proceedings of the International Conference on Testing 0 0 1

Computer Software (TCS)

Workshop InternationalWorkshop onMutation Analysis 0 0 9

Total 220 97 191

aThe venuesmarked in bold font are not initially selected butwhere added after the snowballing procedure.We listed the venues alphabetically according to

their abbreviations, eg, EMSE is ahead of IST.

Weused the97papers as the starter set andperformedabackward and forward snowballing procedure recursively until no further papers could

be added to our set. During the snowballing procedure, we extended the initially selected venues tominimise the chance ofmissing related papers.

The snowballing process resulted in another 82 articles (and 5 additional venues). The International Workshop on Mutation Analysis was added

during the snowballing procedure.

To check the completeness of the initial study collection, we first ran a reference check based on Jia et al.'s survey (among 264 papers) as our

literature review was initially motivated from their paper. The results showed that: (1) 5 papers have already been included in our collection; (2) 3
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additional papers that should be included; and (3) 246 papers are excluded. Again, we applied snowballing techniques to the additional 3 papers,

and the 3 papers resulted in a total of 12 papers for our final collection (191 papers in total§).

Furthermore,weranasanity checkonour final collection toexaminehowmanypapersdonothave thekeywords “mutationanalysis” or “mutation

testing” in their abstracts, titles or keywords. The sanity check resulted in 112 papers; 15 papers aremissing in the initial data collection by applying

search queries in online platforms. Most of the missing papers (10 out of 15) (eg, Offutt et al. [65] and Knauth et al.[76]) are not from the precon-

sidered 17 venues. The results of the sanity check indicate that there are potentials of missing papers based on search queries in online platforms;

however, the snowballing procedure canminimise the risks of missing papers.

The detailed records of each step can be found in our GitHub repository [77].

3.3 Data extraction strategy

Data extracted from the papers are used to answer the research questionswe formulated in Section 3.1. Based on our research questions, we draw

7 facets of interest that are highly relevant to the information we need to answer the questions. The 7 facets are (1) the roles of mutation testing

in quality assurance processes; (2) the quality assurance processes; (3) the mutation tools used in experiments; (4) the mutation operators used in

experiments; (5) the description of equivalent mutant problem; (6) the description of cost reduction techniques for mutation testing; and (7) the

subjects involved in experiments. An overview of these facets is given in Table 3.

For each facet, we first read the corresponding details in each paper and extracted the exact text from the papers. During the reading procedure,

we started by identifying and classifying attributes of interest under each facet and assigned values to each attribute. The values of each attribute

were generalised andmodified during the reading process: wemerged some values or divided one into several smaller groups. In this way, we gen-

erated an attribute framework, and then, we used the framework to characterise each paper. Therefore, we can show quantitative results for each

attribute to support our answers. Moreover, the attribute framework can also be further used for validation and replication of the reviewwork. To

categorise the attributes for each paper, all the abstracts, introductions, empirical studies, and conclusions of the selected papers were carefully

read. If these sections were not clear or were somehow confusing, we also took other sections from the paper into consideration. Furthermore, for

categorising the test level attribute, tominimisemisinterpretations of the original papers, we looked beyond the aforementioned sections to deter-

mine the test level (ie, “unit,” “module,” “integration,” “system,” and “acceptance” [15]). In particular, we used the former 5 words as keywords to

search for the entire paper. If this search yielded no results, we did not necessarily categorise the paper as “n/a.” Instead, we read the entire paper,

and if a study deals with a particular type of testing, eg, testing of the grammar of a programming language or spreadsheet testing, we placed the

paper in the category “others.” If the paper lacks any description of the test level, we classified the test level as “n/a.”

(1) Roles of mutation testing in quality assurance processes:

The first facet concerns the role of mutation testing in quality assurance processes drawn from RQ1.1. We identified 2 classes for the function

ofmutation testing: assessment and guide.Whenmutation testing is used as ameasure of test effectiveness concerning fault-finding capability, we

classify this role as “assessment.”While for the “guide” role, mutation testing is adopted to improve the testing effectiveness as guidance, ie, it is an

inherent part of an approach.

To identify and classify the role of mutation testing, wemainly read the description of mutation testing in the experiment part of each paper. If we

find the phrases that have the samemeanings as “evaluate fault-finding ability” or “assess the testing effectiveness” in a paper, we then classify the

paper into the class of “assessment.” In particular, when used as ameasure of testing effectiveness, mutation testing is usually conducted at the end

of the experiment; thismeansmutation testing is not involved in the generation or execution of test suites. Unlike the “assessment” role, if mutation

testing is adopted to help to generate test suites or run test cases, we then classify the paper into the “guide” set. In this case,mutation testing is not

used in the final step of the experiment.

(2) Quality assurance processes:

The second facet focuses on quality assurance processes. Three attributes are relevant to quality assurance processes: the categories of quality

assurance processes (RQ1.2), test levels (RQ1.3) and testing strategies (RQ1.4). To identify the categories of quality assurance processes, we group

similar quality assurance processes based on information in title and abstract. The quality assurance processes we identified so far consist of 12

classes: test data generation, test suite reduction/selection, test strategy evaluation, test caseminimisation, test caseprioritisation, test oracle, fault

localisation, program repairing, development scheme evaluation, model clone detection, model review, and fault tolerance. We classify the papers

by reading the description appeared in title and abstract.

For test level, the values are based on the concept of test level and the authors' specification. More precisely, we consider 5 test levels: unit,

integration, system, others, and n/a. To characterise the test level, we search the exact words “unit,” “integration,” “system” in the article, as these

4 test levels are regular terms and cannot be replaced by other synonyms. If there is no relevant result after searching in a paper, we then classify

the paper's test level into “n/a,” ie, no specification regarding the test level. Also, for the paper that is difficult for us to categorise into any of the 4

phases (eg, testing of the grammar of a programming language and spreadsheet testing) wemark this situation as “others.”

§Wedid not control for double counting here as there are usually additional experiments and further discussion in the extended version.
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TABLE 3 Attribute framework

Facet Attribute Value Description

Roles Classification Assessment guide Assessing the fault-finding effectiveness

improving other quality assurance processes

Quality assurance processes Category Test data generation As guidance creating test input data

Test suite reduction/selection Reducing the test suite size while

maintaining its fault detection ability

Test strategy evaluation Evaluating test strategies by performing the

corresponding whole testing procedure, including

test pool creation, test case selection and/or

augmentation, and testing results analysis.

Test caseminimisation Simplifying the test case by shortening the sequence

and removing irrelevant statements

Test case prioritisation Reordering the execution sequence of test cases

Test oracle Generating or selecting test oracle data

Fault localisation Identifying the detective part

of a program given the test execution information

Program repairing Generating patches to correct

detective part of a program

Development scheme evaluation Evaluating the practice of software

development process via observational studies or

controlled experiments, such as

test-driven development (TDD)

Model clone detection Identifying similar model fragments

within a given context

Model review Determining the quality of the

model at specification level using

static analysis techniques

Fault tolerance Assessing the ability of the system to continue

operating properly in the event of failure

Test level Unit quality assurance processes focus on unit level.

A typical example of unit testing includes:

using unit testing tools, such as Junit and Nunit,

intramethod testing, intraclass testing.

Integration Quality assurance processes focus on integration

level. A typical example of integration testing

includes: caller/callee and interclass testing

System Quality assurance processes focus on system level.

A typical examples of system testing include:

high-level model-based testing techniques and

high-level specification abstractionmethods

Others Quality assurance processes are not related to source

code. A typical example includes: grammar.

n/a No specification about the testing level in the article.

Testing strategy Structural White box testing uses the internal structure

of the software to derive test cases, such as statement

testing, branch testing, and condition testing

Enhanced structural Adopting other methods to improve the traditional

structural testing, mutation-based techniques,

information retrieval knowledge, observation

notations, and assertion coverage

Specification-based Viewing software as a black boxwith input and

output, such as equivalence partitioning,

(Continues)
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TABLE 3 (Continued)

Facet Attribute Value Description

boundary value analysis, decision tables,

and state transition testing

Enhanced specification-based Adopting other methods to improve the traditional

specification-based testing, such asmutation testing.

Similarity-based Maximising the diversity of test cases to

improve the test effectiveness

Grey-box Combining structural testing and

specification testing together

Others Using static analysis, or focusing on

other testing techniques, which

cannot fit in above 6 classes

Mutation tools Availability Yes/No Yes: open to the public; No: no valid open access

Type Existing tool A completemutation testing system

Partially-based Used as a base or framework for mutation testing

Self-written Developed by the authors and the open link

of the tool is also accessible

Manual Generatingmutants manually based

on themutation operators

n/a No description of the adoptedmutation testing tool

Mutation operators Description level Well-defined The complete list of mutation operators

is available the article provides

Not sufficient Some information about mutation operators but

the information is not enough for replication

n/a No description of themutation operators

Generalised classification Refer to Listing 1 Refer to Listing 1

Equivalence solver Methods Not killed as equivalent Treatingmutants not killed as equivalent

Not killed as nonequivalent Treatingmutants not killed as nonequivalent

No investigation No distinguishing between equivalent

mutants and nonequivalent ones

Manual Manual investigation

Model checker Usingmodel checker to remove

functionally equivalent mutants

Reduce likelihood Generatingmutants that are less likely to be

equivalent, such as using behaviour-affecting

variables, carefully-designedmutation

operators, and constraints binding

Deterministic model Adopting the deterministic model to

make the equivalence problem decidable

n/a No description of mutant equivalence detector

Reduction technique Methods Mutant sample Randomly select a subset of mutants for

testing execution based on fixed selection ratio

Fixed number Select a subset of mutants based on a fixed number

Weakmutation Compare internal state of themutant and the original

program immediately after themutated statement(s)

Higher-order Reduce the number of mutants by selecting higher-

order mutants, which contain more than one faults

Selection strategy Generate fewermutants by selecting

where tomutate based on a random

algorithm or other techniques

n/a No description of reduction techniques (except for

runtime optimisation and selectivemutation)

Subject Language Java, C, C#, etc Various programming languages

Size (maximum) Preliminary <100 LOC

Small 100∼ 10K LOC

Medium 10K∼ 1M LOC

(Continues)
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TABLE 3 (Continued)

Facet Attribute Value Description

Large > 1M LOC

n/a No description of program size regarding LOC

Availability Yes/No Yes: open to the public; No: no valid open access

For testing strategies, a coarse-grained classification is adequate to gain an overview of the distribution of testing strategies. We identified 5

classes according to the test design techniques: structural testing, specification-based testing, similarity-based testing, hybrid testing, and others

[78,79]. For the structural testing and specification-based testing classes, we further divided the classes into traditional and enhanced, based on

whether other methods improve the regular testing.

To be classified into the “structural testing” class, the paper should either contain the keywords “structure-based,” “code coverage-based,” or

“white box,” or use structural test design techniques, such as statement testing, branch testing, and condition testing. For the “specification-based

testing” class, the articles should either contain the keywords “black box,” “requirement-based,” or “specification-based,” or use specification-based

test design techniques, such as equivalence partitioning, boundary value analysis, decision tables, and state transition testing. The similarity-based

method aims tomaximise the diversity of test cases to improve the test effectiveness; this technique ismainly based on test case relationship rather

than software artefacts. Therefore, similarity-based testing does not belong to either structural testing or specification-based testing.

The grey-box testing combines structural testing and specification testing. Besides, several cases are using static analysis, code review, or other

techniques, which cannot fit the above classes; in such situations, wemark the value as “others.”

Furthermore, to classify the “enhanced” version of structural and specification-based testing, we rely on whether other testing methods were

adopted to improve the traditional testing. For instance, Whalen et al. [60] combined the MC/DC coverage metric with a notion of observability to

ensure the fault propagation conditions. Papadakis and Malevris [80] proposed an automatic mutation test case generation via dynamic symbolic

execution. To distinguish such instances from the traditional structural and specification-based testing, wemarked them as “enhanced.”

(3)Mutation tools used in experiments:

For the mutation tools (derived from RQ2.1), we are interested in their types, but also in their availability. Our emphasis on tool availability is

instigated to address possible replication of the studies. The values of “Yes” or “No” for the tool availability depends onwhether themutation tool is

open to the public. The tool type intends to provide further analysis of the mutation tool, which is based on whether the tool is self-developed and

whether the tool itself is a completemutation testing system.We identified 5 types ofmutation tools: existing, partially-based, self-written,manual,

and n/a. The “existing” toolmust be a completemutation testing system,while “partially-based”means these tools are used as a base or a framework

for mutation testing. The example for “partially-based” tools are EvoSuite [81], jFuzz [82], TrpAutoRepair [83], and GenProg [84]. The self-written

tool category represents those tools that have been developed by the authors of the study. The “manual” valuemeans themutants were generated

manually according to mutation operators in the studies. Besides, we defined “n/a” value in addition to the “tool types” attribute; the value of “n/a”

marks the situation where lacks of a description of mutation tools including tool names/citations andwhether manually generated or not.

