
A Systematic Literature Review of Traceability Approaches
between Software Architecture and Source Code

Muhammad Atif Javed and Uwe Zdun
Software Architecture Research Group

University of Vienna, Austria
muhammad.atif.javed|uwe.zdun@univie.ac.at

ABSTRACT
The links between the software architecture and the source
code of a software system should be based on solid trace-
ability mechanisms in order to effectively perform quality
control and maintenance of the software system. There are
several primary studies on traceability between software ar-
chitecture and source code but so far no systematic litera-
ture review (SLR) has been undertaken. This study presents
an SLR which has been carried out to discover the existing
traceability approaches and tools between software archi-
tecture and source code, as well as the empirical evidence
for these approaches, their benefits and liabilities, their re-
lations to software architecture understanding, and issues,
barriers, and challenges of the approaches. In our SLR the
ACM Guide to Computing Literature has been electroni-
cally searched to accumulate the biggest share of relevant
scientific bibliographic citations from the major publishers
in computing. The search strategy identified 742 citations,
out of which 11 have been included in our study, dated from
1999 to July, 2013, after applying our inclusion and exclu-
sion criteria. Our SLR resulted in the identification of the
current state-of-the-art of traceability approaches and tools
between software architecture and source code, as well as
gaps and pointers for further research. Moreover, the classi-
fication scheme developed in this paper can serve as a guide
for researchers and practitioners to find a specific approach
or set of approaches that is of interest to them.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: Surveys of historical
development of one particular area; D.2.7 [Software
Engineering]: Maintenance, and Enhancement; D.2.9
[Software Engineering]: Management; D.2.11 [Software
Engineering]: Software Architectures

General Terms
Design, Management, Documentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
EASE ’14, May 13 - 14 2014, London, England, BC, United Kingdom
Copyright 2014 ACM 978-1-4503-2476-2/14/05 ...$15.00.

Keywords
Traceability, Software Architecture, Source Code, System-
atic Literature Review

1. INTRODUCTION
Traceability between the architecture and the source code

of a software system helps developers in easier understand-
ing architecture designs and provide support for software
quality control and maintenance. An important problem in
this context is that software systems evolve over time, in-
cluding the architecture and the source code. This might
cause serious problems, as during evolution the consistency
of the traceability links between the architecture and the
source code is continuously broken. The separate evolution
of these artefacts might cause mistrust in existing traceabil-
ity information, and, as a result, the traceability informa-
tion becomes obsolete. In addition, it is hard to find the
correct links between architecture and implementation arte-
facts because usually software architecture is not explicitly
represented in the source code, e.g. as packages and classes
or similar code-level abstractions. Traceability approaches
aim to provide means to cope with these challenges, in par-
ticular, to support the rapid identification of architecture
artefacts in the source code and to assure consistency be-
tween them.
There are several primary studies on traceability ap-

proaches between software architecture and the source code,
but so far no Systematic Literature Review (SLR) has been
undertaken. This study presents the first systematic liter-
ature review on traceability approaches and tools between
software architecture and source code. The goal of this
study is to systematically access and examine the existing
studies on traceability between software architecture and
the source code by following the guidelines of Kitchenham
et al. [10, 11]. To do so, the Association for Computing
Machinery (ACM) Guide to Computing Literature has been
electronically searched to accumulate the biggest share of
relevant scientific bibliographic citations from the major
publishers in computing. Using our search strategy we have
identified 742 citations, out of which 11 are selected for our
SLR on traceability between software architecture and the
source code.
The result of our SLR is the identification of the present

state of traceability approaches and tools between software
architecture and the source code. We have studied the ex-
isting empirical evidence for these approaches, their bene-
fits and liabilities, their relations to software architecture
understanding, and issues, barriers, and challenges of the

approaches. In addition, a classification scheme has devel-
oped. It distinguishes various aspects of traceability be-
tween software architecture and the source code, including
the nature of the approaches, automation of traceability ap-
proaches, types of traceability relations, granularity of trace-
ability approaches, traceability direction, and representation
of traceability information. This categorization of the vari-
ous aspects within the field of traceability between software
architecture and the source code can serve as a guide for
researchers and practitioners to identify a specific set of ap-
proaches that is of interest to them.

This paper is organized into five sections: The following
Section 2 discusses the systematic literature review process
we followed. In Section 3 we present the results from the
analysis of our systematic literature review. Section 4 dis-
cusses the results of our SLR in relation to the research
questions addressed in the SLR. Finally, in Section 5 we
conclude and discuss future work.

2. SYSTEMATIC LITERATURE REVIEW
PROCESS

An SLR, also referred to as systematic review or literature
review, is a well-defined and rigorous method for identifying,
evaluating, and interpreting all available research relevant to
a particular research question, topic area, or phenomenon
of interest [10]. SLRs aim to present a fair, unbiased, and
credible evaluation of a particular research topic by utilizing
auditable, rigorous, and trustworthy methods [10].

This research has been conducted as an SLR by following
the guidelines of Kitchenham et al. [10, 11], who propose
three main phases:

1. Planning the review, which aims at identifying the
main rationale for undertaking the review and devel-
oping a review protocol (see Section 2.1),

2. executing the review, which aims at conducting the
review by executing the planned review protocol from
the previous phase (see Section 2.2), and

3. reporting the review, which aims at presenting the re-
sults of the review and its dissemination to the inter-
ested parties (see Sections 3 and 4).

The objective of this review is to identify the state-of-the-
art on traceability approaches between software architecture
and the source code during the years 1999 – July, 2013. To
select this particular period, we have performed a thorough
overview research before the study, where we found that this
particular period covers the most significant approaches in
the area of software architecture traceability.

2.1 Planning the review
The first phase of an SLR is associated with pre-review ac-

tivities for conducting the systematic review. Steps involved
in planning the review are identification of the need for a re-
view (see Section 2.1.1), specifying the search questions (see
Section 2.1.2), the search strategy (see Section 2.1.3), and
inclusion and exclusion criteria (see Section 2.1.4).

