
Information and Software Technology 51 (2009) 1087–1109
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/ locate/ infsof
A systematic literature review to identify and classify software requirement errors

Gursimran Singh Walia a, Jeffrey C. Carver b,*

a Mississippi State University, Department of Computer Science and Engineering, 300 Butler Hall, Mississippi State, MS 39762, United States
b University of Alabama, Computer Science, Box 870290, 101 Houser Hall, Tuscaloosa, AL 35487-0290, United States

a r t i c l e i n f o
Article history:
Received 7 December 2007
Received in revised form 27 January 2009
Accepted 29 January 2009
Available online 5 March 2009

Keywords:
Systematic literature review
Human errors
Software quality
0950-5849/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.infsof.2009.01.004

* Corresponding author. Tel.: +1 205 348 9829; fax
E-mail addresses: gw86@cse.msstate.edu (G.S. Wa
a b s t r a c t

Most software quality research has focused on identifying faults (i.e., information is incorrectly recorded
in an artifact). Because software still exhibits incorrect behavior, a different approach is needed. This
paper presents a systematic literature review to develop taxonomy of errors (i.e., the sources of faults)
that may occur during the requirements phase of software lifecycle. This taxonomy is designed to aid
developers during the requirement inspection process and to improve overall software quality. The
review identified 149 papers from the software engineering, psychology and human cognition literature
that provide information about the sources of requirements faults. A major result of this paper is a cat-
egorization of the sources of faults into a formal taxonomy that provides a starting point for future
research into error-based approaches to improving software quality.

� 2009 Elsevier B.V. All rights reserved.
Contents
1. Introduction . 1088
2. Background . 1088
2.1. Existing quality improvement approaches . 1088
2.2. Background on error abstraction . 1089
3. Research method . 1089

3.1. Research questions . 1089
3.2. Source selection and search . 1090
3.3. Data extraction and synthesis . 1091
4. Reporting the review . 1092

4.1. Question 1: Is there any evidence that using error information can improve software quality?. 1092
4.2. Question 1.1: Are there any processes or methods reported in literature that use error information to improve software quality? 1092
4.3. Question 1.2: Do any of these processes address the limitations and gaps identified in Section 2 of this paper? 1093
4.4. Question 2: What types of requirement errors have been identified in the software engineering literature? . 1094
4.5. Question 2.1: What types of errors can occur during the requirement stage? . 1094
4.6. Question 2.2: What errors can occur in other phases of the software lifecycle that are related to errors that can occur during the

requirements phase?. 1094
4.7. Question 2.3: What requirement errors can be identified by analyzing the source of actual faults? . 1095
4.8. Question 3: Is there any research from human cognition or psychology that can propose requirement errors?. 1095
4.9. Question 3.1: What information can be found about human errors and their classification? . 1095
4.10. Question 3.2: Which of the human errors identified in question 3.1 can have corresponding errors in software requirements? 1095
4.11. Question 4: How can the information gathered in response to questions 1–3 be organized into an error taxonomy?. 1096
5. Process of developing the requirement error taxonomy . 1096

5.1. Developing the requirement error classes . 1096
5.2. Development of requirement error types . 1098
6. Discussion . 1100

6.1. Principal findings. 1100
6.2. Strengths and weaknesses . 1100
6.3. Contribution to research and practice communities . 1101
ll rights reserved.

: +1 205 348 0219.
lia), carver@cs.ua.edu (J.C. Carver).

mailto:gw86@cse.msstate.edu
mailto:carver@cs.ua.edu
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

1088 G.S. Walia, J.C. Carver / Information and Software Technology 51 (2009) 1087–1109
6.4. Conclusion and future work . 1101
Acknowledgements . 1101
Appendix A. 1103
Appendix B . 1103
Appendix C . 1104
References . 1108
1. Introduction

The software development process involves the translation of
information from one form to another (i.e., from customer needs
to requirements to architecture to design to code). Because this
process is human-based, mistakes are likely to occur during the
translation steps. To ensure high-quality software (i.e., software
with few faults), mechanisms are needed to first prevent these
mistakes and then to identify them when they do occur. Successful
software organizations focus attention on software quality, espe-
cially during the early phases of the development process. By iden-
tifying problems early, organizations reduce the likelihood that
they will propagate to subsequent phases. In addition, finding
and fixing problems earlier rather than later is easier, less expen-
sive, and reduces avoidable rework [19,28].

The discussion of software quality focuses around the use of a
few important terms: error, fault, and failure. Unfortunately, some
of these terms have competing, and often contradictory, definitions
in the literature. To alleviate confusion, we begin by providing a
definition for each term that will be used throughout the remain-
der of this paper. These definitions are quoted from Lanubile
et al. [53], and are consistent with software engineering textbooks
[32,67,77] and an IEEE Standard [1].

Error – defect in the human thought process made while trying to
understand given information, solve problems, or to use methods
and tools. In the context of software requirements specifications,
an error is a basic misconception of the actual needs of a user or
customer.
Fault – concrete manifestation of an error within the software. One
error may cause several faults, and various errors may cause iden-
tical faults.
Failure – departure of the operational software system behavior
from user expected requirements. A particular failure may be
caused by several faults and some faults may never cause a failure.

We realize that the term error has multiple definitions. In fact,
IEEE Standard 610 provides four definitions ranging from an incor-
rect program condition (sometimes referred to as a program error)
to a mistake in the human thought process (sometimes referred to
as a human error) [1]. The definition used in this paper more closely
correlates to a human error rather than a program error.

Most previous quality research has focused on the detection
and removal of faults (both early and late in the software lifecycle).
This research has examined the cause–effect relationships among
faults to develop fault classification taxonomies, which are used
in many quality improvement approaches (more details in Section
2.1). Despite these research advancements, empirical evidence
suggests that quality is still a problem because developers lack
an understanding of the source of problems, have an inability to
learn from mistakes, lack effective tools, and do not have a com-
plete verification process [19,28,86]. While fault classification
taxonomies have proven beneficial, faults still occur. Therefore,
to provide more insight into the faults, research needs to focus
on understanding the sources of the faults rather than just the
faults themselves. In other words, focus on the errors that caused
the faults.
As a first step, we performed a systematic literature review to
identify and classify the errors identified by other quality research-
ers. A systematic literature review is a formalized, repeatable pro-
cess in which researchers systematically search a body of
literature to document the state of knowledge on a particular sub-
ject. The benefits of performing a systematic review, as opposed to
using the more common ad hoc approach, is that it provides the
researchers with more confidence that they have located as much
relevant information as possible. This approach is more commonly
used in other fields such as medicine to document high-level con-
clusions that can be drawn from a series of detailed studies
[48,79,92]. To be effective, a systematic review must be driven
by an overall goal. In this review, the high level goal is to:

Identify and classify types of requirement errors into a taxonomy to
support the prevention and detection of errors.

The remainder of this paper is organized as follows. Section 2
describes existing quality improvement approaches and previous
uses of errors. Section 3 gives details about the systematic review
process and its application. Sections 4 and 5 report the results of
the review. Finally, the conclusions and future work are presented
in Section 6.

2. Background

To provide context for the review, Section 2.1 first describes
successful quality improvement approaches that focus on faults,
along with their limitations. These limitations motivate the need
to focus on the source of faults (rather than faults alone) as an in-
put to the software quality process. Then, Section 2.2 introduces
the concept of error abstraction and describes the literature from
other fields that is relevant to this review.

2.1. Existing quality improvement approaches

The NASA Software Engineering Laboratory’s (SEL) process
improvement mechanisms focuses on packaging software process,
product and measurement experience to facilitate faster learning
[2,9]. This approach classifies faults from different phases into a
taxonomy to support risk, cost and cycle time reduction. Similarly,
the Software Engineering Institute (SEI) uses a measurement
framework to improve quality by understanding process and prod-
uct quality [36]. This approach also uses fault taxonomies as a basis
for building a checklist that facilitates the collection and analysis of
faults and improves quality and learning. The SEL and SEI ap-
proaches are two successful examples that represent many fault-
based approaches. Even with such approaches, faults still exist.
Therefore, a singular focus on faults does not ultimately lead to
the elimination of all faults. Faults are only a concrete manifesta-
tion, or symptom, of the real problem; and without identifying
the source, some faults will be overlooked.