(4)Mutation operators used in experiments:

As for the mutation operators (related to RQ2.2), we focus on 2 attributes: description level and generalised classification. The former is again

designed to assess the repeatability issue related tomutation testing. The description degree depends on theway the authors presented themuta-

tionoperatorsused in their studies, consistingof3values: “well-defined,” “not sufficient,” and “n/a.” If thepaper showedthecomplete listofmutation

operators, then we classify such a paper into “well-defined.” The available full list includes 2 main situations: (1) the authors listed each name of

mutation operator(s) and/or specified how the mutation operators make changes to programs in the articles; (2) the studies adopted existing tools

andmentioned theusedmutationoperator (including theoptionwhere all or thedefault set ofmutationoperators providedby that toolwereused).

Thus, the well-defined category enables the traceability of the complete list of mutation operators. Instead, if there is some information about the

mutationoperators in the article but not enough for the replicationof thewhole list ofmutationoperators, thenwe classify thepaper into “not suffi-

cient.” The typical example is that the author used suchwords as “etc,” “such as,” or “eg” in the specification of themutation operators; this indicates

that only some mutation operators are explicitly listed in the paper, but not all. Finally, we use the label “n/a” when no description of the mutation

operators was given in the paper at all.

To compare the mutation operators from different tools for different programming languages, and to analyse the popularity of involved mutation

operatorsamong thepapers,wecollected the informationaboutmutationoperatorsmentioned in thearticles.Notably,weonly consider thearticles

that are classified as “well-defined.”We excluded the papers with “not sufficient” label as their lists of mutation operators are not complete as this

might result in biased conclusions basedon incomplete information.Moreover, during the reading process,we found that differentmutation testing

tools use different naming conventions for their mutation operators. For example, inMuJava [19], themutation operator, which replaces relational

operators with other relational operators, is called “relational operator replacement,” while that is named “conditionals boundary mutator” in PIT

[85]. Therefore, we saw a need to compose a generalised classification of mutation operators, which enables us to more easily compare mutation

operators from different tools or definitions.

The method we adopted here to generate the generalised classification is to group the similar mutation operators among all the existing muta-

tion operators in the literature based on how they mutate the programs. Firstly, mutation testing can be applied to both program source code and
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program specification. Thus, we classified themutation operators into 2 top-level groups: programmutation and specificationmutation operators,

in a similar vein to Jia andHarman's survey. Aswe aremore interested in programmutation,we further analysed this area and summarised different

mutation operators based on literature.More specifically, we first followed the categories and naming conventions ofMuJava [86,87] and Proteum

[49] as their mutation operator groups are more complete than the others. Based on the mutation operator groups fromMuJava and Proteum, we

further divided the programmutation operators into 3 subcategories: expression-level, statement-level, and others. The expression-level mutation

operators focus on the inner components of the statements, ie, operators (method-level mutation operators in MuJava [86]) and operands (Con-

stant andVariableMutations in Proteum [49]), while the statement-level onesmutate at least a single statement (StatementMutations in Proteum

[49]). As we are interested in a more generalised classification independent of the programming language, we came up with the class of “others” to

includemutation operators related to the programming language's unique features, eg, objected-oriented specific and Java-specificmutation oper-

ators (Class Mutation in MuJava [87]). It is important to note that our generalised classification of mutation operators aims to provide an overall

distribution of different mutation operator groups. Thus, we did not look into lower-level categories. If the paper used one of the mutation opera-

tors in one group, we assign the group name to the paper. For example, while the PIT tool only adopts a small number of arithmetic operators [85],

we still assign PIT with the “arithmetic operator.”

Our generalised classification of mutation operators is as follows:

Listing 1.Generalised classification of mutation operators

1. Specificationmutation

2. Programmutation

(a) Expression-level

(i) arithmetic operator: it mutates the arithmetic operators (including addition “+,” subtraction “−,” multiplication “∗,” division “∕,”

modulus “%,” unary operators “+,” “−,” and short-cut operators “++,” “−−”)¶ by replacement, insertion, or deletion.

(ii) relational operator: it mutates the relational operators (including “>,” “>=,” “<,” “<=,” “==,” “! =”) by replacement.

(iii) conditional operator: it mutates the conditional operators (including and “&,” or “|,” exclusive or “̂ ,” short-circuit operator “&&,” “||,”
and negation “!”) by replacement, insertion, or deletion.

(iv) shift operator: it mutates the shift operators (including “≫,” “≪,” and “>>>”) by replacement.

(v) bitwise operator: it mutates the bitwise operators (including bitwise and “&,” bitwise or “|,” bitwise exclusive or “ ̂” and bitwise

negation “%”) by replacement, insertion, or deletion.

(vi) assignment operator: it mutates the assignment operators (including the plain operator “=” and short-cut operators “+=,” “− =,”

“*=,” “/=,” “%=,” “&=,” “| =,” “̂=,” “<<=,” “>>=,” “>>>=”) by replacement. Besides, the plain operator “=” is also changed to “==” in

some cases.

(vii) absolute value: it mutates the arithmetic expression by preceding unary operators including ABS (computing the absolute value),

NEGABS (compute the negative of the absolute value), and ZPUSH (testingwhether the expression is zero. If the expression is zero,

then themutant is killed; otherwise execution continues and the value of the expression is unchanged).#

(viii) constant: it changes the literal value including increasing/decreasing the numeric values, replacing the numeric values by zero or

swapping the boolean literal (true/false).

(ix) variable: it substitutes a variable with another already declared variable of the same type and/or of a compatible type.‖

(x) type: it replaces a type with another compatible type including type casting.**

(xi) conditional expression: it replaces the conditional expression by true/false so that the statements following the conditional

always execute or skip.

(xii) parenthesis: it changes the precedence of the operation by deleting, adding, or removing the parentheses.

(b) Statement-level

(i) return statement: it mutates return statements in the method calls including return value replacement or return statement

swapping.

(ii) switch statement: it mutatesswitch statements bymaking different combinations of theswitch labels (case/default) or the

corresponding block statement.

(iii) if statement: it mutates if statements including removing additional semicolons after conditional expressions, adding an else

branch or replacing last else if symbol to else.

(iv) statement deletion: it deletes statements including removing themethod calls or removing each statement.††

¶The syntax of these operators might vary slightly in different languages. Here, we just used the operators in Java as an example. So as the same in (ii) to (vi) operators.
# The definition of this operator is from theMothra [17] system. In some cases, this operator only applies the absolute value replacement.
‖The types of the variables varies in different programming languages.

**The changes between the objects of the parent and the child are excluded, which belongs to “OO-specific.”
††Tomaintain the syntactical validity of themutants, semicolons or other symbols, such as continue in Fortran, are retained.
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(v) statement swap: it swaps the sequences of statements including rotating the order of the expressions under the use of the comma

operator, swapping the contained statements in if-then-else statements and swapping 2 statements in the same scope.

(vi) brace: it moves the closing brace up or down by one statement.

(vii) goto label: it changes the destination of the goto label.

(viii) loop trap: it introduces a guard (trap after nth loop iteration) in front of the loop body. The mutant is killed if the guard is evaluated

the nth time through the loop.

(ix) bomb statement: it replaces each statement by a special Bomb() function. The mutant is killed if the Bomb() function is executed,

which ensures each statement is reached.

(x) control-flow disruption (break/continue): it disrupts the normal control flow by adding, removing, moving or replacing con-

tinue/break labels.

(xi) exception handler: it mutates the exception handlers including changing the throws, catch or finally clauses.

(xii) method call: it changes the number or position of the parameters/arguments in amethod call, or replace amethod namewith other

method names that have the same or compatible parameters and result type.

(xiii) do statement: it replaces do statements with while statements.

(xiv) while statement: it replaces while statements with do statements.

(c) Others

(i) OO-specific: themutation operators related toO(bject)-O(riented) Programming features [87], such as Encapsulation, Inheritance,

and Polymorphism, eg, super keyword insertion.

(ii) SQL-specific: themutation operators related to SQL-specific features [20], eg, replacing SELECT to SELECTDISTINCT.

(iii) Java-specific‡‡: the mutation operators related to Java-specific features [87] (the operators in Java-Specific Features), eg, this

keyword insertion.

(iv) JavaScript-specific: the mutation operators related to JavaScript-specific features [88] (including DOM, JQUERY, and

XMLHTTPREQUEST operators), eg, var keyword deletion.

(v) SpreadSheet-specific: themutation operators related to SpreadSheet-specific features [89], eg, changing the range of cell areas.

(vi) AOP-specific: themutation operators related to A(spect)-O(riented)-P(rogramming) features [90,91], eg, removing pointcut.

(vii) concurrent mutation: the mutation operators related to concurrent programming features [92,93], eg, replacing notifyAll()

with notify().

(viii) Interfacemutation: themutationoperators related to Interface-specific features [94,95], suitable for useduring integration testing.

(5) Description of the equivalent mutant problem and (6) Description of cost reduction techniques for mutation testing:

The fifth and sixth facets aim to show how the most significant problems are coped with when applying mutation testing (related to RQ2.3 and

RQ2.4, respectively).We composed the list of techniques based onboth our prior knowledge and the descriptions given in the papers.We identified

7 methods for dealing with the equivalent mutant problem and 5 for reducing computational cost except for “n/a” set (more details are given in

Table 3).

For the equivalent mutant problem, we started by searching the keywords “equivalen*” and “equal” in each paper to target the context of the

equivalent mutant issue. Then, we extracted the corresponding text from the articles. If there are no relevant findings in a paper, we mark this

article as “n/a,” whichmeans the authors did notmention how they overcame the equivalentmutant problem. Here, it should be noted that we only

consideredthedescriptionrelatedtotheequivalentmutantproblemgivenbytheauthors; thismeansweexcludedthe internalheuristicmechanisms

adopted by the existing tools if the author did not point out such internal approaches. For example, the tool of JAVALANCHE [96] ranks mutations

by impact to help users detect the equivalent mutants. However, if the authors who used JAVALANCHE did not specify that internal feature, we do

not label the paper into the class that used the approach of “ranking themutations.”

For the cost reduction techniques, we read the experiment part carefully to extract the reductionmechanism from the papers. Also, we excluded

runtime optimisation and selective mutation. The former one, runtime optimisation, is an internal optimisation adopted during the tool implemen-

tation, therefore such information is more likely to be reported in the tool documentation. We did not consider the runtime optimisation to avoid

incomplete statistics. As for the second one, selectivemutation, we assume it is adopted by all papers since it is nearly impossible to implement and

use all the operators in practice. If a paper does not contain any description of the reduction methods in the experiment part, we mark this article

as “n/a.”

(7) Subjects involved in the experiment:

For the subject programs in the evaluation part, we are interested in 3 aspects: programming language, size, and data availability. From the pro-

gramming language,wecanobtainanoverall ideaofhowestablishedmutation testing is ineachprogramming languagedomainandwhat thecurrent

‡‡This set of mutation operators originated from Java features but not limited to Java language, since other languages can share certain features, eg, this keyword is also available in C++ and C#,

and staticmodifier is supported by C and C++ as well.
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gap is. From the subject size, we can see the scalability issue related to mutation testing. From the data availability situation, we can assess the

replicability of the studies.

For the programming language, we extracted the programming language of the subjects involved in the experiment in these articles, such as Java,

C, andSQL. If theprogramming languageof the subject programs is not clearly pointedout,wemark it as “n/a.”Note,more thanone languagesmight

be involved in a single experiment.

For the subject size, we defined 4 categories according to the lines of code (LOC): preliminary, small, medium, and large. If the subject size is less

than 100 LOC, then we classify it into the “preliminary” category. If the size is between 100 to 10K LOC, we consider it “small,” while between 10K

and 1M LOC we appraised it as “medium.” If the size is greater than 1M LOC, we consider it as “large.” Since our size scale is based on LOC, if the

LOC of the subject is not given, or other metrics are used, we mark it as “n/a.” To assign the value to paper, we always take the biggest subjects used

in the papers.

For thedata available,wedefined2 classes: Yes andNo. “Yes”means all subjects in the experiments canbeopenly accessible; this canbe identified

either from the keywords “open source,” SIR [97], GitHub,§§ SF100 [98] or SourceForge,¶¶ or from the open link provided by the authors. It is

worth noting that if one of the subjects used in a study is not available, we classify the paper as “No.”