2.1.1 Identification of the need for review
There are several primary studies on traceability between

software architecture and the source code (such as [1, 2, 4,
8, 9, 17, 19, 21, 23, 24]), but so far no systematic literature

review has been undertaken. Therefore, this study is con-
ducted as the first systematic literature review to summarise
all existing practices and information with regard to the re-
lationship of traceability between software architecture and
the source code in a thorough and unbiased manner. More-
over, this review is a first step towards drawing more general
conclusions, more specifically, on the role of traceability in
understanding of software architectures. Accordingly, this
review provides a resource for practitioners (to select the
appropriate traceability method) and for researchers (to de-
termine the gaps and pointers for further research) in this
area.

2.1.2 Specifying the research question
The research question specification step is considered as

one of the most important parts of an SLR, because the re-
search questions drive the entire literature review method-
ology. The selected research questions for achieving the out-
lined objectives of our study are listed below:

1. What is the state-of-the-art in traceability approaches
and tools between software architecture and the source
code?

2. What information is available for traceability from ar-
chitectural artifacts to more low-level artifacts (like the
source code) and vice versa?

3. What empirical evidence has been reported in the field
of traceability between software architecture and the
source code?

4. In how far are the reported traceability relationships
useful in software architecture understanding?

5. What are the reported benefits and liabilities of trace-
ability approaches between software architecture and
the source code?

6. What are the reported issues, barriers, and challenges
of traceability between software architecture and the
source code?

2.1.3 Search Strategy
The search strategy step of an SLR aims to provide a

foundation for the comprehensive and unbiased collection
of research works from the literature. This requires a well-
planned search strategy so that every relevant bibliographic
citation has a very good chance to appear in the search re-
sults.
The ACM digital library1 aims to provide a comprehen-

sive coverage of bibliographic citations, which are published
by ACM and a wide range of publishers in the field of com-
puting. The methodology, which we exploited for reaching
comprehensive coverage, is to perform an advanced search
in the ACM Guide to Computing Literature for accumu-
lating bibliographic citations from the major publishers in
computing. At the time of our study, the ACM Guide to
Computing Literature contained approximately two million
bibliographic records. The rationale behind using this par-
ticular methodology is to find the biggest share of scientific
citations that are relevant to answer the specific research
questions enlisted above.

1http://dl.acm.org/

The search string comprises keywords derived from the
research topic and Boolean logic for performing efficient
searching. Consequently, a citation is available in the list
of search results upon matching of keywords and Boolean
logic. The following search string is created to search for
relevant publications:

((((Abstract:"architecture") or (Abstract:"architectures") or
(Abstract:"architectural") or (Abstract:"model") or
(Abstract:"models") or (Abstract:"design") or
(Abstract:"designs") or (Abstract:"component") or
(Abstract:"components"))

and ((Abstract:"code") or (Abstract: "implementation")))
and ((Abstract:"trace links") or (Abstract:"tracing") or

(Abstract:"traceability")))

However, this process might inevitably miss useful cita-
tions. In response to this problem, snowballing [5] (i.e., fol-
lowing the references of articles found during the search) is
performed in an iterative way to identify particular citations.
That is, bibliographies of every selected citation are checked
for useful articles that are missed in the initial search. Snow-
balling is performed until a convergence is reached and no
more new articles are found.

2.1.4 Inclusion and Exclusion Criteria
Inclusion and exclusion criteria are used to determine the

suitability of publications (articles) and making decisions
about whether to accept or reject a particular publication
into the SLR. The inclusion and exclusion criteria for this
SLR are listed below:

Inclusion Criteria

• Studies on traceability approaches or tools that are re-
lated to the software architecture and the source code.

• Studies that discuss the effects of traceability in archi-
tecture or design models and the source code.

• Studies that provide some sort of solution, roadmap,
or framework related to traceability between software
architecture or design models and the source code.

• Studies that report success, issues, and/or failures or
any type of experience concerning traceability between
architecture or design models and the source code.

• Studies representing empirical evidence on traceability
between software architecture or design models and the
source code by describing experiments, surveys, expe-
rience reports, case studies, or observation articles.

• Studies published in peer-reviewed journals, confer-
ences, and workshops.

Exclusion Criteria

• Studies reporting information on traceability (only)
in hardware architectures, requirements, low-level
software design, or other fields not directly related
to traceability between software architecture and the
source code.

• Studies related to software architectures and the source
code, but not or only very marginally concerning trace-
ability.

• Every study that is not published in a peer-reviewed
journal, conference, or workshop is excluded. For in-
stance, books, master thesis, and doctoral disserta-
tions are excluded to establish quality through peer
review.

• Studies published outside of the time-frame 1999 –
July, 2013 (the initial search of this SLR has been per-
formed in August, 2013). To select this particular pe-
riod, we have performed a thorough overview research
before the study, where we found that this particular
period covers the most significant research in the area
of software architecture traceability.

• Studies having more than one published descriptions
are included only once (using the most detailed and
up-to-date version of the study).

2.2 Conducting the Review
The second phase of the SLR method aims at conducting

the SLR. Steps involved in conducting the SLR are search
for studies and studies selection (see Section 2.2.1), data
extraction (see Section 2.2.2), and study quality assessment
(see Section 2.2.3).

2.2.1 Search for Studies and Studies Selection
To create the initial pool of articles, automatic search for

citations was performed without any additional constraints.
The search was conducted in August, 2013 using an ad-
vanced search in the ACM Guide to Computing Literature
with the search string described above. Overall 726 cita-
tions have been identified in this first step using the search
strategy.
After obtaining this initial body of literature, we reviewed

each of the citations. In this process, the first author selected
the set of citations which could be relevant by reading the
abstracts of the citations as well as having a cursory look-
ing into the citations in case it was hard to predict from
the abstract if the citation shall be included or not. This
selection is based on the inclusion and exclusion criteria ex-
plained above. The second author independently checked
all citations, and in cases of doubt we discussed the citation
in question in detail. Finally, both authors read all selected
publications in detail. 11 citations conformed to the inclu-
sion criteria and have therefore been included in the study.
In the following snowballing process, for each selected ci-

tation, a secondary search was performed based on the refer-
ences of that particular citation. For the citations selected,
we applied the same studies selection process again. Snow-
balling continued until no more new citations were found,
leading to 16 additional citations included in our SLR. Some
of the articles found during snowballing did not exist in the
ACM digital library. Others did exist in it, but were not
found in the first search because they have very short ab-
stracts or simply their abstracts do not include at least one
word from each of the three parts of the search string. None
of those 16 additional citations conformed to the inclusion
criteria. Hence, overall we selected 11 studies out of a total
of 742 citations.