One important quality improvement approach that does focus
on errors is root cause analysis. However, due to its complexity
and expense, it has not found widespread success [55]. Building
on root cause analysis, the orthogonal defect classification (ODC)
was developed to provide in-process feedback to developers and

Table 1
Limitations of existing quality improvement approaches.

Focus on faults rather than errors

Inability to counteract the errors at their origin and uncover all faults
Lack of methods to help developers learn from mistakes and gain insights into

major problem areas
Inability of defect taxonomies to satisfy certain attributes, e.g., simplicity,

comprehensiveness, exclusiveness, and intuitiveness
Lack of a process to help developers identify and classify errors
Lack of a complete verification process

Fig. 1. Types of literature searched to identify the requirement errors.

G.S. Walia, J.C. Carver / Information and Software Technology 51 (2009) 1087–1109 1089
help them learn from their mistakes. The ODC also uses an under-
standing of the faults to identify cause–effect relationships [16,26].
In addition, fault classification taxonomies have been developed
and evaluated to aid in quality improvement throughout the devel-
opment process [37,43,59].

Empirical evidence suggests that ‘‘quantifying, classifying and
locating individual faults is a subjective and intricate notion, espe-
cially during the requirement phase” [38,53]. In addition, Lawrence
and Kosuke have criticized various fault classification taxonomies
because of their inability to satisfy certain attributes (e.g., simplic-
ity, comprehensiveness, exclusiveness, and intuitiveness) [54].
These fault classification taxonomies have been the basis for most
of the software inspection techniques (e.g., checklist-based, fault-
based, and perspective-based) used by developers
[10,22,25,38,58,75]. However, when using these fault-based tech-
niques inspectors do not identify all of the faults present. To com-
pensate for undetected faults, various supporting mechanisms that
have been added to the quality improvement process (e.g., re-
inspections and defect estimation techniques [5,11,34,84,85]) have
made significant contributions to fault reduction. However,
requirements faults still slip to later development phases. This
fault slippage motivates a need for additional improvements to
the fault detection process. The use of error information is a prom-
ising approach for significantly increasing the effectiveness of
inspectors.

Table 1 summarizes the limitations of the quality improvement
approaches described in this section. To overcome these limita-
tions, the objective of this review is to identify as many errors as
possible, as described by researchers in the literature, and classify
those errors so that they are useful to developers. A discussion of
how the errors can be used by developers is provided in Section
6 of this paper.

2.2. Background on error abstraction

Lanubile et al. first investigated the feasibility of using error
information to support the analysis of a requirements document.
They defined error abstraction as the analysis of a group of related
faults to identify the error that led to their occurrence. After an er-
ror was identified, it was then used to locate other related faults.
One drawback to this process is that the effectiveness depends
heavily on the error abstraction ability of the inspectors [53]. To
address this problem, our work augments Lanubile et al.’s work
by systematically identifying and classifying errors to provide sup-
port to the error abstraction process.

In addition to research reported in the software engineering lit-
erature, it is likely that error can be identified by reviewing re-
search from other fields. Given that software development is a
human-based activity, phenomena associated with the human
mental process and its fallibilities can also cause requirements er-
rors. For example, two case studies report that human reasons, i.e.,
reasons not directly related to software engineering, can contribute
to fault and error injection [55,86]. Studies of these human reasons
can be found in research from the fields of human cognition, and
psychology. Therefore, literature from software engineering and
psychology are needed to provide a more comprehensive list of er-
rors that may occur.

3. Research method

Following published guidelines [18,30,48], this review included
the following steps:

(1) Formulate a review protocol.
(2) Conduct the review (identify primary studies, evaluate those

studies, extract data, and synthesize data to produce a con-
crete result).

(3) Analyze the results.
(4) Report the results.
(5) Discuss the findings.

The review protocol specified the questions to be addressed, the
databases to be searched and the methods to be used to identify,
assemble, and assess the evidence. To reduce researcher bias, the
protocol, described in the remainder of this section, was developed
by one author, reviewed by the other author and then finalized
through discussion, review, and iteration among the authors and
their research group. An overview of the review protocol is pro-
vided here, with a complete, detailed description appearing in a
technical report [91].

3.1. Research questions

The main goal of this systematic review was to identify and
classify different types of requirement errors. To properly focus
the review, a set of research questions were needed. With the
underlying goal of providing support to the software quality
improvement process, the high-level question addressed by this
review was:

What types of requirements errors can be identified from the liter-
ature and how can they be classified?

Motivated by the background research and to complement the
types of errors identified in the software engineering literature,
this review makes use of cognitive psychology research into under-
standing human errors. Fig. 1 shows that the results of a literature
search in software engineering about faults and their causes are

Table 2
Research questions and motivations.

Research question Motivation

1. Is there any evidence that using error information can improve software quality?
1.1. Are there any processes or methods reported in literature that use error information to improve soft-

ware quality?
1.2. Do any of these processes address the limitations and gaps identified in Section 2 (Table 1) of this

paper?

Assess the usefulness of errors in existing approaches;
identify shortcomings the current approaches and avenues
for improvement

2. What types of requirement errors have been identified in the software engineering literature?
2.1. What types of errors can occur during the requirement stage?
2.2. What errors can occur in other phases of the software lifecycle that are related to requirement errors?
2.3. What requirement errors can be identified by analyzing the source of actual faults?

Identify types of errors in the software engineering
literature as an input to an error classification taxonomy

3. Is there any research from human cognition or psychology that can propose requirement errors?
3.1. What information can be found about human errors and their classification?
3.2. Which of the human errors identified in question 3.1 can have corresponding errors in software

requirements?

Investigate the contribution of human errors from the
fields of human cognition and psychology

4. How can the information gathered in response to questions 1–3 be organized into an error taxonomy? Organize the error information into a taxonomy

Table 3
Source list.

Databases IEEExplore, INSPEC, ACM Digital Library, SCIRUS (Elsevier),
Google Scholar, PsychINFO (EBSCO), Science Citation Index

Other journals Empirical Software Engineering – An International Journal,
Requirements Engineering Journal

Additional
Sources

Reference lists from primary studies, Books, Software
Engineering Institute technical reports

1090 G.S. Walia, J.C. Carver / Information and Software Technology 51 (2009) 1087–1109
combined with the results of a literature search of the more gen-
eral psychological accounts of human errors to develop the
requirement error taxonomy.

The high-level research question was decomposed into three
specific research questions and sub-questions shown in Table 2,
which guided the literature review. The first question required
searching the software engineering literature to identify any qual-
ity improvement approaches that focus on errors. These ap-
proaches were analyzed to identify any shortcomings and record
information about errors. The second question also required
searching the software engineering literature with the purpose of
explicitly identifying requirement errors and errors from other life-
cycle phases (i.e., the design or coding phase) that are related to
requirement errors. In addition, this question also required analy-
sis of faults to identify the underlying errors. As a result, this ques-
tion identified a list of requirement errors from software
engineering literature. To answer the third question, we searched
the human error literature from the human cognition and psychol-
ogy fields to identify other types of errors that may occur while
developing a requirement artifact. This question involved analyz-
ing the models of human reasoning, planning, and problem solving
and their fallibilities to identify errors that can occur during the
requirements development stage. Finally, the fourth research ques-
tion, which is really a meta-question using the information from
questions 1 to 3, combines the errors identified from the software
engineering literature and the human cognition and psychology lit-
erature into a requirement error taxonomy.

3.2. Source selection and search

The initial list of source databases was developed using a de-
tailed source selection criteria as described below:

� The databases were chosen such that they included journals and
conferences focusing on: software quality, software engineering,
empirical studies, human cognition, and psychology.

� Multiple databases were selected for each research area: soft-
ware engineering, human cognition, and psychology.

� The databases had to have a search engine with an advanced
search mechanism that allowed keyword searches.

� Full text documents must be accessible through the database or
through other means.

� Any other source known to be relevant but not included in one
of the above databases, were searched separately (e.g., Empirical
Software Engineering: An International Journal, text books, and
SEI technical reports).

� The list of databases was reduced where possible to minimize
the redundancy of journals and proceedings across databases.
This list was then reviewed by a software engineering expert
and a cognitive psychology expert who added two databases, a text
book and one journal. The final source list appears in Table 3.

To search these databases, a set of search strings was created for
each of the three research questions based on keywords extracted
from the research questions and augmented with synonyms.
Appendix A provides a detailed discussion of the search strings
used for each research question.