The above facets of interest and corresponding attributes and detailed specification of values are listed in Table 3.

3.4 Review protocol validation

The reviewprotocol is a critical element of a systematic literature review and researchers need to specify and performprocedures for its validation

[72]. The validation procedure aims to eliminate the potential ambiguity and unclear points in the review protocol specification. In this review, we

conduct the review protocol validation among the 3 authors. We also used the results to improve our review protocol. The validation focuses on

selection criteria and attribute framework, including the execution of 2 pilot runs of study selection procedure and data extraction process.

3.4.1 Selection criteria validation

We performed a pilot run of the study selection process, for which we randomly generated 10 candidate papers from selected venues (including

articles out of our selection scope) and performed the paper selection among the 3 authors independently based on the inclusion/exclusion criteria.

After that, the 3 authors compared and discussed the selection results. The results show that for 9 out of 10 papers, the authors had an immediate

agreement. The 3 authors discussed the one paper that showed disagreement, leading to a revision of the first inclusion/exclusion criterion. In the

first exclusion criterion, we added “solely” to the end of the sentence “… This criterion excludes the research on mutation testing itself … .” By

adding “solely” to the first criterion, we include articles whosemain focus is mutation testing, but also cover the application of mutation testing.

3.4.2 Attribute framework validation

To execute the pilot run of the data extraction process, we randomly select 10 candidate papers from our selected collection. These 10 papers are

classifiedbyall 3 authors independently using theattribute framework thatwedefinedearlier. Thediscussion that follows fromthis process leads to

revisionsofourattribute framework.Firstly,weclarified that the informationextracted fromthepapersmusthavethesamemeaningasdescribedby

the authors; thismainlymeans thatwe cannot further interpret the information. If the article does not provide any clear clue for a certain attribute,

we use the phrase “not specified” (“n/a”) tomark this situation. By doing so, weminimise the potential misinterpretation of the articles.

Secondly, we ensured that the values of the attribute framework are as complete as possible so that for each attribute we can always select a

value. For instance,whenextracting quality assuranceprocesses information from thepapers,we can simply chooseoneor several options of the12

categories providedby thepredefined attribute framework. Thepurposeof providing all possible values to each attribute is to assist data extraction

in an unambiguous and trustworthymanner. Through looking at the definitions of all potential values for each attribute,we can easily target unclear

or ambiguous points in data extraction strategy. If there are missing values for certain attributes, we can only add the additional data definition to

extend the framework. The attribute framework can also be of clear guideline for future replication. Furthermore, we can then present quantitative

distributions for each attribute in our later discussion to support our answers to research questions.

To achieve the above 2 goals, wemade revisions to several attributes and values. The specifiedmodifications are listed as follows:

Mutation tools: Previously, we combined tool availability and tool types by defining 3 values: self-written, existing, and not available; this is not

clear to distinguish available tools from unavailable ones. Therefore, we further defined 2 attributes, ie, tool availability and tool types.

Mutation operators: We added “description level” to address the interest of howmutation operators are specified in the articles; this also helps

in the generalisation of mutation operator classification.

Reduction techniques:We added the “fixed number” value to this attribute whichmeans the fixed number of selectedmutants.

Subjects: We changed the values of “data availability” from “open source,” “industrial,” or “self-defined” to “Yes” or “No.” Since the previous

definitions cannot distinguish between available and unavailable datasets.

§§https://github.com/
¶¶https://sourceforge.net/

https://github.com/
https://sourceforge.net/
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4 REVIEW RESULTS

After developing the review protocol, we conducted the task of article characterisation accordingly. Given the attribute assignment under each

facet, we are now at the stage of interpreting the observations and reporting our results. In the following section, we discuss our review results

following the sequence of our research questions. While Section 4.1 deals with the observations related to howmutation testing is applied (RQ1),

Section 4.2 will present the RQ2-related discussion. For each subresearch question, we will first show the distribution of the relevant attributes

and our interpretation of the results (marked asObservation). Each answer to a subresearch question is also summarised at the end.More detailed

characterisations results of all the surveyed papers are presented in our GitHub repository [77].

4.1 RQ1: How ismutation testing used in quality assurance processes?

4.1.1 RQ1.1 and RQ1.2:Which role doesmutation testing play in each quality assurance process?

Observation

Weopt to discuss the 2 research questions RQ1.1 and RQ1.2 together, because it gives us the opportunity to analyse per quality assurance (eg, test

data generation) whether mutation testing is used as a way to guide the technique, or whether mutation testing is used as a technique to assess

some (new) approach. Consider Table 4, in which we report the role mutation testing plays in the 2 columns “Assessment” and “Guide” (see Table 3

for the explanation about our attribute framework), while the quality assurance processes are projected onto the rows. The table is then populated

with our survey results, with the additional note that some papers belong tomultiple categories.

AsTable 4 shows, test data generation and test strategy evaluationoccupymost quality assuranceprocesses (accounting for 75.9%) and test suite

reduction/selection (7.9%). Only 2 instances studied test case minimisation; this shows mutation testing has not been widely used to simplify test

cases by shortening the test sequence and removing irrelevant statements.

As the 2 roles (assessment and guide) are used quite differently depending on the quality assurance processes, we will discuss them separately.

Also, for the “guide” role, for whichwe see an increasing number of applications in recent decades, we find a number of hints and insights for future

researchers to consider,which explainswhywewill analyse this part in amoredetailedwaywhencomparedwith thedescriptionofmutation testing

as a tool for assessment.

(1) Assessment.

We observed that mutation testing mainly serves as an assessment tool to evaluate the fault-finding ability of the corresponding test or debug

techniques (70.2%) as it iswidely considered as a “high end” test criterion [15]. To this aim,mutation testing typically generates a significant number

of mutants of a program, which are sometimes also combined with natural defects or hand-seeded ones. The results of the assessment are usually

quantified as metrics of fault-finding capability: mutation score (or mutation coverage, mutation adequacy) [99,100] and killed mutants [101,102]

are the most commonmetrics in mutation testing. Besides, in test case prioritisation, the Average Percentage of Faults Detected [103,104], which

measures the rate of fault detection per percentage of test suite execution, is also popular.

Among the papers in our set, we also found 19 studies that performed mutant analysis, which means that the researchers tried to get a bet-

ter understanding about mutation faults, eg, which faults are more valuable in a particular context. A good example of this mutant analysis is the

hard-mutant problem investigated by Czemerinski et al. [105] where they analysed the failure rate for the hard-to-kill mutants (killed by less than

20% of test cases) using the domain partition approach.

(2) Guide.

Toprovide insight intohowmutation testing acts as guidance to improve testingmethodsperquality assuranceprocess,wewill highlight themost

significant research efforts to demonstratewhymutation testing can be of benefit as a building block to guide other quality assurance processes. In

TABLE 4 Quality assurance processes summary

Testing activity Assessment Guide Total

Test data generation 38 36 75

Test strategy evaluation 63 6 70

Test oracle 13 5 18

Test case prioritisation 11 6 17

Test suite selection/reduction 10 5 15

Fault localisation 8 4 12

Program repairing 2 1 3

Test caseminimisation 1 1 2

Fault tolerance 1 0 1

Development scheme evaluation 0 1 1

Model clone detection 1 0 1

Model review 1 0 1

Total 134 57 191
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doing so, we hope the researchers in this field can learn from the current achievements so as to explore other interesting applications of mutation

testing in the future.

Firstly, let us start with test data generation, which attracts most interest when mutation testing is adopted as a building block (36 instances).

The main idea of mutation-based test data generation is to generate test data that can effectively kill mutants. For automatic test data generation,

killing mutants serves as a condition to be satisfied by test data generation mechanisms, such as constraint-based techniques and search-based

algorithms; in thisway,mutation-based test data generation can be transformed into the structural testing problem. Themutation killable condition

can be classified into 3 steps as suggested by Offutt and Untch [25]: reachability, necessity, and sufficiency. When observing the experiments con-

tained in the papers that we surveyed (except the model-based testing), we see that regarding the killable mutant condition most papers (73.3%)

are satisfied with a weak mutation condition (necessity), while a strong mutation condition (sufficiency) appears less (33.3%). The same is true

when comparing first-order mutants (93.3%) to higher-order mutants (6.7%). Except for the entirely automatic test data generation, Baudry et al.

[106,107,108] focused on the automation of the test case enhancement phase: they optimised the test cases regarding mutation score via genetic

and bacteriological algorithms, starting from an initial test suite. Von Mayrhauser et al. [109] and Smith and Williams[110] augmented test input

data using the requirement of killing asmanymutants as possible. Comparedwith the existing literature survey of Hanh et al. [71], which shed light

onmutation-based test data generation, we cover more studies and extend their work to 2015.

The second-most-frequent use caseswhen applyingmutation testing to guide the testing efforts come from test case prioritisation (6 instances)

and test strategyevaluation (6 instances). For test caseprioritisation, the goal is todetect faults as early as possible in the regression testingprocess.

The incorporation of measures of fault-proneness into prioritisation techniques is one of the directions to overcome the limitation of the conven-

tional coverage-based prioritisationmethods. As relevant substitutes of real faults,mutants are used to approximate the fault-proneness capability

to reschedule the testing sequences. Qu et al. [111] ordered test cases according to prior fault detection rate using both hand-seeded and muta-

tion faults. Kwon et al. [112] proposed a linear regressionmodel to reschedule test cases based on Information Retrieval and coverage information,

where mutation testing determines the coefficients in the model. Moreover, Rothermel et al. [61,103] and Elbaum et al. [62] compared different

approaches of test case prioritisation, which included the prioritisation in order of the probability of exposing faults estimated by the killedmutant

information. In Qi et al. [83]'s study, they adopted a similar test case prioritisationmethod to improve patch validation during program repairing.

Zooming in on the test strategy evaluation (6 instances), we observe, on the one hand, the idea of incorporating an estimation of fault-exposure

probability into test data adequacy criteria intrigued some researchers. Among them are Chen et al. [113]: in their influential work they examined

the fault exposing potential coverage adequacy, which is estimated by mutation testing with 4 software testers to explore the cost-effectiveness

of mutation testing for manually augmenting test cases. Their results indicate that mutation testing was regarded as an effective but relatively

expensive technique for writing new test cases.

When it comes to the test oracle problem (5 instances), mutation testing can also be of benefit for driving the generation of assertions, as the

prerequisite for killing the mutant is to distinguish the mutant from the original program. In Fraser and Zeller [114]'s study, they illustrated how

they used mutation testing to generate test oracles: assertions, as commonly used oracles, are generated based on the trace information of both

the unchanged program and the mutants recorded during the executions. First, for each difference between the runs on the original program and

itsmutants, the corresponding assertion is added. After that, these assertions areminimised to find a sufficient subset to detect all themutants per

test case; this becomes aminimum set covering problem. Besides, Staats et al. [115] andGay et al. [116] selected themost “effective” oracle data by

ranking variables (trace data) based on their killedmutants information.

Mutation-based test suite reduction (5 instances) relies on the number of killed mutants as a heuristic to perform test suite reduction, instead

of the more frequently used traditional coverage criteria, eg, statement coverage. The intuition behind this idea is that the reduction based on the

mutation faults can produce a better-reduced test suite with less or no loss in fault detection capability. The notable examples include an empirical

study performed by Shi et al. [117] who compared the trade-offs among various test suite reduction techniques based on statement coverage and

killedmutants.

As for the fault localisation (4 instances), the locations of mutants are used to assist the localisation of “unknown” faults (the faults which have

been detected by at least one test case, but that have still to be located [68]). Themotivation of this approach is based on the following observation:

“Mutants located on the same program statements frequently exhibit a similar behaviour” [68]. Thus, the identification of an “unknown” fault could

be obtained thanks to a mutant at the same (or close) location. Taking advantage of the implicit link between the behaviour of “unknown” faults

with some mutants, Murtaza et al. [118] used the traces of mutants and prior faults to train a decision tree to identify the faulty functions. Also,

Papadakis et al. [68,69] andMoon et al. [119] ranked the suspiciousness of “faulty” statements based on their passing and failing test executions of

the generatedmutants.

From the aforementioned guide roles of the quality assurance processes, we can see that mutation testing is mainly used as an indication of the

potential defects: either (1) to be killed in test data generation, test case prioritisation, test suite reduction, and test strategy evaluation, or (2) to be

suspected in the fault localisation. In most cases, mutation testing serves as where-to-check constraints, ie, introducing a modification in a certain

statement or block. In contrast, only 4 studies applied mutation testing to solving the test oracle problem, which targets the what-to-check issue.