2.2.2 Data Extraction
In this SLR the following form is used to extract the data

for addressing the research questions from all included stud-
ies.

1. Reference of bibliographic citation (including title, au-
thor(s) name, conference proceedings or journal, date
of publication)

2. Specific information concerning software architecture
traceability:

(a) Challenges or problems

(b) Approach (e.g., available in literature or proposed
by authors)

(c) Tool (e.g., open source, commercial, or proposed
by authors)

(d) Automation of traceability approach

(e) Types of traceability relations

(f) Granularity of traceability approach

(g) Traceability direction

(h) Representation of traceability information

(i) Comparison (benefits and drawbacks of the par-
ticular approach)

(j) Arguments for supporting architectural under-
standability

(k) Form of empirical evidence

3. Validity threats (internal or external)

2.2.3 Quality Assessment
The quality assessment criteria are used to examine the

rigour and credibility of the used research methods as well as
the relevance of the citations. The following quality criteria
have been applied:

1. Are the collected citations relevant? In this SLR, the
quality assessment is specifically focused on accumu-
lating only those citations that report adequate infor-
mation to answer the stated research questions. The
quality assessment has been performed according to
our inclusion/exclusion criteria by the two researchers
who have independently reviewed each citation in a
number of iterations.

2. Does the literature research cover all relevant cita-
tions? In this SLR, the two researchers have inde-
pendently reviewed each citation in a number of itera-
tions to ensure that none of the relevant citations are
missed. The steps toward achieving this objective are
to search from the entire population of scientific cita-
tions and screening by title, abstract, keywords, and
conclusion after accessing the full text.

3. Do the citations contain adequate information? In this
SLR, it is examined whether particular citations con-
tain sufficient information to answer the research ques-
tions and whether the particular work is supported by
some (preferably empirical) evidence.

3. RESULTS FROM THE SYSTEMATIC
LITERATURE REVIEW

This section presents the results of our SLR on traceabil-
ity approaches between software architecture and the source
code. It aims at collecting and summarizing the results of
the included primary studies and provides a comprehensive

and orthogonal classification of the research results in these
studies. Six main categories have been identified and used
to distinguish the different research approaches: Traceabil-
ity approaches between software architecture and the source
code (see Section 3.1), automation of traceability approaches
(see Section 3.2), types of traceability relations (see Section
3.3), granularity of traceability approaches (see Section 3.4),
traceability direction (see Section 3.5), and representation of
traceability information (see Section 3.6).

3.1 Traceability Approaches between Soft-
ware Architecture and the Source Base

3.1.1 Event-Based Traceability
Buchgeher and Weinreich [4] introduce the LISA ap-

proach to semi-automatically capture traceability relations
from an architectural component model to the code base,
design decisions, and architecture-significant requirements.
The LISA toolkit is based on a semi-formal architecture de-
scription model, which is continuously synchronized with
the system implementation. LISA supports automatically
establishing traceability relations through observing the de-
veloper as she/he is working on the architecture design and
implementation. Traceability is captured in three steps: In
the first step, the developer specifies the context of the work
by selecting the active design decisions. In the next step,
the developer performs architecture design and implemen-
tation tasks. During these tasks, modification events are
created and logged. A modification event contains short de-
scriptions of the performed modification, potential targets
of traces, and manipulated architecture or implementation
elements (which are affected by the architecture design or
implementation activity). The modification request is sent
to an event-logger which is in charge of capturing the trace
targets and managing the active decisions. In the last step, a
review of the traceability target is performed. The approach
is validated using an action research approach.
Traceability information requires maintenance as the re-

lated development artefacts evolve. Mäder et al. [13] in-
troduce a semi-automatic strategy to determine changes in
Unified Modelling Language (UML) models to update pre-
existing traceability links. The approach records all changes
to model elements and uses this information to find a match
within a set of predefined patterns of recurring development
activities. A match will trigger the required traceability up-
date actions. While the approach is not only related to
architectural models, it can be used for maintaining trace-
ability between architecture and design models, as it has
been defined for various structural UML diagrams (class,
object, composite structure, package, and component dia-
grams). The usefulness of the approach is shown through an
experiment that compares the effort and quality associated
with and without supported tool, called traceMaintainer.
Hammad et al. [9] introduce an approach that

supports traceability from the code base to the design to
maintain consistency with the design during code evolution.
The approach examines the code base changes based on a
lightweight analysis and syntactic differentiation to evaluate
whether a particular change alters the design or not. The
changes in the code base that lead to design changes
include adding or removing of classes, methods, and their
relationships. In contrast, modifications in data structures,
loops, or conditional statements typically do not lead to

changes in the design. The outcome contains details of
changes and their particular impacts on the design, which
are reported to the user upon identification of a design
change. The usefulness of the approach is shown through
an experiment that compares the accuracy and time spent
with and without supported-tool, called SrcTracer.

3.1.2 Rule-Based Traceability
Murta et al. [18, 19] propose ArchTrace, an

architecture-implementation traceability approach that
focusses on keeping an evolving conceptual architecture
synchronized with its evolving code base. ArchTrace uses
policies, specified by the architects and developers, to
describe how to continuously update traceability links
between the architecture and its implementation. That is,
in response to each and every change in an architecture
or source code artifact, one or more policies might be
triggered, which manage the evolution of traceability
links. A policy can be a rule or constraint that is used
to determine or limit the set of actions to be applied
for updating traceability links. The policies make use of
encoded knowledge (concerning architecture and source
code artifacts) for making educated guesses. ArchTrace
also supports the visualization of traceability links. The
approach is evaluated through a retrospective study.