The database searches resulted in an extensive list of potential
papers. To ensure that all papers included in the review were
clearly related to the research questions, detailed inclusion and
exclusion criteria were defined. Table 4 shows the inclusion and
exclusion criteria for this review. The inclusion criteria is specific
to each research question, while the exclusion criteria is common
for all questions. The process followed for paring down the search
results was:

(1) Use the title to eliminate any papers clearly not related to
the research focus;

(2) Use the abstract and keywords to exclude papers not related
to the research focus; and

(3) Read the remaining papers and eliminate any that do not
fulfill the criterion described in Table 4.

After selecting the relevant papers, a quality assessment was
performed in accordance with the guidelines published by the Cen-
ter for Reviews and Discrimination and the Cochrane Reviewers’
Handbook as cited by Kitchenham et al. (i.e., each study was as-
sessed for bias, internal validity, and external validity) [48]. First,
the study described in each paper was classified as either an exper-
iment or an observational study. Then, a set of quality criteria, fo-
cused on study design, bias, validity, and generalizability of results,
was used to evaluate quality of the study. The study quality assess-
ment checklist is shown in Table 5.

Using this process, the initial search returned over 25,000 pa-
pers, which were narrowed down to 7838 papers based on their ti-
tles, then to 482 papers based on their abstracts and keywords.

Table 5
Quality assessment.

Experimental studies Observational studies

1 Does the evidence support the
findings?

Do the observations support the
conclusions or arguments?

2 Was the analysis appropriate? Are comparisons clear and valid?
3 Does study identify or try to minimize

biases and other threats?
Does study uses methods to minimize
biases and other threats?

4 Can this study be replicated? Can this study be replicated?

Table 6
Paper distribution.

Source Count %

IEEE Computer 19 12.8
Journal of System and Software 13 8.7
Journal of Accident Analysis and Prevention 11 7.4
ACM Transactions on Software Engineering 11 7.4
Communications of the ACM 8 5.4
IBM Systems Journal 8 5.4
IEEE Transaction in Software Engineering 8 5.6
ACM Transactions on Computer–Human Interaction 6 4
Applied Psychology: An International Review 6 4
SEI Technical Report Website 5 3.4
Journal of Information and Software Technology 5 3.4
IEEE Int’l Symposium on Software Reliability Engineering 4 2.7
Journal of Ergonomics 4 2.7
IEEE Trans. on Systems, Man, and Cybernetics (A): Systems and

Humans
4 2.7

IEEE International Symposium on Empirical Software Engineering 4 2.7
Requirements Engineering Journal 4 2.7
International Conference on Software Engineering 3 2
Journal of Computers in Human Behavior 3 2
Empirical Software Engineering: An International Journal 3 2
The International Journal on Aviation Psychology 2 1.3
IEEE Annual Human Factors Meeting 2 1.3
International Journal of Human–Computer Interaction 2 1.3
Software Process: Improvement and Practice 2 1.3
Journal of Software Testing, Verification and Reliability 1 0.6
Journal of Reliability Engineering and System Safety 1 0.6
IEEE International Software Metrics Symposium 1 0.6
Journal of Information and Management 1 0.6
Software Quality Journal 1 0.6
High Consequence System Surety Conference 1 0.6
Crosstalk: The Journal of Defense Software Engineering 1 0.6
Journal of IEEE Computer and Control Engineering 1 0.6

Total 149 100

Table 4
Inclusion and exclusion criteria.

RQ Inclusion criteria Exclusion criteria

1 � Papers that focus on analyzing/using the errors (source of faults) for improving soft-
ware quality

� Empirical studies (qualitative or quantitative) of using the error information in soft-
ware lifecycle

� Papers that are based only on expert opinion
� Short-papers, introductions to special issues, tutorials, and mini-tracks
� Studies not related to any of the research questions
� Preliminary conference versions of included journal papers
� Studies not in English
� Studies whose findings are unclear and ambiguous (i.e., results are not

supported by any evidence)

2 � Papers that talk about errors, mistakes or problems in the software development pro-
cess and requirements in particular

� Papers about error, fault, or defect classifications
� Empirical studies (qualitative or quantitative) on the cause of software development

defects
3 � Papers from human cognition and psychology about human thought process, planning,

or problem solving
� Empirical studies on human errors
� Papers that survey or describe the human error classifications

G.S. Walia, J.C. Carver / Information and Software Technology 51 (2009) 1087–1109 1091
Then, these 482 papers were read to select the final list of 149 pa-
pers based on the inclusion and exclusion criteria.

Of these 149 papers, 108 were published in 13 leading journals
and six conferences in software engineering, and 41 were pub-
lished in nine psychology journals. The distribution of the selected
papers is shown in Table 6, including the number of papers from
each source along with the percentage of the overall total. In addi-
tion, three textbooks [69,62,73], provided additional information
about human errors that were also found in the journal and confer-
ence proceedings included in Table 6. The list of all included liter-
ature (journals, conferences proceedings, and textbooks) is
provided in Appendix C.

Based on the results from the quality assessment criteria de-
scribed in Table 5 (and discussed in more detail in Section 6), all
of the identified papers identified were of high-quality, providing
additional confidence in the overall quality of the set of selected
papers. In addition, all of the relevant papers that the authors were
aware of prior to the search [16,24,26,28,53,55,69] (i.e., papers that
were identified during the background investigation and before
commencing the systematic review) were located by the search
process during the systematic review, an indication of the com-
pleteness of the search. Also, all of the relevant papers from the ref-
erence lists of papers identified during the search were found
independently by the search process. Contrary to our expectations,
Table 6 shows that only a small number of papers appeared in the
Journal of Software Testing, Verification, and Reliability, in
the International Requirements Engineering Conference, and in
the Software Quality Journal. Because we expected these journals
to have a larger number of relevant papers, we wanted to ensure
there was not a problem with the database being used. Therefore,
we specifically searched these two journals again, but no addi-
tional relevant material was found.

Furthermore, in some cases a preliminary version of a paper
was published in a leading conference with a more complete jour-
nal paper following. In this case, only the journal paper was in-
cluded in the review thereby reducing the number of papers
from some conferences (e.g., preliminary work by Sutcliffe et. al.,
on the impact of human error on system requirements was pub-
lished in International Conference on Requirements Engineering,
but is not included in the review because of a later journal version
published in the International Journal of Human–Computer Inter-
action [80]).

3.3. Data extraction and synthesis

We used data extraction forms to ensure consistent and accu-
rate extraction of the important information from each paper re-
lated to the research questions. In developing the data extraction
forms, we determined that some of the information was needed
regardless of the research question, while other information was
specific to each research focus. Table 7 shows the data that was ex-
tracted from all papers. Table 8 shows the data that was extracted
for each specific research focus.

Table 7
Data items extracted from all the papers.

Data items Description

Identifier Unique identifier for the paper (same as the reference number)
Bibliographic Author, year, title, source
Type of article Journal/conference/technical report
Study aims The aims or goals of the primary study
Context Context relates to one/more search focus, i.e., research area(s) the paper focus on
Study design Type of study – industrial experiment, controlled experiment, survey, lessons learned, etc.
Level of analysis Single/more researchers, project team, organization, department
Control group Yes, no; if ‘‘Yes”: number of groups and size per group
Data collection How the data was collected, e.g., interviews, questionnaires, measurement forms, observations, discussion, and documents
Data analysis How the data was analyzed; qualitative, quantitative or mixed
Concepts The key concepts or major ideas in the primary studies
Higher-order

interpretations
The second- (and higher-) order interpretations arising from the key concepts of the primary studies. This can include limitations, guidelines or
any additional information arising from application of major ideas/concepts

Study findings Major findings and conclusions from the primary studies

Table 8
Data items extracted for each research focus.