Thewhat-to-check problem is not an issue unique tomutation testing, but rather an inherent challenge of test data generation. As abovementioned,

mutation testing cannot only help in precisely targeting atwhere to check but also suggestingwhat to check for [114] (see the first recommendation

labelled asR1 in Section 4.4). In this way, mutation testing could be of benefit to improve the test code quality.



18 of 39 ZHU ET AL.

Afterwehadanalysedhowmutation testing is applied toguidevariousqualityassuranceprocesses,wearenowcurious tobetterunderstandhow

thesemutation-based testingmethodswere evaluated, especially becausemutation testing is commonly used as an assessment tool. Therefore,we

summedup the evaluation fault types among the articles labelled as “guide” in Table 5.We can see 43 cases (75.4%), which is the addition of the first

and the third rows in Table 5 (39+ 4), still adoptedmutation faults to assess the effectiveness. Among these studies, 4 instances [115,116,120,121]

realised the potentially biased results causedby the same set ofmutants being used in both guidance and assessment. They partitioned themutants

into different groups and used one as evaluation set. Besides, one study [55] used a different mutation tool, while the other [94] adopted different

mutation operators to generatemutants intending to eliminate bias. These findings signal an open issue: how to find an adequate fault set insteadof

mutation faults to effectively evaluate mutation-based testing methods? (see the second recommendation labelled as R2 in Section 4.4) Although

hand-seeded faults and real bugs couldbeanoption, searching for suchanadequate fault set increases thedifficultywhenapplyingmutation testing

as guidance.

Summary

Test data generation and test strategy evaluation occupymost quality assurance processes when applyingmutation testing (75.9%).While as guid-

ance, mutation testing is primarily used in test data generation (36 instances), test strategy evaluation (6 instances), and test case prioritisation (6

instances). From the above observations, we draw one open issue and one recommendation for the “guide” role of mutation testing. The open issue

is how to find an adequate fault set instead ofmutation faults to effectively evaluatemutation-based testingmethods. The recommendation is that

mutation testing can suggest not onlywhere to check but alsowhat to check.Where to check is widely used to generate killable mutant constraints

in different quality assurance processes, whilewhat to check is seldom adopted to improve the test data quality.

4.1.2 RQ1.3:Which test level doesmutation testing target?

Observations

Table 6 presents the summary of the test level distribution across the articles.We observe that the authors of 84 papers do not provide a clear clue

about the test level they target (the class marked as “n/a”). For example, Aichernig et al. [122]'s study: they proposed a fully automated fault-based

test case generation technique and conducted 2 empirical case studies derived from industrial use cases; however, they did not specify which test

level they targeted. One good instance that clearly provides the information of the test level is Jee et al. [123] where they specified that their test

case generation technique for FBDprograms is at unit testing level. This is an open invitation for future investigations in the area to be clearer about

the essential elements of quality assurance processes such as the test level. For the remainder of our analysis of RQ1.3, we excluded the papers

labelled as “n/a” when calculating percentages, ie, our working set is 107 (191− 84) papers.

Looking at Table 6, mutation testing mainly targets the unit testing level (72.0%), an observation that is in accordance with the results of Jia and

Harman's survey [1].Oneof theunderlyingcauses for thepopularityof theunit level couldbetheoriginofmutationtesting.Theprincipleofmutation

testing is to introduce small syntactic changes to the original program; this means themutation operators only focus on small parts of the program,

such as arithmetical operators and return statements. Thus, such small changesmostly reflect the abnormal behaviour of unit-level functionality.

Whileunit testing isby far themostobservedtest level category inoursetofpapers, higher-level testing, suchas integration testing (15 instances),

can also benefit from the application ofmutation testing. Here, we highlight some researchworks as examples: Hao et al. [124] andDo and Rother-

mel [64] used the programs with system test cases as their subjects in case studies. Hou et al. [94] studied interface-contract mutation in support

TABLE 5 Guide role summary

Evaluation fault type Total

Mutation faults 39

Hand-seeded faults 7

Hand-seeded +mutation faults 4

No evaluation 4

Real faults 2

Other coverage criteria 1

TABLE 6 Test level summary

Test level Total

n/a 84

Unit 77

Integration 15

Other 10

System 10
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of integration testing under the context of component-based software. Li et al. [125] proposed a 2-tier testing method (one for integration level,

the other for system level) for graphical user interface (GUI) software testing. Rutherford et al. [126] defined and evaluated adequacy criteria

under system-level testing for distributed systems. In Denaro et al. [127]'s study, they proposed a test data generation approach using data flow

information for inter-procedural testing of object-oriented programs.

The important point we discovered here is that all the aforementioned studies did not restrictmutation operators tomodel integration errors or

systemones. In otherwords, the traditional programmutations can be applied to higher-level testing. Among these articles, themutation operators

adopted aremostly at the unit level, eg, ArithmeticMutationReplacement, RelationalMutationReplacement. Themutation operators designed for

higher-level testing, eg [128,129], are seldomused in these studies. The only 3 exceptions in our collections are Flores and Polo[130], Vincenzi et al.

[131] andFlores andPolo[132],whoadopted interfacemutation toevaluate the integration testing techniques. This reveals a potential direction for

future research: the cross-comparisonof different levels ofmutationoperators andquality assuranceprocesses at different test levels (see the third

recommendation labelled as R3 in Section 4.4). The investigation of different levels of mutants can explore the effectiveness of mutation faults at

different test levels, such as the doubtswhether the integration-levelmutation is better thanunit-levelmutationwhen assessing testing techniques

at the integration level. In the same vein, an analysis of whether mutants are a good alternative to real/hand-seeded ones (proposed by Andrews

et al. [24]) at higher levels of testing also seems like an important avenue to check out.

In addition, we created a class “others” in which we list 9 papers that we found hard to classify in any of the other 4 test phases. These works can

be divided into 3 groups: grammar-based testing [133,134,135], spreadsheet-related testing [89,136,137] and SQL-related testing [138,139,140].

Theapplicationofmutation testingon the “other” set indicates that thedefinitionofmutation testing is actually quitebroad, thuspotentially leading

to evenmore intriguing possibilities [2]: what else can wemutate?

Summary

The application ofmutation testing ismostly done at the unit-level testing (44.0%of papers did not clearly specify their target test level(s)). For rea-

sons of clarity, understandability and certainly replicability, it is very important to understand exactly at what level the quality assurance processes

take place. It is thus a clear call to arms to researchers to better describe these essential testing activity features.

4.1.3 RQ1.4:Which testing strategies doesmutation testing support?

Observations

In Table 7, we summarised the distribution of testing strategies based on our coarse-grained classification (eg, structural testing and

specification-based testing) asmentioned inTable 3. Looking at Table 7, structure-based testing (including the first and the third rows inTable 7), 109

instances). The underlying cause could be that structural testing is still themain focus of testing strategies in the software testing context. The other

testing strategies have also been supported by mutation testing: (1) specification-based testing (including the second and the fifth rows in Table 7)

accounts for 65 cases; (2) hybrid testing (combination of structural and structure-based testing) for 7 instances, eg, Briand et al. [141] investigated

how data flow information can be used to improve the cost-effectiveness of state-based coverage criteria; (3) 3 cases applying mutation testing in

similarity-based testing; (4) 21 instances in others, eg, static analysis.

One interesting finding is that enhanced structural testing ranks third, including mutation-based techniques, information retrieval knowledge,

observation notations and assertion coverage. The popularity of enhanced structural testing reveals the awareness of the shortage of conventional

coverage-based testing strategies has increased.

Comparedwithenhancedstructural testing, enhancedspecification-based testingdidnotattractmuch interest. The13 instancesmainly adopted

mutation testing (eg, Qu et al. [111] and Papadakis et al. [142]) to improve the testing strategies.

Summary

Mutation testing has been widely applied in support of different testing strategies. From the observation, the testing strategies other than white

box testing canalsobenefit fromtheapplicationofmutation testing, suchas specification-based testing, hybrid testing, and similarity-based testing.

However, structural testing ismorepopular than theothers (57.1%).Moreover, techniques likemutation-based techniquesand information retrieval

TABLE 7 Testing strategies summary

Testing strategies Total

Structural testing 57

Specification-based testing 52

Structural testing (enhanced) 52

Others 21

Specification-based testing (enhanced) 13

Hybrid testing 7

Similarity-based testing 3
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knowledge are also being adopted to improve the traditional structural-based testing, which typically only relies on the coverage information of

software artefacts; this serves an indication of the increasing realisation of the limitations of coverage-based testing strategies.

4.2 R2: How are empirical studies related tomutation testing designed and reported?

4.2.1 RQ2.1:Whichmutation testing tools are being used?

Observations

We are interested in getting insight into the types (as defined in Table 3) of mutation testing tools that are being used and into their availability.

Therefore, we tabulated the different types of mutation testing tools and their availability in Table 8. As shown in Table 8, 50.3% of the studies

adopted existing tools which are open to the public; this matches our expectation: as mutation testing is not the main focus of the studies, if there

exists a well-performing and open-source mutation testing tool, researchers are likely willing to use these tools. However, we also encountered 15

cases of using self-implemented tools and 12 studies that manually applied mutation operators. A likely reason for implementing a new mutation

testing tool or for manually applying mutation operators is that existing tools do not satisfy a particular need of the researchers. Besides, most

existingmutation testing tools are typically targeting one specific language and a specific set ofmutation operators [2] and they are not always easy

to extend, eg, when wanting to add a newly-defined mutation operator. As such, providing more flexible mechanisms for creating new mutation

operators inmutation testing tools is an important potential direction for future research [2,143] (see the fourth recommendation labelled asR4 in

Section 4.4).

Unfortunately, there are also still 92 studies (48.2%) that do not provide access to the tools, in particular, 44 papers did not provide any accessible

informationabout the tools (eg,Honget al. [92], Belli et al. [101], andPapadakis andMalveris[144]), a situation thatwemarkedas “n/a” inTable8. This

unclarity should serve as a notice to researchers: the mutation testing tool is one of the core elements in mutation testing, and lack of information

on it seriously hinders replicability of the experiments.

Having discussed the tool availability and types, we arewonderingwhich existing open-sourcemutation testing tools aremost popular. The pop-

ularity of the tools cannot only reveal their level of maturity, but also provide a reference for researchers entering the field to help them choose a

tool. To this end, we summarised the names ofmutation tools for different programming languages in Table 9. Table 9 shows thatwe encountered 19

mutation tools in total.Most tools target one programming language (except forMothra [17], which supports both C and Fortran).We encountered

7mutation tools for Java, with the top 3most-used beingMuJava [145], JAVALANCHE [96], andMajor [146].We found that 4mutation tools for C

are used, where Proteum [18] is the most-frequently applied. Proteum/IM [147] is a special mutation testing tool that targets interface mutation,

which concerns integration errors. The integration errors are related to a connection between 2 units and the interactions along the connection,

such as a wrong subprogram call.

In Jia andHarman [1]'s literature review, they summarised 36mutation tools developedbetween1977 and2009.When comparing their findings

(36 tools) to ours (19 tools), we find that there are 12 tools in common. The potential reason for us not covering the other 24 is thatweonly consider

peer-reviewedconferencepapers and journals; thiswill likely filter somepaperswhichapplied theother24mutation tools. Also important to stress,

is that the goal of Jia and Harman's survey is different to ours: while we focus on the application of mutation tools, their study surveys articles that

introduce mutation testing tools. In doing so, we still managed to discover 8 mutation tools which are not covered by Jia and Harman: (1) 2 tools

are for Java: PIT and Sofya; (2) one for C: SMT-C; (3) one for SQL: SchemaAnalyst; (4) one for UML: MoMuT::UML; (5) 2 for C#: GenMutants and

PexMutator; (6) one for JavaScript: MUTANDIS. Most of these tools were released after 2009, which makes them too new to be included in the

review of Jia and Harman. Moreover, we can also witness the trend of the development of the mutation testing for programming languages other

than Java and Cwhen comparedwith Jia andHarman [1]'s data.