3.1.3 Hypertext-Based Traceability
Alves-Foss et al. [1] introduce an XML-based traceabil-

ity approach to support traceability between a UML-based
design specification and the corresponding code base. In this
approach, XML Metadata Interchange (XMI)2 and JavaML
[14] are used as markup specifications of the design and the
code base respectively. The approach uses Xlink-base3, a
linking language, to specify traceability links that describe
which design classes are implemented by which code base
classes and vice versa. The Extensible Stylesheet Language
(XSL)4 is used to render the XMI design specification, the
JavaML code markup, and the traceability links in HTML.
The approach is evaluated through a case study.

Nguyen [20, 21] introduces MolhadoArch, a hypertext
versioning and software configuration management approach
to consistently maintain architecture configurations and ver-
sions at various levels of abstraction, including architecture
elements, the code base, and traceability relations between
them. In MolhadoArch, the architecture is modelled as an
attributed graph, which incorporates five entities, namely,
component, atomic component, composite component, con-
nector, and interface, to precisely capture architecture ele-
ments and their interconnections. Every atomic or compos-
ite component is represented as a node, which is further asso-
ciated with referential attributes (or components) that hold
a reference to the corresponding component. MolhadoArch
represents the code base in form of a hierarchical structure,
the code base tree, where each tree node represents a struc-
tural unit in the code. Each traceability relationship is rep-
resented by means of an edge between the nodes in the graph
and the corresponding node in tree data structure. Mol-
hadoArch requires human effort or trace generation tools to
establish the traceability relations. It supports evolution by
capturing the state of the project at various discrete points

2http://www.omg.org/spec/XMI/2.4.1/PDF/
3http://www.w3.org/TR/xlink/
4http://www.w3.org/TR/xsl/

in time that can be retrieved and used in later sessions.
The usefulness of the approach is evaluated through an ex-
periment that compares the performance and efficiency of
MolhadoArch.

3.1.4 Traceability Based on Information Retrieval
The design or architecture of a software systems can be

reconstructed from the code base using reverse engineering
mechanisms. In general, the continuous evolution of a de-
sign is preferred over design or architecture reconstruction,
because it contains richer information and higher quality,
compared to reconstructed architectures or designs [2, 9].
Antoniol et al. [2] introduce an evolutionary design-
implementation traceability approach and a tool to check
the compliance of design and code base. The approach ex-
ploits reverse engineering mechanisms to extract the design
from the code base. During the reverse engineering process,
commonalities and differences between the design and the
code base are identified. Commonalities are identified by
exploiting edit distance of attribute names and the maxi-
mum matching algorithm [6]. The maximum matching algo-
rithm is used to determine traceability links using the aver-
age similarity and differences (unmatched attributes) based
on the extracted edges, selected edges, and missed edges re-
spectively. In addition, the extracted design is compared
with the actual design to better cope with inconsistencies.
The resulting design is graphically visualized with green, yel-
low, and red colours to support better understandability of
perfect match, poor match, and unmatched classes, respec-
tively. The usefulness of the approach is experimented on
industrial design and code.

3.1.5 Design Patterns Based Traceability
Ubayashi and Kamei [24] use the concepts of Arch-

points (architecture points) and Archmappings (architec-
ture mappings) to support traceability between the archi-
tecture and the code base. Archpoints are selected points
in the architecture that describe the essence of an archi-
tectural design with respect to structural and behavioural
aspects. Traceability is established by mapping them to pro-
gram points, which is implemented using data flow analysis
based on the Observer design pattern [7]. For instance, an
archpoint such as ‘message send’ in the design is mapped to
a program point such as ‘method call’ in the code. Archmap-
pings are used to validate traceability between an architec-
tural design and the code base. Constraints (such as, ‘ex-
ecution order’) are converted into logical formulas to verify
the traceability (by determining the satisfiability of logical
formulas). For this, an SMT (Satisfiability Modulo Theo-
ries) solver, a tool for deciding the satisfiability of logical
formulas, is used.

3.1.6 Model-driven Traceability
Tran et al. [23] present a view-based model-driven

traceability framework (VBTrace): The goal of VBTrace is
to support modelling and development of service-oriented
systems at various levels of granularity and abstraction
based on the particular needs, knowledge, and experience
of stakeholders. The VBTrace tool uses code generation
templates to automatically establish traceability links
between all design views, as well as between high-level and
low-level representations of the views and the code base.
VBTrace supports both forward and reverse engineering of

traceability links: Firstly, it supports forward engineering
through code generators that generate both code and
traceability links from the view models. Secondly, it
supports reverse engineering through view-based inter-
preters for reconstructing the traceability relations between
architecture/design views and the code base. The approach
is evaluated through an industrial case study.

Haitzer and Zdun [8] introduce a semi-automatic strat-
egy to support the traceability between architectural models
and the source code. The goal of the approach is to provide
architectural abstraction specifications in a domain specific
language (DSL) that only requires changes, if changes in
the code base lead to architecture changes, but tolerate non-
architectural changes. In particular, the approach comprises
two main steps to set up the traceability links. In the first
step, a class model is extracted from the source code – in or-
der to decouple the approach from a specific source language.
In the second step, an architectural abstraction specification
is defined in a DSL to describe which parts of the source
code contribute to a specific component. This is supported
through multiple rule-based filters and group clauses. Based
on the architectural abstraction specification, defined in the
DSL code, the approach automatically generates the UML
component model from source code using model transfor-
mations and supports the traceability between the mapped
artifacts. The approach also supports the comparison of
a generated component model with the actual or previous
component model to better cope with inconsistencies. The
approach is evaluated through a case study.