Search focus Data item Description

Quality improvement approach Focus or process Focus of the quality improvement approach and the process/method used to improve quality
Benefits Any benefits from applying the approach identified
Limitations Any limitations or problems identified in the approach
Evidence The empirical evidence indicating the benefits of using error information to improve software quality and

any specific errors found
Error focus Yes or No; and if ‘‘Yes”, how does it relate to our research

Requirement errors Problems Problems found in requirement stage
Errors Whether the problems constitute requirement stage errors
Faults Faults at requirement stage and their causes
Mechanism Process used to analyze or abstract requirement errors

Error–fault–defect taxonomies Focus The focus of the taxonomy (i.e., error, fault, or failure)
Error focus Yes or No; if ‘‘Yes”, how does it relate to our research questions
Requirement phase Yes or No (whether it was applied in requirement phase)
Benefits Benefits of the taxonomy
Limitation Limitations of the taxonomy
Evidence The empirical evidence regarding the benefits of error/fault/defect taxonomy for software quality

Software inspections Focus The focus of inspection method (i.e., error, fault of failure)
Error focus Yes or No; if ‘‘Yes”, how does it relate to our research questions
Requirement phase Yes or No (Did it inspect requirement documents?)
Benefits Benefits of the inspection method
Limitation Limitations of the inspection method

Human errors Human errors and
classifications

Description of errors made by human beings and classes of their fallibilities during planning, decision
making and problem solving

Errors attributable Software development errors that can be attributable to human errors
Related faults Software faults that can be caused by human errors
Evidence The empirical evidence regarding errors made by humans in different situations (e.g., aircraft control)

that are related to requirement errors

1092 G.S. Walia, J.C. Carver / Information and Software Technology 51 (2009) 1087–1109
Consistent with the process followed in previous systematic re-
views (e.g., [49]), the first author reviewed all papers and extracted
data. Then, the second author independently reviewed and ex-
tracted data from a sample of the papers. We then compared the
data extracted by each reviewer for consistency. We found that
we had consistently extracted information from the sample of pa-
pers, suggesting that the second author did not need to review the
remainder of papers in detail and that the information extracted by
the first author was sufficient. The data extracted from all papers
was synthesized to answer each question as described in Section 4.

4. Reporting the review

4.1. Question 1: Is there any evidence that using error information can
improve software quality?

The idea of using the source of faults to improve software
quality is not novel. Other researchers have used this information
in different ways with varying levels of success. A review of the
different methods indicates that knowledge of the source of faults
is useful for process improvement, defect prevention by helping
developers learn from their mistakes and detection of defects
during inspections. A major drawback of these approaches is that
they typically do not provide a formal process to assist developers
in finding and fixing errors. In fact, only the approach by Lanubile
et al. provided any systematic way to use error information to im-
prove the quality of a requirements document [53]. Another
drawback to these methods is that they rely only on a sample
of faults to identify errors, therefore potentially overlooking some
errors.

While these approaches have positive aspects and describe soft-
ware errors (as discussed in the answers to 1.1), they also have lim-
itations (as discussed in the answers to 1.2). A total of 13 papers
addressed this question and its related sub-questions.

4.2. Question 1.1: Are there any processes or methods reported in
literature that use error information to improve software quality?

The review identified nine methods that stress the use of error
information during software development. These methods are de-

G.S. Walia, J.C. Carver / Information and Software Technology 51 (2009) 1087–1109 1093
scribed in this section along with their use in software organiza-
tions, and the types of errors they helped identify.

� The defect causal analysis approach is a team-based quality
improvement technique used to analyze samples of previous
faults to determine their cause (the error) in order to suggest
software process changes and prevent future faults. Empirical
findings show that the use of the defect causal analysis method
at IBM and at Computer Sciences Corporation (CSC) resulted in
a 50% decrease in defects over each two year period studied.
Based on the results from these studies, Card suggests that
all causes of software faults fall into one of four categories:
(a) methods (incomplete, ambiguous, wrong, or enforced), (b)
tools and environment (clumsy, unreliable, or defective), (c)
people (who lack adequate training or understanding), and
(d) input and requirements (incomplete, ambiguous, or defec-
tive) [24].

� The software failure analysis approach is a team-based quality
approach. The goal of this process is to improve the software
development and maintenance process. Using this approach,
developers analyze a representative sample of defect data to
understand the causes of particular classes of defects (i.e., spec-
ification, user-interface, etc.). This process was used by
engineers at Hewlett–Packard to understand the cause of
user-interface defects and develop better user interface design
guidelines. During their next year-long project, using these
guidelines, the user-interface defects found during test
decreased 50%. All the causes of user-interface defects were
classified into four different categories: guidelines not fol-
lowed, lack of feedback or guidelines, different perspectives,
or oops! (forgotten) [41].

� The defect causal analysis (using experts) approach accumulates
expert knowledge to substitute for an in-depth, per-object
defect causal analysis. The goal is to identify the causes of faults
found during normal development, late in the development
cycle and after deployment. Based on the results of a study,
Jacobs et al. describe the causes of software defects, e.g., inade-
quate unjustified trust, inadequate communication, unclear
responsibilities, no change control authority, usage of different
implementations, etc. The study also showed that the largest
numbers of defects were the result of communication problems
[46].

� The defect prevention process uses causal analysis to deter-
mine the source of a fault and to suggest preventive actions.
Study results show that it helps in preventing commonly
occurring errors, provides significant reductions in defect rates,
leads to less test effort, and results in higher customer satisfac-
tion. Based on the analysis of different software products over
six years, Mays et al. classified defect causes as oversight
causes (e.g., developer overlooked something, or something
was not considered thoroughly), education causes (developer
did not understand some aspect), communication causes
(e.g., something was not communicated), or transcription
causes (developer knew what to do but simply made a mis-
take) [60].

� The software bug analysis process identifies the source of bugs.
It also contains countermeasures (with implementation guid-
ance) for preventing bugs. To assess the usefulness of this
approach, a sample of 28 bugs found during the debug and test
phases of authorization terminal software development were
analyzed by group leaders, designers, and third party designers
to determine their cause. A total of 23 different causes were
identified, and more than half of these causes were related to
designers carelessness [61].
� The root cause analysis method introduced the concept of a
multi-dimensional defect trigger to help developers determine
the root cause of a fault (the error) in order to identify areas
for process improvement. Leszak et al. conducted a case-study
of the defect modification requests during the development of
a transmission network element product. They found the root
causes of defects to include: communication problems or lack
of awareness of the need for communication, lack of domain/
system/tools/process knowledge, lack of change coordination,
and individual mistake [55].

� The error abstraction process analyzes groups of related faults to
determine their cause (i.e., the error). This error information is
then used to find other related faults in a software artifact [53].

� The defect based software process improvement analyzes faults
through attribute focusing to provide insight into their potential
causes and makes suggestions that can help a team adjust their
process in real time [24,59].

� The goal-oriented process improvement methodology also uses
defect causal analysis for tailoring the software process to
address specific project goals in a specific environment. Basili
and Rombach describe an error scheme that classifies the cause
of software faults into different problem domains. These prob-
lem domains include: application area (i.e., misunderstanding
of application or problem domain), methodology to be used
(not knowing, misunderstanding, or misuse of problem solution
processes), and the environment of the software to be developed
(misunderstanding or misuse of the hardware or software of a
given project) [8].

� Total quality management is a philosophy for achieving long-
term success by linking quality with customer satisfaction. Key
elements of this philosophy include total customer satisfaction,
continuous process improvement, a focus on the human side of
quality, and continuous improvement for all quality parameters.
It involves identifying and evaluating various probable causes
(errors) and testing the effects of change before making it [47].
This approach is based on the defect prevention process
described earlier.

Each of the above methods uses error information to improve
software quality. Each has shown some benefits and identified
some important types of errors. This information served as an in-
put to the requirement error taxonomy.

4.3. Question 1.2: Do any of these processes address the limitations
and gaps identified in Section 2 of this paper?

Each of the methods described in the answer to question 1.1
does address many of the limitations described in Table 1, but, they
still have some additional limitations. The limitations common to
the different methods are summarized in Table 9.

While these methods do analyze the source of faults, they only
use a small sample of faults, potentially overlooking some errors.
As a result, the error categories are generic and appear to be
incomplete. Moreover, some methods only describe the cause cat-
egories (and not actual errors), while others provide only a few
examples for each category. None of the methods provides a list
of all the errors that may occur during the requirements phase. An-
other common problem is that while many methods do emphasize
the importance of human errors and provide a few examples (e.g.,
errors due to designers carelessness and transcription errors), they
do not go far enough. These approaches lack a strong cognitive the-
ory to describe a more comprehensive list of the errors. Finally, no
formal process is available that can guide developers in identifying
the errors and resulting faults when they occur. The inability of the

Table 9
Limitations of methods in question 1.1.