Summary

A total of 50.3% of the articles that we have surveyed adopt existing (open access) tools, while in a few cases (27 in total) the authors implemented

their own tools or seeded themutants byhand. This calls for amore flexiblemutation generationengine that allows toeasily addmutationoperators

or certain types of constraints. Furthermore, we found 44 papers that did not provide any information about the mutation tools they used in their

TABLE 8 Mutation tool summary

Availability Types Total

Yes Existing 96 103

Partially-based 7

Self-written 1

No n/a (no information) 44 92

Existing (given the name/citation) 22

Self-written 14

Manual 12
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TABLE 9 Existingmutation tool summary

Language Tool Total

Java MuJava/�-java/Muclipse 41

JAVALANCHE 9

MAJOR 9

PIT/PiTest 7

Jumble 2

Sofya 1

Jester 1

C Proteum 12

Proteum/IM 3

MiLu 2

SMT-C 1

Fortran Mothra 4

SQL SQLMutation/JDAMA 3

SchemaAnalyst 1

C# GenMutants 1

PexMutator 1

JavaScript MUTANDIS 3

AspectJ AjMutator 2

UML specification MoMuT::UML 1

TABLE 10 Description level of mutation operators
summary

Description level Total

Well-defined 119

n/a 44

Not sufficient 28

experiments; this should be a clear call to arms to the research community to bemore precisewhen reporting onmutation testing experiments.We

have also gained insight into themost popular tools for various programming languages, eg,MuJava for Java and Proteum for C.Wehope this list of

tools can be a useful reference for new researchers whowant to applymutation testing.

4.2.2 RQ2.2:Whichmutation operators are being used?

Observations

For the mutation operators, we first present the distribution of the 3 description levels (as mentioned in Table 3) in Table 10. As Table 10 shows,

62.3% (119 instances) of the studies thatwe surveyed specify themutation operators that they use,whilemore than one-third of the articles do not

provide enough information about the mutation operators to replicate the studies. These 61 instances are labelled as “n/a” (eg, Briand et al. [148],

DeMillo andOffutt[149], and Shi et al. [150]).

After that, based on our generalised classification of themutation operators (as defined in Listing 1), we characterised the 119 papers labelled as

“well-defined.” Inaddition to theoverall distributionof themutationoperators regardlessof theprogramming language,wearealso interested in the

differences of themutation operators for different languages as the differences could indicate potential gaps in the existingmutation operator sets

for certain programming languages. In Table 11, we project the various languages onto 7 columns and our predefinedmutation operator categories

onto the rows, thus presenting the distribution of themutation operators used in the literature under our research scope.

Overall, we can see that programmutation is more popular than specification mutation from Table 11. Among the programmutation operators,

the arithmetic, relational, and conditional operators are the top 3 mutation operators. These 3 operators are often used together in most cases as

their total number of applications are similar. The underlying cause of the popularity of these 3 operators could be that the 3 operators are among

Offutt et al. [30]'s 5 sufficientmutation operators.Moreover, the expression-level operators aremore popular than the statement-level ones. As for

the statement-level mutation operators, statement deletion, method call, and return statement are the top 3mutation operators.

When we compare the mutation operators used in different languages to our mutation operator categories, we see that there exist differences

between different programming languages, just like we assumed. Table 11 leads to several interesting findings that reveal potential gaps in various

languages (note that Table 11 only listed 7 programming languages that have been widely used). Moreover, as Jia and Harman [1] also discussed

mutation operators in their review, it is interesting to see whether their summary agrees with our work. Therefore, we also compared our findings

to Jia andHarman's as follows:
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TABLE 11 Mutation operators used in our collection

Level Operator Java C C++ C# Fortran SQL JavaScript Total

Specificationmutation 2 2 1 … … … … 23

Programmutation 55 12 4 3 2 5 1 95

Expression-level Arithmetic operator 51 10 4 1 2 3 … 79

Relational operator 47 8 4 1 2 3 … 74

Conditional operator 47 7 4 2 2 3 … 72

Bitwise operator 36 4 2 … … … … 43

Assignment operator 33 4 2 … … … … 39

Constant 18 5 2 … 2 3 … 37

Shift operator 33 2 2 … … … … 36

Variable 15 4 2 … 2 3 1 31

Absolute value 19 3 2 1 1 3 … 31

Conditional expression 9 3 … 1 … … … 14

Parenthesis 1 2 … … … … … 3

Type … 3 … … … … … 3

Statement-level Statement deletion 11 4 … 2 2 … … 23

Method call 11 … 2 … … … 1 16

return statement 10 3 … … 2 … … 16

Control-flow disruption 6 2 2 … … … … 9

Exception handler 1 … 1 … … … … 5

goto label … 3 … … 2 … … 6

Statement swap 2 2 2 … … … … 5

Bomb statement … 2 … … 2 … … 5

switch statement 2 3 … … … … … 5

do statement … 2 … … 2 … … 5

Brace … 3 … … … … … 3

Loop trap … 3 … … … … … 3

while statement … 3 … … … … … 3

if statement … … … … … … … …

Others OO-specific 23 … … … … … … 26

Java-specific 17 … 1a … … … … 17

Interfacemutation 4 2 … … … … … 7

SQL-specific … … … … … 5 … 5

Concurrent mutation 4 … … … … … … 4

AOP-specific … … … … … … … 3

Spreadsheet-specific … … … … … … … 2

JavaScript-specific … … … … … … 1 1

aThe Java-specific operator here refers to the staticmodifier change (including insertion and deletion).

1. For Java, 7mutation operators at the expression and statement-level (exceptgo to label which is not supported in Java) are not covered by our

survey: type, bomb statement, do statement, brace, loop trap, while statement, and if statement. Compared with Jia and Harman's survey,

Alexander et al. [151,152]'s design of JavaObject mutation cannot be found in our collection.

2. For C, only 2 operators are not covered by our dataset. The C programming language does not provide direct support for exception handling.

There is no article applying mutation operators that target specific C program defects or vulnerabilities surveyed by Jia and Harman, such as

buffer overflows [153] and format string bugs [154].

3. For C++, 3 expression-level, 10 statement-level and the OO-specific operators are not used in our dataset. Jia and Harman have not covered

mutation operators for C++.

4. For C#, only a limited set of mutation operators are applied based on our dataset. Our collection has no application of OO-specific operators

[155] summarised in Jia andHarman's survey.

5. For Fortran, the earliest programming language mutation testing was applied to, the studies in our collection cover a basic set. These mutation

operators agree with Jia andHarman's work.

6. For SQL, since the syntax of SQL is quite different from imperative programming languages, only 6 operators at the expression-level and

SQL-specific ones are used in our dataset. Compared with Jia and Harman's literature review, a set of mutation operators addressing SQL

injection vulnerabilities [156] are not found in our collection.

7. For JavaScript, only 3 JavaScript-specific mutation operators are adopted in studies we selected. Mutation operators for JavaScript [157] have

not been covered by Jia andHarman as the paper introducing them (ie, Milani et al. [157]) is more recent.

8. For interfacemutation, we have found studies solely targeting Java and C in our selection.



ZHU ET AL. 23 of 39

The comparison with Jia and Harman's literature review has shown that for most programming languages (except for C++ and JavaScript), a few

mutation operators summarised by Jia and Harman have no actual applications in our collection. As we only considered 22 venues, we might miss

the studies that adopted these mutation operators in other venues. Without regard to the potential threat of missing papers in our dataset, these

mutationoperators thathavenoapplications inour collectionpose interestingquestions for furtherexploration, eg,whyare theseoperators seldom

used by other researchers?What is the difference between these operators and other widely used operators?

Also, from the above findings, we can see that for different languages the existing studies did not cover all the mutation operators that we listed

in Table 11: some are caused by the differences in the syntax, while the others could point to potential gaps. However, these potential gaps are just

the initial results in which we neither did further analysis to chart the syntax differences of these languages nor investigate the possibility of the

equivalentmutants causedbyour classification.Moreover, for some languages, eg, JavaScript, the relevant studies are too fewtodrawanydefinitive

conclusions. We can only say that Table 11 can be a valuable reference for further investigations into mutation operator differences and gaps in

different programming languages.

Furthermore, our generalised classification of the existing mutation operators can also be of benefit to compare mutation tools in the future.

Thereby, we compared the existing mutation testing tools (as listed in Table 9) to our mutation operator categories in Table 12. Table 12 is based on

the documentation or manuals of these tools. Here, we used the definitions of mutation operator groups from Listing 1 (mainly based on MuJava

[86,87] and Proteum [49]) as the baseline: if there is a possiblemutationmissing in a group for amutation testing tool, wemarked “*” in Table 12. As

there exist different syntaxes in different programming languages,we also consider syntactic differenceswhen categorising themutationoperators

of different tools. For example, there is nomodulus operator “%” in Fortran (but aMOD function instead), therefore, when considering the arithmetic

mutation operators for Fortran (Mothra), we do not require themodulus operator “%” to be included inMothra.

It is important to mention that Table 9 is not the complete list of all the existing mutation tools that have been published so far; these tools are

chosen to investigate howmutation testing supports quality assurance processes. We analyse them here as they are open to public and have been

applied by researchers at least once. The analysis ofmutation operators in these tools could also be a valuable resource for researchers inmutation

testing to consider.

The result shows that noneof the existingmutation testing toolsweanalysed can cover all types of operatorswe classified. For 7mutation testing

tools for Java, theymainly focus on the expression-levelmutations and only 5 kinds of statement-levelmutators are covered. Furthermore,MuJava,

PIT, and Sofya provide someOO-specific operators, whereas PIT only supports one type, the Constructor CallsMutator. For the 4mutation testing

tools forC (includingMothra) thatwehave considered, Proteumcovers themostmutationoperators. SMT-C is anexceptional caseof the traditional

mutation testingwhich targets semanticmutation testing. Proteum/IM is the onlymutation tool listed in Table 12 that supports interfacemutation.

For the tools designed for C#, OO-specific operators are not present.

Moreover, whenwe further analyse themissing mutations in eachmutation operator group (marked as “*” in Table 12), we found that most tools

missoneor severalmutations comparedwithourgeneralised classification. Particularly for thearithmetic operator, onlyMuJavaandProteumapply

all possible mutations. The other tools that adopt the arithmetic operator all miss Arithmetic Operator Deletion (as defined inMuJava [86]).

Another interesting findingwhenwe compared Tables 11 and 12, is that theif statementmutator is not used in literature, but it is supported by

SMT-C.This observation indicates thatnot all theoperatorsprovidedby the tools areused in the studieswhenapplyingmutation testing. Therefore,

we zoom in on this finding and investigate whether it is a common case that only a subset of the mutation operators from the existing mutation

tools is adopted in studies based on our collection. The result shows that 21 studies out of 54## applied a subset of themutation operators from the

existing tools; this reinforces ourmessage of the need for “well-defined”mutation operators when reportingmutation testing studies.

Summary

For the mutation operators, we focused on 2 attributes: their description level and a generalised classification across tools and programming lan-

guages.When investigating the description level of the mutation operators that are used in studies, we found that 62.3% (119 instances) explicitly

defined themutation operators used; this leads us to strongly recommend improving the description level for the sake of replicability. Furthermore,

the distribution of mutation operators based on our predefined categories shows the lacking of certain mutation operators in some programming

languages among the existing (and surveyed) mutation testing tools. A possible avenue for future work is to see which of the missing mutation

operators can be implemented for the programming languages lacking these operators.

4.2.3 RQ2.3:Which approaches are used to overcome the equivalentmutant problemwhen applyingmutation testing?

Observations

In Table 13, we summarised our findings of how the studies that we surveyed deal with the equivalent mutant problem. More specifically, Table 13

presents howmany timeswe encountered each of the approaches for solving the equivalent mutant problem.When looking at the results, we first

observe that in 56.5% of the cases we assigned “n/a,” such as Androutsopoulos et al. [104] and Flores and Polo[132].

##The studies that are categorised as “yes” in the tool availability, “existing tool” in the tool type and “well-defined” in themutation operator description level.
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As shown in Table 13, there are only 17 instances actually adopting equivalent mutant detectors by using automatic mechanisms. Specifically, 6

instances use “model checker” (eg, Gay et al. [175]); 8 instances use “reduce likelihood” (eg, Milani et al. [157]); and 3 instances apply “deterministic

model” (Belli et al. [101]).

In the remaining papers, the problem of equivalent mutants is solved by: (1) manual analysis (eg, Liu et al. [176] and Xie et al. [177]); (2) making

assumptions (treating mutants not killed as either equivalent or nonequivalent, eg, Fang et al. [178] and Rothermel et al. [61]); (3) no investigation

(eg, Offutt and Liu [179], Chen et al. [113], and Fraser and Zeller [114]). Themanual investigation (38 instances) and themethod of treatingmutants

not killed as equivalent (17 instances) aremore commonly used than othermethods.We also compared our resultswithMadeyski et al. [6]'s survey

on the equivalent mutant problem. In their review, they reviewed 17 methods for overcoming the equivalent mutant problem. Among these 17

techniques, we found that only themodel checker approach [42] was adopted.