3.1.7 Traceability Based on the Machine Learning
Techniques

An architectural tactic is a means of satisfying a response
measure on a quality attribute (such as performance, reli-
ability, usability, or maintainability) by manipulating some
aspect of a quality attribute model through architectural de-
sign decisions [3]. For instance, an example of a performance
tactic is ‘reduce the computational overhead’. Mirakhorli
and Cleland-Huang [17] propose an tactic-centric ap-
proach to support the automated reconstruction of trace-
ability links between code classes and architectural tactics.
It builds upon the fundamental concept of tactic traceabil-
ity information models (TTIMs) that comprises of tactic-
specific requirements, quality goals, rationales, roles, and
proxies [16]. The approach utilizes information retrieval
and machine learning methods to train a classifier (e.g.,
training with tactic descriptions and code snippets), to de-
tect the tactic-related classes. The approach also uses the
lightweight structural analysis to identify the role-related
classes from the detected tactic-related classes, which clearly
defines tactic’s roles. The identified tactic-related and role-
related classes are mapped to the proxies in TTIMs to gener-
ate the tactic-level traceability links. The approach is eval-
uated through a case study.

3.2 Automation of Traceability Approaches
Traceability approaches and tools offer varying levels of

automation. In the literature we have found three main
levels of the automation of traceability approaches, ranging
from manual over semi-automatic to automatic establish-
ment and maintenance of traceability relations, as shown in
Table 1. In this section, those levels are used to distinguish
the different research approaches.

Evidence

Tool-Support

Autom
ation

Manual ArgoUML Case Study

Semi-Automatic

Semi-Automatic

Semi-Automatic

Semi-Automatic

Semi-Automatic

Automatic

Automatic

Semi-Automatic

Semi-Automatic

Compliance
Checker Tool Experiment

LISA Toolkit Action Research

DSL-Based Tool Case Study

SrcTracer Experiment

TraceMaintainer Experiment

Tactics-Based Tool Case Study

ArchTrace Retrospective
Study

MolhadoArch Experiment

VBTrace Case Study

Hypertext-Based Traceability

Information Retrieval-Based
Traceability

Event-Based Traceability

Model-driven Traceability

Event-Based Traceability

Traceability Based on the
Machine Learning Techniques

Rule-Based Traceability

Hypertext-Based Traceability

Model-driven Traceability

Alves-Foss et al. [1]

Haitzer and Zdun [8]

Mirakhorli and Cleland-
Huang [17]

Murta et al. [18, 19]

Nguyen [20, 21]

Tran et al. [23]

Antoniol et al. [2]

Buchgeher and Weinreich
[4]

Hammad et al. [9]

N
ature of

Traceability

Ubayashi and Kamei [24] Manual
Design Patterns Based
Traceability

Mäder et al. [13] Event-Based Traceability

SMT-Based Tool Not Provided

Table 1: Nature, Automation, Tool-Support, and
Evidence of the Approaches

3.2.1 Manual
The first group of approaches requires manual effort (by

a human) for establishing and maintaining traceability re-
lations. We identified two approaches [1, 24] that require
human effort for establishing and maintaining traceability
relations. Out of those approaches, one approach [24] only
support automatic extraction and analysis of pre-specified
traceability information, whereas the other one [1] uses var-
ious XML representations to describe the traceability infor-
mation. The former is partially supported by a SMT-Based
tool5, while latter use ArgoUML, an open source UML mod-
eling tool to support the hypertext-based traceability.
Although, manual traceability tools support developers in

the management of traceability relations and minimize the
time needed to find the desired links, the benefits of trace-
ability are reduced due to the enormous effort for creation
and maintenance of traceability relations, even in the pres-
ence of qualified developers and strong management [22].
That is, manual creation and maintenance of traceability
relations is difficult, time consuming, complex, error-prone,
and costly. However, manual traceability is useful in cases
where only a limited number of specific traceability links
must be specified that are difficult to automate and/or when
human judgment is needed for each traceability link that
should be established.

3.2.2 Semi-Automatic
The second group of approaches proposes automated

methods and tools together with human activities for
semi-automatic establishing and maintaining of traceability
relations. These approaches require human analysts to
monitor the results produced by automated methods and
to interact with the supported tool to provide feedback
and retrace. Seven of the approaches [2, 4, 8, 9, 13, 21,
23] in our SLR support semi-automatic traceability. Out
of those approaches, one approach [9] inform the human
analyst about the impacts of observed changes and require
support for making certain decisions; the approach is

5http://argouml.tigris.org/

Alves-Foss et al. [1]

Contribution

Rationalization

Conflict

O
verlap

Satisfiability

Evolution

G
eneralization or

Refinem
ent

Dependency

Antoniol et al. [2]
Buchgeher and
Weinreich [4]

Haitzer and Zdun [8]

Hammad et al. [9]

Mäder et al. [13]
Mirakhorli and

Cleland-Huang [17]

Murta et al. [18, 19]

Nguyen [20, 21]

Tran et al. [23]

� � �

� �

� � �

� � �

� � �

� �

�

�

�

� � � � �

� � � � �

� �

� � �

� Ubayashi and Kamei
[24]

� � �

The approach uses Xlink-base, a linking language, to specify the
design-to-sourcecode-links

Table 2: Overview of traceability relationship types
found in the literature

supported by the SrcTracer tool. Two of the tool-supported
approaches [13, 21], named as TraceMaintainer and Mol-
hadoArch, respectively, supports automated maintenance of
pre-existing traceability links. One approach [23] supports
semi-automatically eliciting and formalizing the trace
dependencies, and two other approaches [4, 8] support
semi-automatically capturing the traceability relations;
the approaches are supported by the VBTrace, LISA
Toolkit and DSL-Based Tool, respectively. Finally, one
tool-supported approach [2] recovers the design from the
code-base and compares it with the actual design, to help
users in better coping with inconsistencies.

3.2.3 Automatic
The group of automatic traceability approaches generate

traceability relations as a result of the software develop-
ment process. They support automated establishing and
maintaining of traceability relations. We identified two ap-
proaches [19, 17] that supports automated establishing of
traceability; the approaches are supported by the ArchTrace
and Tactis-Based Tool, respectively. The approaches, how-
ever, require initial traceability links from the developers.

Even though automated traceability is much faster than
manual and semi-automatic traceability, it might either pro-
duce inaccurate traces or miss traces, and tends to result in
a low precision and proliferation of traceability links that
are difficult to manage and understand [15].