Limitations Methods

Requires extensive documentation of problem reports and inspection results; and over-reliance on historical data [24,50,47,55,59,60]
Cost of performing the causal analysis through implementing actions ranges from 0.5% to 1.5% of the software budget; and requires a startup

investment
[24,41,59,60]

It is cost-intensive, people-intensive and useful for analyzing only a small sample of faults, or group of related faults [8,24,41,46,59–61]
Requires experienced developers, extensive meetings among experts, and interviewing the actual developers to analyze the probable causes of faults [46]
Results in a large number of actions, and has to applied over a period of time to test the suggested actions/improvements to software process [55,59–61]
It can only detect the process inadequacy/process improvement actions and not reveal the actual error [47,59–61]
It analyzes the faults found late in the software lifecycle [46,59–61]
Does not guide the inspectors, and relies heavily on the creativity of inspectors in abstracting errors from faults during software inspections [53]

1094 G.S. Walia, J.C. Carver / Information and Software Technology 51 (2009) 1087–1109
existing methods to overcome these limitations motivates the
need for development of more complete requirement error
taxonomy.

4.4. Question 2: What types of requirement errors have been identified
in the software engineering literature?

The identification of requirement errors will support future re-
search into software quality. To obtain an initial list of errors, the
software engineering literature was reviewed to extract any errors
that had been described by other researchers. This research ques-
tion is addressed in detail by sub-questions 2.1 and 2.2. A total
of 55 papers were analyzed to identify the types of requirement er-
rors in software engineering literature, 30 to address question 2.1
and 24 to address question 2.2. The complete list of all the require-
ment errors that were identified in the software engineering liter-
ature is provided in Appendix B.

4.5. Question 2.1: What types of errors can occur during the
requirement stage?

The review uncovered a number of candidates for requirement
errors. Table lists potential requirement errors along with the rel-
evant references.

The first row of Table 10 contains six different studies that ana-
lyzed faults found during software development using different
causal analysis methods (as described in question 1.1) to identify
requirement errors [16,24,41,46,60,61]. Examples of the errors
identified by these studies include: lapses in communications
among developers, inadequate training, not considering all the
ways a system can be used, and misunderstanding certain aspect
of the system functionality.

The second source of errors includes empirical studies that clas-
sify requirement errors problems experienced by developers, stud-
ies that classify difficulties in determining requirements, and other
case studies that trace requirement errors to the problems faced
during the requirements engineering process [13,21,42,77,81,82].
Examples of the errors from these studies include: lack of user par-
Table 10
Sources used to identify requirement errors in the literature.

Sources of errors References

Root causes, cause categories, bug causes, defect–fault causes [16,24,41,46,60,61]
Requirement engineering problem classification [13,21,42,77,81,82]
Empirical studies on root causes of troubled projects or errors [7,39,76]
Influencing factors in reference stage and software

development
[12,27,79,92]

Causes of requirement traceability and requirement
inconsistency

[29,33,65,71]

Domain knowledge problems [65]
Management problems [29]
Situation awareness/decision making errors [33]
Team errors [71]
Other [40,56,57,87]
ticipation, inadequate skills and resources, complexity of applica-
tion, undefined requirement process, and cognitive biases.

The third source of errors include studies that describe the root
causes (some of whom were those belonging to requirement stage)
of troubled IT projects [7,39,76]. Examples of the errors from these
studies include: unrealistic business plan, use of immature tech-
nology, not involving user at all stages, lack of experienced or capa-
ble management, and improper work environment.

Table 10 also includes the findings from an empirical study of
13 software companies that identified 32 potential problem fac-
tors, and other similar empirical studies that identified require-
ment problem factors affecting software reliability [12,27,79,92].
Examples of the errors from these studies include: hostile team
relationships, schedule pressure, human nature (mistakes and
omissions), and flawed analysis method.

Table 10 also includes studies that determined the causes of
requirement traceability and requirement inconsistencies, errors
due to domain knowledge, requirement management errors, and
errors committed among team members during software develop-
ment [29,33,64,71]. Examples of the errors from these studies in-
clude: poor planning, insufficiently formalized change requests,
impact analysis not systematically achieved, misunderstandings
due to working with different systems, and team errors.

Finally, Table 10 contains ‘‘other errors” that includes studies
describing the root causes of safety-related software errors and
description of requirement errors causing safety-related errors as
well as studies that describe requirement errors based on the con-
tribution of human error from social and organizational literature
[56,57,87]. Examples of the errors from these studies include mis-
understanding of assumptions and interface requirements, misun-
derstanding of dependencies among requirements, mistakes
during application of well-defined process, and attention or mem-
ory slips. The complete list of requirement errors derived from the
sources listed in Table 10 is shown in Appendix B.

4.6. Question 2.2: What errors can occur in other phases of the
software lifecycle that are related to errors that can occur during the
requirements phase?

In addition to the errors found specifically in the requirements
phase, the review also uncovered errors that occur during the de-
sign and coding phases. These errors can also occur during the
requirements phase, including:

� Missing information: Miscommunication between designers in
different teams; lack of domain, system, or environmental
knowledge; or misunderstandings caused by working simulta-
neously with several different software systems and domains
[17,41].

� Slips in system design: Misunderstanding of the current situation
while forming a goal (resulting in an inappropriate choice of
actions), insufficient specification of actions to follow for achiev-
ing goal (resulting in failure to complete the chosen actions),

G.S. Walia, J.C. Carver / Information and Software Technology 51 (2009) 1087–1109 1095
using an analogy to derive a sequence of actions from another
similar situation (resulting in the choice of a sequence of actions
that is different from what was intended), or the sequence of
actions is forgotten because of an interruption [63,64].

� System programs: Technological, organizational, historical, indi-
vidual, or other causes [31].

� Cognitive breakdown: Inattention, over attention, choosing the
wrong plan due to information overload, wrong action, incorrect
model of problem space, task complexity, or inappropriate level
of detail in the task specification [50,51].

4.7. Question 2.3: What requirement errors can be identified by
analyzing the source of actual faults?

In addition to identifying requirement errors directly reported
in the literature, this review also identified a list of faults that could
be traced back to their underlying error [3,4,6,14,15,26,37,44,
68,70,72]. For example, in the case where a requirements docu-
ment is created by multiple sub-teams, a particular functionality
is missing because each sub-team thought the other one would in-
clude it. The error that caused this problem is the lack of commu-
nication among the sub-teams. Another example is the case where
two requirements are incomplete because they are both missing
important information about the same aspect of system function-
ality. The error that caused this problem is the fact that developers
did not completely understand that aspect of the system and it was
manifested in multiple places. These errors were added to the list
of errors that served as input to question 4. These errors include:

� Misunderstanding or mistakes in resolving conflicts (e.g., there
are unresolved requirements or incorrect requirements that
were agreed on by all parties).

� Mistakes or misunderstandings in mapping inputs to outputs,
input space to processes, or processes to output.

� Misunderstanding of some aspect of the overall functionality of
the system.

� Mistakes while analyzing requirement use cases or different sce-
narios in which the system can be used.

� Unresolved issues about complex system interfaces or unantici-
pated dependencies.

4.8. Question 3: Is there any research from human cognition or
psychology that can propose requirement errors?

To address the fact that requirements engineering is a human-
based activity and prone to errors, the review also examined hu-
man cognition and psychology literature. The contributions of this
literature to requirements errors are addressed by sub-questions
3.1 and 3.2. A total of 32 papers that analyzed the human errors
and their fallibilities were used to identify errors that may occur
during software requirements phase.

4.9. Question 3.1: What information can be found about human errors
and their classification?

The major types of human errors and classifications identified
in human cognition and psychology include:

� Reason’s classification of mistakes, lapses, and slips: Errors are clas-
sified as either mistakes (i.e., the wrong plan is chosen to accom-
plish a particular task), lapses (i.e., the correct plan is chosen, but
a portion is forgotten during execution), or slips (i.e., the plan is
correct and fully remembered, but during its execution some-
thing is done incorrectly) [23,31,64].
� Rasmussen’s skill, rule and knowledge based human error
taxonomy: Skill based slips and lapses are cause by mistakes
while executing a task even though the correct task was cho-
sen. Rule and knowledge based mistakes occur due to errors
in intentions, including choosing the wrong plan, violating a
rule, or making a mistake in an unfamiliar situation
[23,63,40].