We can only speculate as to the reasons behind the situation above: Firstly, most studies use mutation testing as an evaluation mechanism or

guiding heuristic, rather than their main research topic. So, the authors might be not willing to spare too much effort in dealing with problems

associated with mutation testing. Moreover, looking at the internal features of existing tools used in literature (in Table 14), we found that only 5

tools adopt techniques to address the equivalent mutant problem. Most of the tools did not assist in dealing with the equivalent mutant problem.

Therefore, in this paper, we consider the aforementioned 3 solutions: (1) manual analysis, (2) making assumptions, or (3) no investigation. If there

TABLE 12 Comparison of mutation operators in existingmutation toolsa

MuJava/�- PIT/

java/Muclipse PiTest JAVALANCHE MAJOR Jumble Sofya Jester Proteum MiLu

[86,87,158] [85,159] [96,160] [161,162] [163] [164] [165] [49,166] [167]

Specificationmutation … … … … … … … … …

Arithmetic operator
√ √∗ √∗ √∗ √∗ √∗

…
√ √∗

Relational operator
√ √∗

…
√

…
√∗

…
√ √

Conditional operator
√ √∗ √∗ √∗ √∗ √∗

…
√ √

Assignment operator
√ √∗

…
√∗

… … … …
√

Bitwise operator
√ √∗

…
√ √∗

… …
√ √∗

Shift operator
√ √∗

…
√ √∗

… …
√

…

Constant
√∗ √ √ √ √

…
√∗ √ √

Variable
√∗ √ √ √∗ √∗

… …
√

…

Absolute value … …
√ √

… … … …
√∗

Conditional expression …
√ √ √

… …
√ √

…

Parenthesis … … … … … … …
√

…

Type … … … … … … …
√

…

Statement deletion
√ √∗ √∗ √∗

… … …
√ √

Method call … … …
√

…
√∗

… … …

Return statement …
√

…
√ √

… …
√

…

If statement … … … … … … … … …

Exception handler … … … … … … … … …

Goto label … … … … … … …
√

…

Control-flow disruption … … …
√

… … …
√

…

Statement swap … … … … … … …
√

…

Bomb statement … … … … … … …
√

…

Switch statement …
√

… …
√

… …
√

…

Do statement … … … … … … … … …

Brace … … … … … … …
√

…

Loop trap … … … … … … …
√

…

While statement … … … … … … …
√

…

OO-specific
√ √∗

… … …
√∗

… … …

Java-specific
√

… … … … … … … …

SQL-specific … … … … … … … … …

JavaScript-specific … … … … … … … … …

AOP-specific … … … … … … … … …

Interfacemutation … … … … … … … … …

(Continues)
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TABLE 12 (Continued)

Proteum/ SQLMutation/ MoMuT::

SMT-C IM Mothra JDAMA SchemaAnalyst GenMutants PexMutator MUTANDIS AjMutator UML

[168] [147,169] [17] [20] [170] [171] [172] [88] [173] [174]

Specificationmutation … … … … … … … … …
√

Arithmetic operator
√∗

…
√∗ √∗

…
√∗ √∗ √∗

… …

Relational operator
√∗

…
√ √

…
√ √ √

… …

Conditional operator … …
√ √

…
√ √ √∗

… …

Assignment operator
√∗

… … … … … … … … …

Bitwise operator … … … … … … … … … …

Shift operator … … … … … … … … … …

Constant
√∗

…
√ √

… … …
√

… …

Variable … …
√ √

… … …
√

… …

Absolute value … …
√ √

…
√ √

… … …

Conditional expression … … … … … … … … … …

Parenthesis
√∗

… … … … … … … … …

Type … … … … … … …
√∗

… …

Statement deletion … …
√

… … … …
√∗

… …

Method call
√∗

… … … … … …
√∗

… …

Return statement … …
√

… … … …
√

… …

If statement
√∗

… … … … … … … … …

Exception handler … … … … … … … … … …

Goto label … …
√

… … … … … … …

Control-flow disruption … … … … … … …
√

… …

Statement swap … … … … … … …
√∗

… …

Bomb statement … …
√

… … … … … … …

Switch statement
√

… … … … … …
√

… …

Do statement … …
√

… … … … … … …

Brace … … … … … … … … … …

Loop trap … … … … … … … … … …

While statement … … … … … … … … … …

OO-specific … … … … … … … … … …

Java-specific … … … … … … … … … …

SQL-specific … … …
√ √

… … … … …

JavaScript-specific … … … … … … …
√

… …

AOP-specific … … … … … … … …
√

…

Interfacemutation …
√

… … … … … … … …

aThe entry marked with * means the tool does not provide the full possible mutations. Our summary of the mutation tools is based on the available manuals

and open repositories (if they exist) for the tools. If there are different versions of the tools, we only consider the newest one.

exists a well-developed auxiliary tool that can be seamlessly connected to the existing mutation systems for helping the authors detect equivalent

mutants, this tool might be more than welcomed. We recommend that future research on the equivalent mutant problem can further implement

their algorithms in such an auxiliary tool andmake it open to the public (see the fifth recommendation labelled asR5 in Section 4.4).

Secondly, themutationscore ismainlyusedasarelativecomparison forestimating theeffectivenessofdifferent techniques.Sometimes,mutation

testing is only used to generate likely faults; equivalent mutants have no impact on the other measures such as the Average Percentage of Fault

Detection rate [103]. Furthermore, the definition of the mutation score is also modified by some authors (eg, Rothermel et al. [61]) : they used the

total number ofmutants as the denominator instead of the number of nonequivalentmutants. The equivalentmutant problem seems to not pose a

significant threat to the validation of the testing techniques involved in these studies.

However, we should not underestimate the impact of the equivalent mutant problem on the accuracy of the mutation score. Previous empirical

results indicated that 10 to 40 percent of mutants are equivalent [186,187]. What is more, Schuler and Zeller [47] further claimed that around

45% of all undetected mutants turned out to be equivalent; this observation leads to the assumption that by simply treating mutants not killed as

equivalent mutations, we could be overestimating the mutation score. Therefore, we recommend performing more large-scale investigations on

whether the equivalent mutant problem has a strong impact on the accuracy of themutation score.
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TABLE 13 Methods for overcoming E(quivalent)
M(utant) P(roblem) summary

Equivalence detector Total

n/a 108

Manual investigation 38

Not killed as equivalent 17

No investigation 11

Reduce likelihood 8

Model checker 6

Deterministic model 3

Not killed as nonequivalent 3

TABLE 14 Inner features of existingmutation toola

Language Tool Equivalentmutants Cost reduction

Java MuJava/�-java/Muclipse n/a MSG, bytecode translation

(BCEL) [145]

PIT/PiTest n/a Bytecode translation (ASM), coverage-based

test selection [180]

JAVALANCHE Rankingmutations by MSG, bytecode translation (ASM), coverage-based test

impact [96] selection, parallel execution [96]

MAJOR n/a Compiler-integrated, coverage-based

test selection [146]

Jumble n/a Bytecode translation (BCEL), conventional

test selection [181]

Sofya n/a Bytecode translation

(BCEL) [182]

Jester n/a n/a

C Proteum n/a Mutant sample [18]

MiLu Trivial compiler Higher-order mutants, test

Equivalence [183] harness [184]

SMT-C n/a Interpreter-based, weak

mutation [185]

Proteum/IM n/a Compiler-based, control flow

optimisation [147]

Fortran Mothra n/a Interpreter-based [1]

SQL SQLMutation/JDAMA Constraint binding [20] n/a

SchemaAnalyst n/a n/a

C# GenMutants n/a n/a

PexMutator n/a Compiler-based [55]

JavaScript MUTANDIS Reduce Selection

likelihood [88] strategy [88]

AspectJ AjMutator Static Compiler-

analysis [173] based [173]

UML specification MoMuT::UML n/a Compiler-based [174]

a“n/a” in the table means we did not find any relevant information recorded in literature or websites, and some tools might adopt certain techniques but did

not report such information in the sources we can trace.

Summary

The techniques for equivalent mutant detection are not commonly used when applying mutation testing. The main approaches that are used are

themanual investigation and treatingmutants not killed as equivalent. Based on the results, we recommend that further research on the equivalent

mutantproblemcandevelopamatureanduseful auxiliary toolwhich caneasily link to theexistingmutation system. Suchanextra tool assists people

to solve the equivalent mutant problem when applying mutation testing more efficiently. Moreover, research on whether the equivalent mutant

problem has a high impact on the accuracy of the mutation score is still needed, as the majority did not consider the equivalent mutant problem

as a significant threat to the validation of the quality assurance processes. Also, 56.5% of the studies are lacking an explanation as to how they are

dealing with overcoming the equivalent mutant problem; this again calls for more attention on reportingmutation testing appropriately.
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TABLE 15 Cost reduction summary

Cost reduction technique Total

n/a 131

Fixed number 28

Weakmutation 15

Mutant sample 11

Selection strategy 8

Higher-order 1

4.2.4 RQ2.4:Which techniques are used to reduce the computational cost when applyingmutation testing?

Observations

Since mutation testing requires high computational demands, cost reduction is necessary for applying mutation testing, especially in an industrial

environment. We summarised the use of such computational cost reduction techniques when using mutation testing in Table 15. Please note that

we excluded the runtime optimisation and selective mutation techniques. We opted to exclude this because the runtime optimisation is related to

tool implementation, which is not very likely to appear in the papers under our research scope, while the second one, selectivemutation, is adopted

by all the papers.

First of all, we noticed that 131 articles (68.6%) did notmention any reduction techniques, eg, Außerlechner et al. [89] and Baker andHabli[188].

If we take into account those papers that used the runtime optimisation and selective mutation, one plausible explanation for the numerous “n/a”

instances is a lackof awarenessofproperly reportingmutation testing, aswementionedearlier. Secondly, randomselectionof themutantsbasedona

fixed number comes next (28 instances, eg, Namin andAndrews [57] and Staats et al. [189]), followed byweakmutation (15 instances, eg, Hennessy

and Power [133] and Vivanti et al. [190]) and mutant sampling (11 cases, eg, Arcuri and Briand [191] and Stephan and Cordy [192]). However, why

is the technique of using a “fixed number” of mutants more popular than the others? We speculate that this could be because choosing a certain

number of mutants is more realistic in real software development: the total number of mutants generated by mutation tools is enormous; while,

realistically, only a few faults aremadeby the programmer during implementation. By fixing the number ofmutants, it becomes easier to control the

mutation testing process. Instead, relying on the weak mutation condition would require additional implementation efforts to modify the tools. It

is also important to note that the difference between the “fixed number” and “mutant sample” choice: while the first one implies a fixed number of

mutants, the second one relies on a fixed sampling rate. Compared with using a fixed number, mutant sampling sometimes cannot achieve the goal

of reducing the number of mutants efficiently. In particular, it is hard to set one sample ratio if the size of the subjects varies greatly. For example,

consider the following situation: one subject has 100 000 mutants while the other has 100 mutants. When the sample ratio is set to 1%, the first

subject still has 1000mutants left, while the number of mutants for the second one is reduced to one.

We performed a further analysis of the mutation tools in Table 14. We find that most tools adopted some types of cost reduction techniques to

overcome the high computational expense problem. For mutation testing tools for Java, bytecode translation is frequently adopted while Mutant

Schemata Generation (MSG) is used in 2 tools, MuJava and JAVALANCHE. Another thing to highlight is that MiLu used a special test harness to

reduce runtime [184]. This test harness is created containing all the test cases and settings for runningeachmutant. Therefore, only the test harness

needs to be executedwhile eachmutant runs as an internal function call during the testing process.

Selectivemutation is also widely applied in almost all the existingmutation testing tools (as shown in Table 12). This brings us to another issue: is

the selected subset ofmutation operators sufficient to represent thewholemutation operator set?Whenadopting selectivemutation, some configurations

are based on prior empirical evidence, eg, Offutt et al.'s 5 sufficient Fortran mutation operators [30], and Siami et al.'s 28 sufficient C mutation

operators [32]. However,most of the articles are not supported by empirical or theoretical studies that showa certain subset ofmutation operators

can represent thewholemutation operator set. As far aswe know,most studies on selectivemutation aremerely based on Fortran [27,30,31] andC

[32,193,194,195] programs. Thereby, we recommendmore empirical studies on selectivemutation in programming languages other than Fortran).

Comparedwith Jia andHarman's literature review [1], most of the cost reduction techniques they surveyed have been adopted in our collection.