3.3 Types of Traceability Relations
Traceability approaches and tools exploit various kinds of

relations to represent traceability information with respect
to the different interests, goals, and perspectives of the stake-
holders. To this end, it should be noted that understand-
ing, interpreting, and analysing these relations relies on the
stakeholder needs, knowledge, and experience [12]. Table 2
shows that existing traceability approaches use dependency,
generalization and refinement, evolution, satisfiability, over-

lap, conflict, rationalization, and contribution relations to
interrelate software architecture and the source code.

3.4 Granularity of Traceability Approaches
Traceability approaches and tools establish links between

development artefacts at varying levels of granularity. In our
SLR, two main levels of the granularity, coarse-grained and
fine-grained, have been identified and used to distinguish
the different research approaches. The distribution of the
studies by levels of the granularity is shown in Figure 1.

Coarse Grained
46%

Fine Grained
27%

Coarse Grained
& Fine Grained

27%

Figure 1: Distribution of the Studies by Levels of
the Granularity

In the group with coarse-grained granularity, traceabil-
ity relations are established between coarse-grained arte-
facts, for instance, components, classes, etc. In the liter-
ature, we identified 8 studies [1, 2, 8, 9, 13, 17, 19, 23] that
support coarse-grained links.
In the group with fine-grained granularity, traceability

relations are established between fine-grained elements, such
as attributes, functions, parameters, to provide the maxi-
mum support of traceability. In the set of studies supporting
fine-grained traceability, six studies [4, 9, 13, 17, 21, 24] sup-
port fine-grained traceability between architecture elements
and implementation methods. It is interesting to note that
three of the fine-grained approaches [9, 13, 17] also support
coarse-grained links.

3.5 Traceability Direction
Traceability approaches and tools offer unidirectional or

bidirectional specification, maintenance, or representation of
traceability information. The distribution of the studies by
traceability direction is shown in Figure 2.

Unidirectional
36%

Bidirectional
64%

Figure 2: Distribution of the Studies by Traceability
Direction

The group of unidirectional traceability approaches
supports to establish ‘trace to’ links from one artefact to
another (also called forward traceability). In the literature,
we identified four studies that support unidirectional trace-
ability links between architecture and the code base: Three

studies [2, 8, 9] support traceability from the code base to
the architecture (such as classes, interfaces, relationships,
etc.), whereas the other one [17] supports traceability from
the code base to architectural tactics.

The group of bidirectional traceability approaches
supports forward as well as backward traceability. Back-
ward traceability supports developers and maintenances
to determine the origin of the traceability link. We iden-
tified 7 approaches [1, 4, 13, 19, 21, 23, 24] that support
bidirectional traceability links between architecture and
the code base. Five of those approaches [1, 4, 13, 19, 23]
support traceability between architectural models and code
elements. One approach [24] supports traceability between
architecture points and program points, and one other
approach [21] maintains traceability between an attributed
graph and the code base tree.

3.6 Representation of Traceability Informa-
tion

The representation criterion observes the main structures
used for tracking and understanding the traceability infor-
mation. In the literature, five main categories of the repre-
sentation of traceability information, matrices, lists, hyper-
links, models, and graphs, have been identified, the distri-
bution of the studies is shown in Figure 3:

Matrix: A traceability matrix is a two-dimensional grid
which represents traceability links between two sets of ar-
tifacts, such as architecture, code elements, etc. The rows
and columns of the grid are associated with the artifacts,
and the grid-intersection points represent the existence of a
link. One of the studies [17] in our SLR uses traceability
matrices to represent the traceability information between
architectural tactics/tactics-roles and code classes.

Lists: Traceability relations can also be represented as
lists. Each entry in a list contains information about source,
target artifacts and other attributes, which represent indi-
vidual traceability link. We identified three studies that use
lists. One of the study [9] produces the details of changes
and their particular impacts on the design. One other study
[24] suggests the use of Yices SMT-solver for deciding the
satisfiability of logical formulas. The Yices SMT-solver gen-
erates counterexamples as output. Finally, one study [19]
produces the information about created traceability links,
the messages posted by policies in ArchTrace, which contain
timestamp, source and target artifacts, and their versions.

Hyperlinks: Hyperlinks can be used to connect related
concepts, keywords, or phrases in a natural way. The hyper-
links enable users while browing an artifact to easily ‘jump’
to another artifact. Two of the studies [1, 21] in our SLR
provide hyperlinks support navigating from source code to
design and vice-versa.

Graphs: Graphs support visualization of multidimen-
sional traceability relationships between architecture and
code artifacts by representing artifacts as nodes and rela-
tionships between them as edges. Thus, two nodes in the
graph are connected if traceability link exists between the
corresponding artifacts. One of the studies [13] in our SLR
use arcs to represent the traceability relations between the
nodes of the graph; the nodes represent related elements in
same or different models. One other study [21] represents
traceability relationship by means of an edge between the
nodes in the graph, represents architecture elements and
their interconnections, and the corresponding node in the

code base tree. Finally, one approach [2] uses graph visual-
izations to show the results of matching, highlighting simi-
larities and differences between classes in the design and in
the code.
Traceability Models: Traceability information can be

accessed with traceability model. A model provides guid-
ance about which artifacts to collect and which relations to
establish in order to meet the traceability goals. Thus, the
cornerstone of traceability framework is a traceability model.
Three of the studies in our SLR use models to represent the
traceability information. One of the study [23] illustrates
the trace dependencies in the ‘Traceability Model’ and the
model-based generated code. One other study [4] uses an-
notated traces with architecture models and code editors to
represent the traceability information. Finally, one study [8]
represents traceability as a model specified in a DSL to link
to UML class and component models.