� Reason’s general error modeling system (GEMS): A model of
human error in terms of unsafe acts that can be intentional
or unintentional. Unintentional acts include slips and lapses
while intentional acts include mistakes and violations
[23,35,63,78].

� Senders and Moray’s classification of phenomenological taxonomies,
cognitive taxonomies, and deep rooted tendency taxonomies:
Description of the how, what and why concerns of an error,
including omissions, substitutions, unnecessary repetitions,
errors based on the stages of human information processing
(e.g., perception, memory, and attention), and errors based on
biases [23,78].

� Swain and Guttman’s classification of individual discrete actions:
Omission errors (something is left out), commission errors
(something is done incorrectly), sequence errors (something is
done out of order), and timing errors (something is done too
early or too late) [83].

� Fitts and Jones control error taxonomy: Based on a study of ‘‘pilot
error” that occur while operating aircraft controls. The errors
include: substitution (choosing the wrong control), adjustment
(moving the control to the wrong position), forgetting the con-
trol position, unintentional activation of the control, and inabil-
ity to reach the control in time [35].

� Cacciabue’s taxonomy of erroneous behavior: Includes system and
personnel related causes. Errors are described in relation to exe-
cution, planning, interpretation, and observation along with the
correlation between the cause and effects of erroneous behavior
[23].

� Galliers, Minocha, and Sutcliffe’s taxonomy of influencing factors for
occurrence of errors: Environmental conditions, management and
organizational factors, task/domain factors, and user/personnel
qualities including the slip and mistake types of errors described
earlier [40].

� Sutcliffe and Rugg’s error categories: Operational description, cog-
nitive causal categories, social and organizational causes, and
design errors [81].

� Norman’s classification of human errors: Formation of intention,
activation, and triggering. Important errors include errors in
classifying a situation, errors that result from ambiguous or
incompletely specified intentions, slips from faulty activation
of schemas, and errors due to fault triggering [62–64,66].

� Human error identification (HEI) tool: Describes the SHERPA tool
that classifies errors as action, checking, retrieval, communica-
tion, or selection [74,78].

� Human error reduction (HERA): Technique that analyzes and
describes human errors in air the traffic control domain. HERA
contains error taxonomies for five cognitive domains: percep-
tion and vigilance, working memory, long-term memory, judg-
ment, planning and decision-making, and response execution
[20,45].

4.10. Question 3.2: Which of the human errors identified in question
3.1 can have corresponding errors in software requirements?

Those errors that were relevant to requirements were included
in the initial list of errors that served as input to question 4 to make
it more comprehensive. Examples of the translation of these errors
into requirements errors are found in Table 11.

Table 11
Requirement errors drawn from human errors.

Error Description

Not understanding the domain Misunderstandings due to the complex nature of the task; some properties of the problem space are not fully investigated;
and, mistaken assumptions are made

Not understanding the specific application Misunderstanding the order of events, the functional properties, the expression of end states, or goals
Poor execution of processes Mistakes in applying the requirements engineering process, regardless of its adequacy; out of order steps; and lapses on

the part of the people executing the process
Inadequate methods of achieving goals and

objectives
System-specific information was omitted leading to the selection of the wrong technique or process; selection of a
technique or process that, while successful on other projects, has not been fully investigated or understood in the current
situation

Incorrectly translating requirements to written
natural language

Lapses in organizing requirements; omission of necessary verification at critical points during the execution of an action;
repetition of verification leading to the repetition or omission of steps

Other human cognition errors Mistakes caused by adverse mental states, loss of situation awareness, lack of motivation, or task saturation; mistakes
caused by environmental conditions

Table 12
Communication errors.

Inadequate project communications [41]
Changes in requirements not communicated [46]
Communication problems, lack of communication among developers and

between developers and users
[60]

Communication problems [55]
Poor communication between users and developers, and between

members of the development team
[47]

Lack of communication between sub-teams [16]
Communication between development teams [13]
Lack of user communication [13]
Unclear lines of communication and authority [39]
Poor communication among developers involved in the development

process
[12,27]

Communication problems, information not passed between individuals [33]
Communication errors within a team or between teams [56]
Lack of communication of changes made to the requirements [56]
Lack of communication among groups of people working together [71]

Table 13
Participation errors.

No involvement of all the stakeholders [46]
Lack of involvement of users at all times during requirement

development
[47]

Involving only selected users to define requirements due to the
internal factors like rivalry among developers or lack of the
motivation

[39,40,87]

Lack of mechanism to involve all the users and developers together to
resolve the conflicting requirements needs

[24]

1096 G.S. Walia, J.C. Carver / Information and Software Technology 51 (2009) 1087–1109
4.11. Question 4: How can the information gathered in response to
questions 1–3 be organized into an error taxonomy?

Some of the errors were identified in more than one of the
bodies of literature surveyed: quality improvement approaches,
requirement errors, other software errors, and human errors. The
errors described in the answers to questions 1–3 were collected,
analyzed and combined into an initial requirement error taxonomy
with the objective of making the taxonomy simple and easy to use
yet comprehensive enough to be effective.

The development of the requirement error taxonomy consisted
of two step. First, the detailed list of errors identified during the lit-
erature search, and described in the answers to questions 1–3,
were grouped together into a set of detailed requirement error
classes. Second, the error classes were grouped into three high-
level requirement error types. These high-level error types were
also found during the literature search. The next section details
the process of developing the requirement error taxonomy and
how the taxonomy was constructed.

5. Process of developing the requirement error taxonomy

We organized the errors into a taxonomy that will guide future
error detection research with the intent of addressing limitations
in the existing quality improvement approaches. The errors identi-
fied from the software engineering and psychology fields were col-
lected, analyzed for similarities, and grouped into the taxonomy.
Errors that had similar characteristics (symptoms), whether from
software engineering or from psychology, were grouped into an er-
ror class to support the identification of related errors when an er-
ror is found. An important constraint while grouping the
requirement errors was to keep the error classes as orthogonal as
possible [87,88].

In Section 5.1, for each error class, we first describe the error
class. Then we provide a table that lists the specific errors from
the literature search that were grouped into that error class. Final-
ly, we give an example of an error from that class, along with a
fault likely to be caused by that error. The examples are drawn
from two sample systems. Due to space limitations, only a brief
overview of each example system is provided here.

� Loan arranger system (LA): The LA application supports the busi-
ness of a loan consolidation organization. This type of organiza-
tion makes money by purchasing loans from banks and then
reselling those loans to other investors. The LA allows a loan
analyst to select a bundle of loans that have been purchased
by the organization that match the criteria provided by an inves-
tor. This criterion may include amount of risk, principal involved
and expected rate of return. When an investor specifies invest-
ment criteria, the system selects the optimal bundle of loans
that satisfy the criteria. The LA system automates information
management activities, such as updating loan information pro-
vided monthly by banks.

� Automated ambulance dispatch system (AAD): This system sup-
ports the computer-aided dispatch of ambulances to improve
the utilization of ambulances and other resources. The system
receives emergency calls, evaluates incidents, issues warnings,
and recommends ambulance assignments. The system should
reduce the response time for emergency incidents by dispatch-
ing decisions based on recommendations made by system
[4,52].

5.1. Developing the requirement error classes

The requirement error classes were created by grouping errors
with similar characteristics. Tables 12–25 show each error class
along with the specific errors (from Software Engineering and Hu-
man Cognition fields) that make up that class.

Table 14
Domain knowledge errors.

Lack of domain knowledge or lack of system knowledge [12,17,40,41,55,92]
Complexity of the problem domain [12,13,21,42]
Lack of appropriate knowledge about the application [27]
Complexity of the task leading to misunderstandings [40]
Lack of adequate training or experience of the requirement

engineer
[41]

Lack of knowledge, skills, or experience to perform a task [71]
Some properties of the problem space are not fully

investigated
[31]

Mistaken assumptions about the problem space [56]

Table 15
Specific application errors.

Lack of understanding of the particular aspects of the problem domain [60,65]
Misunderstandings of hardware and software interface specification [56]
Misunderstanding of the software interfaces with the rest of the system [56]
User needs are not well-understood or interpreted while resolving

conflicting requirements
[61]

Mistakes in expression of the end state or output expected [64]
Misunderstandings about the timing constraints, data dependency

constraints, and event constraints
[56,57]

Misunderstandings among input, output, and process mappings [70]

Table 16
Process execution errors.