Runtime optimisation techniqueswhich they summarised, eg, interpreter-based technique [17], compiler-based approach [18] and bytecode trans-

lation [145] have beenwidely adopted in existingmutation testing tools. However, the articles we have reviewed did not apply FirmMutation [196]

and advanced platforms support for mutation testing, such as SIMD [197] andMIMDmachines [198]. For FirmMutation, there is no publicly avail-

able tool to support this method; thus, other researchers cannot adopt this approach conveniently. As for advanced platforms, these machines are

not easy for other researchers in themutation testing field to obtain. One exception is the cost reduction technique with a fixed number, which was

not covered by Jia and Harman [1]. As mentioned earlier, the fixed-number-of-mutants technique is different frommutant sampling as the former

selects a subset ofmutants based on a fixed number rather than a ratio.We speculated the reasonwhy Jia andHarm [1] did not include thismethod

is that reduction based on a fixed number is too simple to be considered as a real technique for cost reduction in mutation testing. However, such a

technique is surprisingly popular among the applications of mutation testing.

Summary

Based on the above discussion, we infer that the problem of the high computational cost of mutation testing can be adequately controlled using

the state-of-art reduction techniques, especially selective mutation and runtime optimisation. Selective mutation is the most widely used method
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TABLE 16 Programming language summary

Language Total

Java 92

C 34

Lustre/Simulink 8

C# 6

Fortran 6

n/a 6

C++ 5

SQL 5

Eiffel 3

Spreadsheet 3

AspectJ 3

JavaScript 3

Enterprise JavaBeans application 2

C/C++ 2

Ada 1

Kermeta 1

Delphi 1

ISOC++ grammar 1

PLC 1

Sulu 1

XACML 1

XML 1

HLPSL 1

PHP 1

Other specification languages 10

for reducing the high computational cost of mutation testing. However, in most cases, there are no existing studies to support the prerequisite that

selecting a particular subset of mutation operators is sufficient to represent the whole mutation operator set for other programming languages

instead of C and Fortran. Therefore, one recommendation is to conduct more empirical studies on selective mutation in various programming lan-

guages. Random selection of the mutants based on a fixed number (28 papers) is the most popular technique used to reduce the computational

cost. The other popular techniques are weak mutation and mutant sampling. Besides, a high percentage of the papers (68.6%) did not report any

reduction techniques used to copewith computational cost when applyingmutation testing; this again should serve as a reminder for the research

community to paymore attention to properly reportingmutation testing in testing experiments.

4.2.5 RQ2.5:What subjects are being used in the experiments (regarding programming language, size, and data availability)?

Observations

To analyse themost common subjects used in the experiments, we focus on 3 attributes of the subject programs, ie, programming language, size and

data availability.Wewill discuss these 3 attributes one by one in the following paragraphs.

Table 16 shows the distribution of the programming languages. We can see that Java and C dominate the application domain (66.0%, 126

instances). While JavaScript is an extensively used language in the web application domain, we only found 3 research studies in our datasets that

applied mutation testing for this programming language. The potential reasons for this uneven distribution are unbalanced data availability and

the complex nature of building a mutation testing system. The first cause, uneven data availability, is likely instigated by the fact that existing,

well-defined software repositories suchasSIR [97],SF100 [98] arebasedonCand Java.Wehavenot encountered such repositories for JavaScript,

C# or SQL. Furthermore, it is easier to design a mutation system targeting one programming language; this stands in contrast to many web appli-

cations, which are often composed out of a combination of JavaScript, HTML, CSS, etc; thus, this increases the difficulty of developing a mutation

system for these combinations of programming languages. It is also worth noticing that we have not found any research on a purely functional

programming language in our research scope.

Whenconsidering the sizeof the subject programs, in addition toour collection,wealso summarise thedatapresented in Jia andHarman's survey

[1] in Table 17. In Jia and Harman [1]'s survey, they summarised all the programs used in empirical studies related to mutation testing including the

programsizeand the total numberofuses. InTable17, to summarise thedata fromJia andHarman,we first categorise theprograms into5classes (as

shown in the first column) according to their size in LOC, and thenaddup the total numberof usages (as shown in the third column). It is important to
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TABLE 17 Subject size summarya

Subject size Our collection Jia andHarman

n/a 74 28

Small (100∼10K LOC) 70 128

Medium (10K∼1M LOC) 35 9

Preliminary (<100 LOC) 10 237

Large (>1M LOC) 2 0

aThe results of our collection are based on the maximum size of the programs used in each

studywhile Jia andHarman's is based on all the programs.

TABLE 18 Data availability summary

Data availability Total

No 96

Yes 95

note that the programdata in Jia andHarman's survey [1] is different fromours: they collected the programs fromempirical studieswhich aimed to

evaluate the effectiveness of mutation testing, eg, Mathur andWong compared data flow criteria withmutation testing [21]. These studies are not

part of our research scope: we focus on the application perspectivewhile theseworks target the development ofmutation testing approaches. The

purpose of the comparison of Jia andHarman's data is to investigate the difference between 2 perspectives ofmutation testing, ie, the development

and the application perspective. Moreover, they listed all the possible programs used in empirical studies while we only collected themaximum size

of the programs.

As forour collection, studies involvingpreliminary (<100LOC), small (100∼10KLOC) subjectsor studieswithno informationaboutprogramssize

(“n/a” instances in Table 17) represent 80.6%(154 instances) of papers in our collection. Among these “n/a” cases, some papers (eg, Xie et al. [177])

did not provide any information about the subject size (LOC), and a few cases (eg, Baudry et al. [107]) report outdated links. This high percentage

of preliminary, small and “n/a” subjects indicates that mutation testing is rarely applied to programs whose size is larger than 10K LOC.We did find

that only 35 studies usemedium size subjects, which corresponds to 29.9%‖‖ of papers.

Compared with Jia and Harman's data [1], preliminary programs account for 63.4%*** of the study set, which is much higher than in our study.

There are 2 possible causes for this finding. The one is that we only consider the maximum size of the programs in each study, we could subtract

many potential cases that used preliminary programs fromour results. The other is that a considerable number of the empirical studies onmutation

testing that Jia and Harman reviewed date back to the 1990s. These early-stage research works on mutation testing mainly involving preliminary

subjects. Also, we witness an increasing trend of medium and large size subject systems being used in studies on mutation testing; this shows the

full potential of mutation testing in large-scale applications.

Regarding data availability, we observe the following: 49.7% of the studies provide open access to their experiments (shown in Table 18). Some

studies, such as Staats et al. [199], used close-sourced programs from industry. There are also a few cases forwhich the source links provided by the

authors are not accessible anymore, eg, Jolly et al. [200]. We also found that several cases used open-source software corpora, such as SF110, but

they only used a sample of the corpus (eg, Rojas et al. [201]) without providing sample information. The others did not provide information about

sources in their paper, eg, Kanewala and Bieman [202].

Together with 6 instances of “n/a” in Table 16 and 74 in Table 17 (including subjects which cannot be measured as LOC, eg, spreadsheet applica-

tions), it is worth noticing that subject programs used in the experiment should be clearly specified. Also, basic information on the programming

language, size, and subject should also be clearly specified in the articles to ensure replicability.

Summary

For the subjects used in the experiments in our survey, we discussed 3 aspects: programming language, size of subject projects and data availability.

For programming languages, Java and C are the most common programming languages used in the experiments when applying mutation testing.

There is a clear challenge in creating more mutation testing tools for other programming languages, especially in the area of web applications and

functional programming (see the recommendation labelled asR7 in Section 4.4).

As for themaximumsizeof subject programs, small tomediumscaleprojects (100∼1M)arewidelyusedwhenapplyingmutation testing. Together

with2 large-scale cases,we can see the full potential ofmutation testing as apractical testing tool for large industrial systems.We recommendmore

research on large-scale systems to further explore scalability issues (see the recommendation labelled asR8 in Section 4.4).

‖‖Notice that we did not consider the number of “n/a” value when calculating the percentage. (191−74=117).

***Similarly, we removed the cases of “n/a” here when calculating the percentage. (402−28= 374).
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The third aspect we consider is data availability. Only 49.7% of the studies that we surveyed provide access to the subjects used; this again calls

for more attention on reporting test experiments appropriately: the authors should explicitly specify the subject programs used in the experiment,

covering at least the details of programming language, size, and source.

4.3 Summary of research questions

Wenow revisit the research questions and answer them in the light of our observations.

4.3.1 RQ1: How ismutation testing used in quality assurance processes?

Mutation testing is mainly used as a fault-based evaluationmethod (70.2%) in different quality assurance processes. It assesses the fault detection

capability of various testing techniques through the mutation score or the number of killed mutants. Adopting mutation testing to improve other

quality assurance processes as a guidewas first proposedbyDeMillo andOffutt [35] in 1991when they used it to generate test data. As a “high end”

test criterion, mutation testing started to gain popularity as a building block in different quality assurance processes, like test data generation (36

instances), test caseprioritisation (6cases)andtest strategyevaluation (6 instances).However,usingmutationtestingaspartofnewtestapproaches

raises a challenge in itself, namely, how to efficiently evaluatemutation-based testing? Besides,we foundone limitation related to the “guide” role of

mutation testing: mutation testing usually serves as awhere-to-check constraint rather than awhat-to-check improvement. Another finding of the

application of mutation testing is that it often targets unit-level testing (72.0%), with only a small number of studies featuring higher-level testing

showing the overall benefit of mutation testing. As a result, we conclude that the current state of the application of mutation testing is still rather

limited.

4.3.2 RQ2: How are empirical studies related tomutation testing designed and reported?

First of all, for the mutation testing tools and mutation operators used in literature, we found that 47.6% of the articles adopted existing (open

access)mutation testing tools, such asMuJava for Java and Proteum for C. In contrast, we did encounter a few cases (27 in total) where the authors

implemented their own tools or seeded mutants by hand. Furthermore, to investigate the distribution of mutation operators in the studies, we

createdageneralisedclassificationofmutationoperatorsasshown inListing1.Theresults indicate thatcertainprogramming languages lackspecific

mutation operators, at least as far as themutation tools that we have surveyed concern.

Moreover,when lookingat the2most significantproblemsrelated tomutation testing, themainapproaches todealingwith theequivalentmutant

problem are (1) treating mutants not killed as equivalent and (2) not investigating the equivalent mutants at all. In terms of cost reduction tech-

niques,weobserved that the “fixed number ofmutants” is themost popular technique, althoughwe shouldmention thatwedid not focus onbuilt-in

reduction techniques.

The findings above suggest that the existing techniques designed to support the application of mutation testing are largely still under develop-

ment: amutation testing toolwith amore complete set ofmutation operators or a flexiblemutation generation engine towhichmutation operators

can be added, is still needed [2,143]. In the same vein, a more mature and efficient auxiliary tool for assisting in overcoming the equivalent mutant

problem is needed. Furthermore, we have observed that we lack insight into the impact of the selectivemutation onmutation testing; this suggests

that a deeper understanding of mutation testing is required. For example, if we know what particular kinds of faults mutation is good at finding or

how useful a certain type of mutant is when testing real software, we can then design themutation operators accordingly, such as Just et al. [203].

Based on the distribution of subject programs used in testing experiments or case studies, Java and C are the most common programming

languages used in the experiments. Also, small to medium scale projects (100∼1M LOC) are themost common subjects employed in the literature.

From the statistics of the collection, we found that a considerable amount of papers did not provide a sufficiently clear or thorough specification

when reportingmutation testing in their empirical studies.We summarised the poorly-specified aspects ofmutation testing in Table 19. As a result,

we call for more attention on reporting mutation testing appropriately. The authors should provide at least the following details in the articles: the

mutation tool (preferably with a link to its source code), mutation operators used in experiments, how to deal with the equivalent mutant problem,

how to copewith high computational cost and details of the subject program (see the ninth recommendation labelled asR9 in Section 4.4).

TABLE 19 Poorly-specified aspects in empirical studies

The poorly-specified aspects in reportingmutation testing Number of papers

test level (see Section 4.1.2) 84

mutation tool source (see Section 4.2.1) 92

mutation operators (see Section 4.2.2) 72

equivalent mutant problem (see Section 4.2.3) 108

reduction problem (see Section 4.2.4) 131

subject program source (see Section 4.2.5) 96
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4.4 Recommendation for future research

In this section, we will summarise the recommendations for future research based on the insights obtained for the 2 main research questions (see

Sections 4.1 through 4.3).We propose 9 recommendations for future research:

• R1: Mutation testing cannot only be used as where-to-check constraints but also to suggest what to check to improve test code quality. As

shown in Table 4 in Section 4.1.1, whenmutation testing serves as a “guide,” mutants generated by the mutation testing system are mainly used

to suggest the location to be checked, ie, where-to-check constraints. For example, the location of mutants is used to assist the localisation of

“unknown” faults in fault localisation. The mutation-based test data generation also used the position information to generate killable mutant

conditions.However,mutation testing is notwidely considered tobeabenefit to improve test codequalityby suggestingwhat to check, especially

in the test oracle problem. Thewhat-to-check direction can be one opportunity for future research inmutation testing as a “guide” role.