Matrix
8%

Lists
25%

Hyperlinks
17%

Graphs
25%

Models
25%

Figure 3: Distribution of the Studies by Represen-
tation of Traceability Information

4. DISCUSSION
Our SLR resulted in the selection of 11 unique traceabil-

ity approaches between software architecture and the source
code for the literature survey. The findings shows that the
years 1999 – July, 2013 cover the most significant traceabil-
ity approaches between software architecture and the source
code, with a strong positive upward trend during the years
2011 – 2012, the particular period covers 54.5% of the se-
lected studies. Hence, we can conclude that the research in
the area of traceability between software architecture and
the source code is increasing. To provide an overview of the
current state-of-the-art on traceability approaches between
software architecture and the source code and to guide the
readers to a specific set of approaches that is of interest to
them, the studies in the different categories (nature of the
approaches, automation of traceability approaches, types of
traceability relations, granularity of traceability approaches,
traceability direction, and representation of traceability in-
formation) are discussed in Section 3 in detail.
With regard to tool support, we found that all of the in-

vestigated primary studies are supported by the traceability
tools. Eight of the approaches are supported by complete
toolkits, while two approaches are partially supported by the
tools. Lastly, one approach uses ArgoUML, an open source
UML modeling tool to support hypertext-based traceability.
We have further found that the large majority of these tools
supports semi-automatic traceability. Please note that tools
supporting manual and automated traceability are typically
not recommended for industrial settings due to the higher
effort in case of manual approaches or lower accuracy of

traceability relations in case of fully automated approaches.
We have detected that some tools do not provide efficient
means for consistency and completeness checking. In ad-
dition, the absence of proper querying mechanisms hinders
the analysis of traceability information. One other conclu-
sion that can be drawn from the diversity of the existing
tools and their approaches is that there is a need for stan-
dard and widely accepted software architecture traceability
tools that would be available for researchers and practition-
ers. The absence of a proper support for completeness and
consistency checking, and querying mechanisms, as well as
standard and widely accepted tool support can therefore be
identified as a major direction for future work.

With respect to the empirical evidence, ten of the reported
traceability approaches between software architecture and
the source code are empirically validated or evaluated in
some form. Out of those ten approaches, four approaches
are only evaluated in case studies. One approach is eval-
uated using action research. Four of the other approaches
are validated in small experiments. Finally, one approach is
evaluated using a retrospective study. Hence, we can con-
clude that the empirical evidence for architectural traceabil-
ity is rather weak so far and that there is a strong need for
more empirical evidence in the area of software architecture
traceability. For example, there is a need to empirically
evaluate the role of architecture traceability in understand-
ing software architectures.

One of the most widely reported benefits of traceability
approaches is that they help developers and maintainers to
identify changes by determining the artefacts that are af-
fected by change and thus estimating the effort for applying
a particular change. It is also reported that they help in an-
swering various comprehension or understandability related
questions like: What is the role of a particular software ar-
chitecture artefact in the code base? Which architectural
or code base elements have a causal relationship to which
project artefacts? In addition, traceability supports in ver-
ification and validation of software systems. For example,
traceability approaches can be used to check whether an
architecture is complete and consistent with the code base.
This is one reason why various researchers have claimed that
traceability plays an important role in better reasoning and
understanding of software systems.

Despite numerous years of research and all the potential
benefits of traceability, it is still not as widely adopted
in industrial settings as it could be. We have recognized
various liabilities, issues, and challenges. All traceability
approaches require some additional effort and introduce
an additional level of complexity to software development
projects (but might help to resolve other complexities).
Other reported liabilities of architectural traceability highly
depend on the chosen traceability approach. For instance,
fine-grained traceability is more precise than coarse-grained
traceability, but developers might be overwhelmed by the
number of traceability links that are created and hence
miss the “big picture” aspects. The manual traceability
approaches tends to be inconvenient, time consuming,
complex, error-prone, and costly. In order to reduce
manual traceability issues, various researchers have pro-
posed semi-automatic or automatic traceability approaches.
But unfortunately, the reported automated traceability
approaches fail in producing accurate results and tend
to produce results with low precision and proliferation

of traceability links that are difficult to manage and
understand. Most of these approaches require human
assistance in verifying the generated traces, in particular,
identifying the false positives and missed traces. Some
of these approaches even re-generate all traceability links
upon modifications in development artefacts, which might
lead to problems caused by overwriting manual changes.
In addition, most of the existing traceability approaches
between software architecture and source code provide
only insufficient support to address various architectural
concerns, for instance there is a need to more precisely
address various stakeholder issues, quality concerns, and
software development artefacts across various architecture
or design views.
Based on our SLR of current software architecture

traceability approaches, it can be assessed that semi-
automatic traceability appear to be more well suited for
many tasks compared to both manual and automatic
traceability approaches. However, issues with manual and
automated traceability approaches can be reduced through
the following measures: Manual traceability approaches can
be improved by setting up the links while working on the
architecture or the design, as it is rather inconvenient and
error prone for developers to establish numerous traceability
links after finishing the design or architecting phase. In
case of automated traceability approaches, minimalistic
and non-redundant traceability links can be generated,
by retaining only effective traceability links for a specific
purpose such as supporting impact analysis. Automated
approaches also require better support for restructuring of
traceability links, because they appear to be inappropriate
for establishing and maintaining traceability links at various
levels of granularity and abstraction.

5. CONCLUSION AND FUTURE WORK
This study presents the first SLR in the area of traceabil-

ity between software architecture and source code, result-
ing in the selection of 11 unique traceability approaches.
Our results show a real need for stronger empirical evi-
dence for software architecture traceability approaches, as
well as proper support for completeness and consistency
checking, querying mechanisms and standard and widely ac-
cepted tool-support. This article has presented a classifica-
tion scheme to distinguish various aspects of traceability ap-
proaches, based on the nature of approaches, automation of
traceability approaches, types of traceability relations, gran-
ularity of traceability approaches, traceability direction, and
representation of traceability information. By offering this
categorization, our SLR provides a foundation to guide re-
searchers and practitioners to select or study a specific ap-
proach or set of approaches that is of interest to them.
Our future research goal is to build an empirically sup-

ported body of knowledge to investigate in how far explicit
traceability links help in the understanding of architectural
models and their links to other software development arte-
facts. To do this, we plan to perform a series of empirical
experiments. In addition, we will further analyse the identi-
fied gaps and liabilities in the approaches especially regard-
ing traceability in architectural views and to the code base.