Mistakes in executing the action sequence or the requirement
engineering process, regardless of its adequacy

[23,35,63,78]

Execution or storage errors, out of order sequence of steps and
slips/lapses on the part of people executing the process

[35,40,66,85]

Table 17
Other human cognition errors.

Mistakes caused by adverse mental states, loss of situation awareness [33,71,87]
Mistakes caused by ergonomics or environmental conditions [12]
Constraints on humans as information processors, e.g., task saturation [40]

Table 18
Inadequate method of achieving goals and objectives errors.

Incomplete knowledge leading to poor plan on achieving goals [40]
Mistakes in setting goals [40]
Error in choosing the wrong method or wrong action to achieve

goals
[50,51]

Some system-specific information was misunderstood leading to
the selection of wrong method

[33]

Selection of a method that was successful on other projects [23,69]
Inadequate setting of goals and objectives [76]
Error in selecting a choice of a solution [56]
Using an analogy to derive a sequence of actions from other similar

situations resulting in the wrong choice of a sequence of actions
[31,40,64,69]

Transcription error, the developer understood everything but
simply made a mistake

[60]

Table 19
Management errors.

Poor management of people and resources [27,71]
Lack of management leadership and necessary motivation [29]
Problems in assignment of resources to different tasks [13]

Table 20
Requirement elicitation errors.

Inadequate requirement gathering process [16]
Only relying on selected users to accurately define all the requirements [39]
Lack of awareness of all the sources of requirements [27]
Lack of proper methods for collecting requirements [13]

Table 21
Requirement analysis errors.

Incorrect model(s) while trying to construct and analyze solution [50,51]
Mistakes in developing models for analyzing requirements [8]
Problem while analyzing the individual pieces of the solution space [13]
Misunderstanding of the feasibility and risks associated with

requirements
[87]

Misuse or misunderstanding of problem solution processes [8]
Unresolved issues and unanticipated dependencies in solution space [17]
Inability to consider all cases to document exact behavior of the system [60]
Mistakes while analyzing requirement use cases or scenarios [8,74]

Table 22
Requirement traceability errors.

Inadequate/poor requirement traceability [13,42,76]
Inadequate change management, including impact analysis of

changing requirements
[29]

Table 23
Requirement organization errors.

Poor organization of requirements [41]
Lapses in organizing requirements [23]
Ineffective method for organizing together the requirements documented by

different developers
[8]

Table 24
No use of standard for documenting errors.

No use of standard format for documenting requirements [41]
Different technical standard or notations used by sub teams for documenting

requirements
[39]

Table 25
Specification errors.

Missing checks (item exists but forgotten) [16]
Carelessness while organizing or documenting requirement regardless of

the effectiveness of the method used
[7,8]

Human nature (mistakes or omissions) while documenting requirements [83,92]
Omission of necessary verification checks or repetition of verification

checks during the specification
[50,51]

G.S. Walia, J.C. Carver / Information and Software Technology 51 (2009) 1087–1109 1097
The communication errors class (Table 12) describes errors that
result from poor or missing communications among the various
stakeholders involved in developing the requirements.
Example:
Error: Customer did not communicate that the LA system
should be used by between one and four users (loan analysts)
simultaneously.
Fault: Omitted functionality because the requirements specify
operations as if they are performed by only one user at a time.

The participation error class (Table 13) describes errors that re-
sult from inadequate or missing participation of important stake-
holders involved in developing the requirements.

Example:
Error: Bank lender, who was not involved in the requirements
process, wanted the LA application system to handle both fixed
rate loans and adjustable rate loans.

1098 G.S. Walia, J.C. Carver / Information and Software Technology 51 (2009) 1087–1109
Fault: Omitted functionality as requirements only consider fixed
rate loans.
The domain knowledge error class (Table 14) describes errors

that occur when requirement authors lack knowledge or experi-
ence about the problem domain.

Example:
Error: Requirement author lacks knowledge about the rela-
tive priority of emergency types within the AAD domain.
Fault: The functionality is incorrect because the requirements
contain the wrong ambulance dispatch algorithm.

The specific application error class (Table 15) describes errors
that occur when the requirement authors lack knowledge about
specific aspects of the application being developed (as opposed
to the general domain knowledge).

Example:
Error: Requirement author does not understand the order in
which status changes should be made to the ambulances in
the AAD system.
Fault: The requirements specify an incorrect order of events,
the status of the ambulance is updated after it is
dispatched rather than before, leaving a small window of time
in which the same ambulance could be dispatched two times.
The process execution error class (Table 16) describes errors

that occur when requirement authors make mistakes while exe-
cuting the requirement elicitation and development processes
regardless of the adequacy of the chosen process.

Example:
Error: Misunderstanding of the ordering of the transactions
involving the creation or deletion of records in the database
for the LA system.
Fault: The requirements incorrectly specify how the LA should
handle transactions. They state that transactions should be
resolved based on the order in which the processing completes
rather than in the order in which the requests were received.

The other human cognition error class (Table 17) describes
other errors that result from constraints on the cognitive abilities
of the requirement authors.

The inadequate method of achieving goals and objective error
class (Table 18) describes errors that result from selecting inade-
quate or incorrect methods for achieving the stated goals and
objectives.

Example:
Error: The requirements engineering misunderstood that some
crucial functionality had to be delivered before other function-
ality, so s/he chose the waterfall lifecycle rather than an incre-
mental one.
Fault: Required functionality cannot be delivered on time to the
customer.

The management error class (Table 19) describes errors that re-
sult from inadequate or poor management processes.

Example:
Error: In the LA system, the same requirement engineer is
assigned to document the borrower’s risk requirement and
the loan’s risk requirements. These contrasting tasks result in
a mental lapse when understanding the inputs required to suc-
cessfully produce the risk estimates.
Fault: The functionality for calculating risk is incorrect.

The requirement elicitation error class (Table 20) describes er-
rors that result from the use of an inadequate requirement elicita-
tion process.
Example:
Error: In the AAD system, the requirements engineers are not
able to elicit requirements about system response time for
emergency incidents or about error handling.
Fault: Performance and other non-functional requirements are
omitted.

The requirement analysis error class (Table 21) describes errors
committed during the requirement analysis process.

Example:
Error: In the LA system, the analysis process was not able to
identify how the system should respond if multiple transactions
are requested that include the same loan before the system is
updated.
Fault: The requirements omit this situation leaving it undefined
and possibly erroneous.
The requirement traceability error class (Table 22) describes

that result from an inadequate or incomplete requirement trace-
ability process.

Example:
Error: In the LA system, a requirement describing the ability of
loan analyst to change the borrower information can not be
traced to any user need.
Fault: An extraneous requirement is included that could result
in extra, unnecessary work for the developers.

The requirement organization error class (Table 23) describes
errors committed while organizing the requirement during the
documentation process.

Example:
Error: When creating the requirements document for the LA
system, the requirement engineer does not use any type of log-
ical organization of the requirements.
Fault: Because the requirements are not grouped logically, a
requirement about how to display the results of a report was
omitted from the requirements document.

The no use of documentation standard error class (Table 24) de-
scribes errors committed because the requirement author did not
use a standard for documenting the requirements.

Example:
Error: In documenting the LA application system, the IEEE Stan-
dard was not used.
Fault: Requirements about system scope and performance were
omitted.

The specification error class (Table 25) describes general errors
that can occur while specifying the requirements regardless of
whether the developers correctly understood the requirements.

Example:
Error: In the LA application system, the requirement
author understood the difference between regular loans (i.e.,
for amount 6$275,000) and jumbo loans (i.e., for
amount >$275,000), but while documenting the requirements,
s/he recorded the same information for both type of
loans.
Fault: The requirements for the jumbo loans incorrectly specify
exactly the same behavior as for regular loans.

5.2. Development of requirement error types

In order to make the taxonomy understandable and usable for
developers, it includes two levels. The taxonomy organizes the er-

G.S. Walia, J.C. Carver / Information and Software Technology 51 (2009) 1087–1109 1099
ror classes, from Section 5.1, into three high-level types: people er-
rors, process errors, and documentation errors. These high-level types
can be found in the literature. The remainder of this section de-
Table 26
Requirement error types.