• R2: For testing approaches that are guided by a mutation approach, more focus can be given to finding an appropriate way to evaluate

mutation-based testing in an efficient manner.When looking at the evaluation types in Table 5 in Section 4.1.1, we observe that 75.4% of the

mutation-based testing techniques still adopt mutation faults to assess their effectiveness. This raises the question of whether the conclusions

might be biased. As such, we open the issue of finding an appropriate way to evaluatemutation-based testing efficiently.

• R3: Study the higher-level application ofmutation testing. In Section 4.1.2, we observed thatmutation testing seems tomainly target unit-level

testing, accounting for 72.0% of the studies we surveyed. This reveals a potential gap in how mutation testing is currently applied. It is thus

our recommendation that researchers pay more attention to higher-level testing, such as integration testing and system testing. The research

community shouldnot only investigate potential differences in applyingmutation testing at theunit-level or at a higher level of testingbut should

also explorewhether the conclusions based onunit-levelmutation testing still apply to higher-levelmutation testing. A pertinent question in this

area could be, for example, whether an integrationmutation fault can be considered as an alternative to a real bug at the integration level.

• R4:Thedesignofamore flexiblemutationgenerationengine thatallows for theeasyadditionofnewmutationoperators.Asshown inTable8 in

Section4.2.1, 50.3%of thearticlesadopted theexisting tools thatareopen-source,whilewealso found27 instancesof researchers implementing

their own tool or seeding themutants by hand. Furthermore, in Tables 11 and 12, we can see certain existing mutation testing tools lack certain

mutation operators. These findings imply that existingmutation testing tools cannot always satisfy all kinds of needs, and new types ofmutation

operators are also potentially needed. Since most existing mutation testing tools have been initialised for one particular language and a specific

set of mutation operators, we see a clear need for a more flexible mutation generation engine to which new mutation operators can be easily

added [2].

• R5: A mature and efficient auxiliary tool to detect equivalent mutants that can be easily integrated with existing mutation tools. In Section

4.2.3, the problem of equivalent mutants is mainly solved by manual analysis, assumptions (treating mutants not killed as either equivalent or

non-equivalent) or no investigation at all during application. This observation leads to doubt about the efficacy of the state-of-art equivalent

mutant detection. In the meanwhile, if there is a mature and efficient auxiliary tool that can easily link to the existing mutation system, the aux-

iliary tool can be a practical solution for the equivalentmutant problemwhen applyingmutation testing. As a result, we call for a well developed

and easy to integrate an auxiliary tool for the equivalent mutant problem.

• R6:More empirical studies on the selectivemutationmethod can pay attention to programming languages other than Fortran andC.Asmen-

tioned inSection4.2.4, selectivemutation isusedbyall the studies inour research scope.However, the selectionof a subsetofmutationoperators

in most papers is not well supported by existing empirical studies, except for Fortran [27,30,31] and C [32,193,194,195]. Selective mutation

requires more empirical studies to explore whether a certain subset of mutation operators can be applied in different programming languages.

• R7: More attention should be given to other programming languages, especially web applications and functional programming projects.As

discussed in RQ2.5 in Section 4.2.5, Java andC are themost common programming languages thatwe surveyed.While JavaScript and functional

programming languages are scarce. JavaScript, as one of the most popular languages for developing web applications, calls for more atten-

tion from researchers. In the meanwhile, functional programming languages, such as Lisp and Haskell, are still playing an inevitable role in the

implementation of programs; they thus deservemore focus in future studies.

• R8: Application of mutation testing in large-scale systems to explore scalability issues.From Table 17 in Section 4.2.5, we learn that the appli-

cation ofmutation testing to large-scale programswhose size is greater than 1MLOC rarely happens (only 2 cases). To effectively applymutation

testing in industry, the scalability issue of mutation testing requires more attention. We recommend future research to use mutation testing in

more large-scale systems to explore scalability issues.

• R9: Authors should provide at least the following details in the articles: mutation tool source, mutation operators used in experiments, how

to deal with the equivalentmutant problem, how to copewith high computational cost and subject program source.From Table 19 in Section

4.4, we remember that a considerable amount of papers inadequately reported onmutation testing. To help progress research in the area more

quickly and to allow for replication studies, we all need to take care to be careful in how we report mutation testing in empirical research. We

consider the above 5 elements to be essential when reportingmutation testing.

5 THREATS TO THE VALIDITY OF THIS REVIEW

We have presented our methodology for performing this systematic literature review and its findings in the previous sections. As conducting a

literature review largely relies on manual work, there is the concern that different researchers might end up with slightly different results and
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conclusions. To eliminate this potential risk caused by researcher bias as much as possible, we follow the guidelines for performing systematic lit-

erature reviews by Kitchenman [7], Wohlin [75], and Brereton et al. [72]) whenever possible. In particular, we keep a detailed record of procedures

made throughout the review process by documenting all themetadata from article selection to characterisation (see [77]).

In this section,we describe themain threats to the validity of this review and discuss howwe attempted tomitigate the risks regarding 4 aspects:

the article selection, the attribute framework, the article characterisation and the result interpretation.

5.1 Article selection

Mutation testing is an active research field, and a plethora of realisations have been achieved as shown in Jia and Harman's thorough survey [1]. To

address themain interest of our review, ie, the actual applicationofmutation testing,weneed todefine inclusion/exclusion criteria to includepapers

of interest and exclude irrelevant ones. But this also introduces a potential threat to the validity of our study: unclear article selection criteria. To

minimise the ambiguity caused by the selection strategies, we performed a pilot run of the study selection process to validate our selection criteria

among the 3 authors. This selection criteria validation led to a tiny revision. Besides, if there is any doubt about whether a paper belongs in our

selected set, we had an internal discussion to see whether the paper should be included or not.

Thevenues listed inTable2wereselectedbecauseweconsideredthemtobethekeyvenues insoftwareengineeringandmost relevant tosoftware

testing, debugging, software quality, and validation. This presumption might result in an incomplete paper collection. To mitigate this threat, we

also adopted snowballing to extend our set of papers from preselected venues to reduce the possibility of missing papers. Moreover, we also ran 2

sanity checks (as mentioned in Section 3.2) to examine the completeness of our study collection, and recorded the dataset in each step for further

validation.

Although we made efforts to minimise the risks regarding article selection, we cannot make definitive claims about the completeness of this

review.Wehaveonemajor limitation related to the article selection:weonly considered top conference or journal papers to ensure the high quality

whilewe excluded article summaries, interviews, reviews,workshops (except the InternationalWorkshop onMutationAnalysis), panels, and poster

sessions. Vice versa, sometimeswewere also confrontedwith a vague use of the “mutation testing” terminology, in particular, somepapers used the

term “mutation testing,” while they are doing fault seeding, eg, Lyu et al. [204]. The main difference between mutation testing and error seeding is

the way how to introduce defects in the program [205]: mutation testing follows certain rules while error seeding adds the faults directly without

any particular techniques.

5.2 Attribute framework

We consider the attribute framework to be the most subjective step in our approach: the generalisation of the attribute framework could be influ-

encedby the researcher's experienceand the reading sequenceof thepapers. Togenerate auseful and reasonable attribute framework,we followed

a 2-step approach: (1) we first wrote down the facets of interest according to our research questions and then (2) derived corresponding attributes

of interest.Moreover, for each attribute, we need to ensure all possible values of each attribute are available, and a precise definition of each value.

In this manner, we can target and modify the unclear points in our framework quickly. In particular, we conducted a pilot run for specifically for

validating our attribute framework. The results led to several improvements to the attribute framework and demonstrated the applicability of the

framework.

5.3 Article characterisation

Thanks to the complete definitions of values for each attribute, we can assign the value(s) to articles in a systematic manner. However, applying

the attribute framework to the research body is still a subjective process. To eliminate subtle differences caused by our interpretation, wemake no

further interpretation of the information extracted from the papers in the second pilot run of validation. In particular, if a detail is not specified in

a paper, we mark it as “n/a.” Furthermore, we listed our data extraction strategies about how to identify and classify the values of each attribute in

Section 3.3.

5.4 Result interpretation

Researcher bias could cause a potential threat to validitywhen it comes to the result interpretation, ie, the authormight seekwhat he expected for

in the review.We reduce the bias by (1) selecting all possible papers in amanner that is fair and seen to be fair and (2) discuss our findings based on

statistical data we collected from the article characterisation. Also, our results are discussed among all the authors to reach an agreement.

6 CONCLUSION

In this paper, we have reported on a systematic literature review on the application perspective of mutation testing, clearly contrasting previous

literature reviews that surveyed themain development of mutation testing, and that did not specifically go into howmutation testing is applied (eg
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[1,2,6]). We have characterised the studies that we have found on the basis of 7 facets: (1) the role that mutation testing has in quality assurance

processes; (2) thequality assuranceprocesses (including categories, test level and testing strategies); (3) themutation tools used in theexperiments;

(4) the mutation operators used in the experiments; (5) the description of the equivalent mutant problem; (6) the description of cost reduction

techniques formutation testing; and (7) the subject software systems involved in the experiments (in terms of programming language, size, and data

availability). These 7 facets pertain to our 2main research questions:RQ1:How is mutation testing used in quality assurance processes? andRQ2:How

are empirical studies related to mutation testing designed and reported?

Figure 1 shows ourmain procedures to conduct this systematic literature review. To collect all the relevant papers under our research scope, we

started with search queries in online libraries considering 17 venues. We selected the literature that focuses on the supporting role of mutation

testing in quality assurance processeswith sufficient evidence to suggest thatmutation testing is used. After that, we performed a snowballing pro-

cedure to collect missing articles, thus resulting in a final selection of 191 papers from 22 venues. Through a detailed reading of this research body,

we derived an attribute framework that was consequently used to characterise the studies in a structuredmanner. The resulting systematic litera-

ture reviewcanbeof benefit for researchers in the areaofmutation testing. Specifically,weprovide (1) guidelines onhow toapply and subsequently

report onmutation testing in testing experiments and (2) recommendations for future work.

The derived attribute framework is shown in Table 3. This attribute framework generalises anddetails the essential elements related to the actual

application of mutation testing, such as in which circumstances mutation testing is used andwhichmutation testing tool is selected. In particular, a

generic classification of mutation operators is constructed to study and compare the mutation operators used in the experiments described. This

attribute framework can be used as a reference for researchers when describingmutation operators.We then presented the characterisation data

of all the surveyed papers in our GitHub repository [77]. Based on our analysis of the results (in Section 4), 4 points are key to remember:

1. Most studies use mutation testing as an assessment tool; they target the unit level. Not only should we pay more attention to higher-level and

specification mutation, but we should also study howmutation testing can be employed to improve the test code quality. Furthermore, we also

encourage researchers to investigate and explore more interesting applications for mutation testing in the future by asking such questions as:

what else can wemutate? (Sections 4.1.1-4.1.2)

2. Many of the supporting techniques for making mutation testing truly applicable are still underdeveloped. Also, existing mutation tools are not

complete regarding the mutation operators they offer. The 2 key problems, namely, the equivalent mutant detection problem and the high

computation cost of mutation testing issues, are not well solved in the context of our research body (Sections 4.2.1-4.2.4).

3. A deeper understanding of mutation testing is required, such as what particular kinds of faults mutation testing is good at finding. This would

help the community to develop newmutation operators and overcome some of the inherent challenges (Section 4.3).

4. The awareness of appropriately reportingmutation testing in testing experiments should be raised among the researchers (Section 4.3).

In summary, the work described in this papermakes the following contributions:

1. A systematic literature review of 191 studies that apply mutation testing in scientific experiments, which includes an in-depth analysis of how

mutation testing is applied and reported on.

2. A detailed attribute framework that generalises and details the essential elements related to the actual use of mutation testing

3. A generic classification of mutation operators that can be used to compare different mutation testing tools.

4. An actual characterisation of all the selected papers based on the attribute framework.

5. A series of recommendations for future work including valuable suggestions on how to report mutation testing in testing experiments in an

appropriatemanner.
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