6. ACKNOWLEDGEMENTS
This work is supported by the Austrian Science Fund

(FWF), under project P24345-N23.

7. REFERENCES
[1] J. Alves-Foss, D. Conte de Leon, and P. Oman.

Experiments in the use of xml to enhance traceability
between object-oriented design specifications and
source code. In Proceedings of the 35th Annual Hawaii
International Conference on System Sciences
(HICSS’02)-Volume 9 - Volume 9, HICSS ’02, pages
276–, Washington, DC, USA, 2002. IEEE Computer
Society.

[2] G. Antoniol, B. Caprile, A. Potrich, and P. Tonella.
Design-code traceability for object-oriented systems.
Ann. Softw. Eng., 9(1-4):35–58, Jan. 2000.

[3] L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice. The SEI Series in Software
Engineering. Prentice Hall, 2003.

[4] G. Buchgeher and R. Weinreich. Automatic tracing of
decisions to architecture and implementation. In
Proceedings of the 2011 Ninth Working IEEE/IFIP
Conference on Software Architecture, WICSA ’11,
pages 46–55, Washington, DC, USA, 2011. IEEE
Computer Society.

[5] D. Budgen, A. J. Burn, O. P. Brereton, B. A.
Kitchenham, and R. Pretorius. Empirical evidence
about the UML: a systematic literature review. Softw.
Pract. Exper., 41(4):363–392, Apr. 2011.

[6] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction To Algorithms. MIT Press, 2001.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-oriented
Software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1995.

[8] T. Haitzer and U. Zdun. Dsl-based support for
semi-automated architectural component model
abstraction throughout the software lifecycle. In
Proceedings of the 8th international ACM SIGSOFT
conference on Quality of Software Architectures, QoSA
’12, pages 61–70, New York, NY, USA, 2012. ACM.

[9] M. Hammad, M. L. Collard, and J. I. Maletic.
Automatically identifying changes that impact
code-to-design traceability during evolution. Software
Quality Control, 19(1):35–64, Mar. 2011.

[10] B. Kitchenham and S. Charters. Guidelines for
performing Systematic Literature Reviews in Software
Engineering. Technical Report EBSE 2007-001, Keele
University and Durham University Joint Report, 2007.

[11] B. Kitchenham, O. Pearl Brereton, D. Budgen,
M. Turner, J. Bailey, and S. Linkman. Systematic
literature reviews in software engineering - a
systematic literature review. Inf. Softw. Technol.,
51(1):7–15, Jan. 2009.

[12] M. Lindvall and K. Sandahl. Practical implications of
traceability. Softw. Pract. Exper., 26(10):1161–1180,
Oct. 1996.

[13] P. Mäder, O. Gotel, and I. Philippow. Enabling
automated traceability maintenance through the
upkeep of traceability relations. In Proceedings of the
5th European Conference on Model Driven
Architecture - Foundations and Applications,
ECMDA-FA ’09, pages 174–189, Berlin, Heidelberg,
2009. Springer-Verlag.

[14] E. Mamas and K. Kontogiannis. Towards portable
source code representations using xml. In Proceedings
of the Seventh Working Conference on Reverse
Engineering (WCRE’00), WCRE ’00, pages 172–,
Washington, DC, USA, 2000. IEEE Computer Society.

[15] M. Mirakhorli and J. Cleland-Huang. Tracing
architectural concerns in high assurance systems (nier
track). In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pages
908–911, New York, NY, USA, 2011. ACM.

[16] M. Mirakhorli and J. Cleland-Huang. Using tactic
traceability information models to reduce the risk of
architectural degradation during system maintenance.
In Proceedings of the 2011 27th IEEE International
Conference on Software Maintenance, ICSM ’11, pages
123–132, Washington, DC, USA, 2011. IEEE
Computer Society.

[17] M. Mirakhorli, Y. Shin, J. Cleland-Huang, and
M. Cinar. A tactic-centric approach for automating
traceability of quality concerns. In Proceedings of the
2012 International Conference on Software
Engineering, ICSE 2012, pages 639–649, Piscataway,
NJ, USA, 2012. IEEE Press.

[18] L. G. Murta, A. Hoek, and C. M. Werner. Continuous
and automated evolution of
architecture-to-implementation traceability links.
Automated Software Engg., 15(1):75–107, Mar. 2008.

[19] L. G. P. Murta, A. van der Hoek, and C. M. L.
Werner. Archtrace: Policy-based support for managing
evolving architecture-to-implementation traceability
links. In Proceedings of the 21st IEEE/ACM
International Conference on Automated Software
Engineering, ASE ’06, pages 135–144, Washington,
DC, USA, 2006. IEEE Computer Society.

[20] T. N. Nguyen, E. V. Munson, and J. T. Boyland. The
molhado hypertext versioning system. In Proceedings
of the fifteenth ACM conference on Hypertext and
hypermedia, HYPERTEXT ’04, pages 185–194, New
York, NY, USA, 2004. ACM.

[21] T. N. Nguyen, E. V. Munson, and C. Thao.
Object-oriented configuration management technology
can improve software architectural traceability. In
Proceedings of the Third ACIS Int’l Conference on
Software Engineering Research, Management and
Applications, SERA ’05, pages 86–93, Washington,
DC, USA, 2005. IEEE Computer Society.

[22] M. Riebisch. Supporting evolutionary development by
feature models and traceability links. In Proceedings of
the 11th Annual IEEE International Conference and
Workshop on the Engineering of Computer Based
Systems (ECBS2004), Brno, Czech Republic, ECBS
’04, pages 370–377, Washington, DC, USA, 2004.
IEEE Computer Society.

[23] H. Tran, U. Zdun, and S. Dustdar. Vbtrace: using
view-based and model-driven development to support
traceability in process-driven soas. Softw. Syst. Model.,
10(1):5–29, Feb. 2011.

[24] N. Ubayashi and Y. Kamei. Architectural point
mapping for design traceability. In Proceedings of the
eleventh workshop on Foundations of Aspect-Oriented
Languages, FOAL ’12, pages 39–44, New York, NY,
USA, 2012. ACM.