Reference Error types

Card [24] 1. Incomplete or wrong methods
2. Clumsy or defective tools and environment
3. People who lack adequate training or understanding
4. Incomplete or defective input and requirement

Jacobs et al. [46] 1. Inadequate communication
2. Process risks
3. Organizational risks concerning decision authorities,

responsibilities
4. Technology risks concerning methods and toolsDoes not

mention people risks as a separate type, but are embed-
ded in other risk types

Mays et al. [60] 1. Oversight of the developer
2. Education of the developer
3. Communication failure
4. Transcription error (developer knew what to do and

understood but simply made a mistake)

Basili and Rombach
[8]

1. Application errors (misunderstanding of the problem
domain)

2. Problem–solution errors (not knowing, misunderstand-
ing, or misuse of problem solution processes)

3. Environment errors (misunderstanding of the hardware
or software environment)

4. Information management errors (mishandling of certain
procedures)

5. Clerical errors (carelessness)

Beecham et al. [13] 1. Organizational issues (i.e., developer communication,
culture, resources, skills, training, user communication)

2. Technical issues (i.e., complexity of the application, poor
user understanding, requirements traceability, unde-
fined requirement process)

Sutcliffe et al. [81] 1. Communication problems
2. Social and organization problems (i.e., user participa-

tion, lack of understanding, or trained personnel)
3. Politics
4. Technical problems

Coughlan and
Macredie [27]

1. Poor communication
2. Lack of appropriate knowledge or shared understanding
3. Inappropriate, incomplete, or inaccurate documentation
4. Lack of systematic process
5. Poor management of people or resources

Lutz [56] 1. Program faults (documented software errors)
2. Human errors (i.e., communication errors, misunder-

standings specifications, or problem domain)
3. Process flaws (i.e., flaws in controlling system complex-

ity or development methods)

Fig. 2. Requirement
scribes the three error types and the distribution of the error clas-
ses over three error types.

The different high-level error types found in the literature are
shown in Table 26, along with their source. Various researchers
have described different classifications of requirement errors. We
have based our error types on this information as described below.

A major focus of the research in Table 26 is the contribution of
people to the errors. Some researchers have explicitly labeled them
as people errors or human errors (i.e., Card et al. [24] and Lutz et al.
[56]), while others mentioned the error types that are more detailed
variants of the people errors (e.g., inadequate communication, er-
rors due to the education of a developer, misunderstandings, etc.).
These errors are already described in the requirement error classes
shown in Section 5.1.

Another focus in Table 26 concerns the errors related to process
flaws. Jacobs et al. [40] and Coughlan et al. [27] have mentioned er-
rors due to flawed development process and flawed methods and
tools. While other researchers have recognized this source of er-
rors, they often combine process errors with other error types.
An important aspect of our taxonomy is that we distinguish be-
tween flaws in the process (i.e., process errors) and human contri-
bution to the error (i.e., people errors).

Mays et al. [60] also listed transcription errors, i.e., the devel-
oper knew what to do and understood but simply made a mistake.
Based on this idea, we developed the documentation error type to
describe errors caused by mistakes in organizing and specifying
the requirements regardless of whether the developer understood
the requirement.

Therefore, the error types used in our requirement error taxon-
omy are: people errors, process errors, and documentation errors. Peo-
ple errors include errors that originate with fallibilities of the
individuals involved in project development. Process errors are
caused by mistakes in selecting the means of achieving goals and
objectives and focus mostly on the inadequacy of the requirement
engineering process. Documentation errors are caused by mistakes
in organizing and specifying the requirements irrespective of
whether the developer understood the requirements. After identi-
fying the 14 error types and their meaning, the next step was to
classify them using these three error types. Fig. 2 shows results
of that classification as the full requirement error taxonomy.

We include the communication and participation error classes in
the people error type (because they deal with problems among
people involved in the development). The domain knowledge and
specific application error classes are included in the people error
type because they relate to the lack of adequate training provided
to people or a person’s misunderstanding of the problem domain.
Process execution errors are included in the people error type be-
cause they relate to errors committed by people during the execu-
tion of processes, rather than errors associated with the adequacy
error taxonomy.

Table 27
Excluded requirement errors.

Error Exclusion reason

Culture, staff retention, politics Based only on expert opinion
Inappropriate, hidden or missing functionality,

poor feedback, syntax and semantic errors
Not related to any of the
research questions

Work standard, getting slow start, relying only on
user interviews, time pressure, situation
awareness errors, lack of trust

Short-papers, introductions
to special issues, tutorials,
and mini-tracks

1100 G.S. Walia, J.C. Carver / Information and Software Technology 51 (2009) 1087–1109
of the process itself. Finally, other human cognition errors are in-
cluded in the people error type because they describe errors that
result from constraints on the cognitive abilities of people.

The process error type includes the error classes that described
the errors resulting from flawed methods and tools used for
achieving goals and flawed requirement engineering processes.
The error classes included in process error were: inadequate method
for achieving goals and objectives, requirement management errors,
requirement elicitation errors, requirement analysis errors, and
requirement traceability errors.

Finally, the documentation error type includes errors that result
from the process of documenting the information about the
requirements. They do not concern misunderstandings of the ac-
tual requirements, those are people errors. The three error types
that are related to this problem are specification errors, no usage
of standard errors, and organization errors.

Finally, there were some errors that were found during the sys-
tematic review that were excluded from the requirement error tax-
onomy. Table 27 lists those errors along with the reasons for
excluding them.

6. Discussion

This section summarizes the principal findings of the systematic
review, highlights the strengths and weaknesses of the evidence
gathered and discusses the relevance and contribution of the
requirement error taxonomy to the software engineering research
and practice community.

6.1. Principal findings

The goal of this review was to identify and classify errors that
can occur during the requirement phase. Thus, a systematic litera-
ture review was conducted covering various research domains.
Using this information, a comprehensive initial requirement error
taxonomy was developed. The principal findings of the review are:
� A description of software quality improvement methods that

use error information, their limitations, drawbacks, and contri-
butions to the requirements error taxonomy.

� A description of the requirements errors that have been reported
in the software engineering literature. In addition, an analysis of
groups of related faults provided additional errors types that
were included in the requirement error taxonomy.

� A description of human errors (from cognitive psychology) and
their classifications accounted for additional errors that can
occur during the requirement stage.

� Finally, a requirement error taxonomy that classifies all of the
errors uncovered during the systematic review along with their
impact on software quality using example of faults they are
likely to cause by some of the errors.

6.2. Strengths and weaknesses

Validity of evidence: The evidence collected from the literature
was identified through a search of multiple literature databases
covering all of the relevant journals, proceedings, technical reports
and other literature in this area. To reduce bias, data extraction
forms were utilized to consistently extract the desired information
from each of the selected papers. The information extracted was
validated through comparison of independent analysis results be-
tween the authors of the paper. Finally, a well-defined inclusion
and exclusion criterion was followed to select only the most appro-
priate papers.

Results of quality assessment: The results from the quality assess-
ment (Table 5) showed that the papers were of high quality. The
papers that address research question 1 were all experiments that
satisfied the four quality questions, i.e., they provided empirical
evidence on the use of errors for improving software quality, de-
scribed the analysis method appropriately and were completely
understandable.

The papers collected that address research question 2 were a
mixture of experiments and observational studies. These studies
analyzed the root causes of faults in the software requirement
phase and other software lifecycle phases. All the studies provided
error information using well-described analyzes, used real defect
data from software organizations, and presented the evidence
(e.g., by describing case studies of using error information to im-
prove software process or decreasing defect rates) or observations
(e.g., by noticing better customer satisfaction and improved com-
munication) to support their findings and conclusions.

The papers that address research question 3 were also a mixture
of experiments and observational studies. The observational stud-
ies described human error classifications derived from observing
the human thought processes while planning, making decisions,
and problem solving. The experiments described new human error
classification and validated those described in the observational
studies. The human errors described in these studies were sup-
ported by evidence (empirical or observations).

Adequacy ofrequirement error taxonomy to address limitations: To
overcome the limitations and drawbacks identified in Section 2
(listed in Table 1) and discussed in Section 4 (in the answer to ques-
tion 1.2), the requirement error taxonomy provides comprehensive
error information to help developers identify and classify errors in
the requirements phase. The usefulness of the requirement error
taxonomy has been validated through a series of three controlled
experiments at Mississippi State University. The initial results from
these studies have been published, with more detailed analysis
ongoing. Therefore, only an overview of how the requirement error
taxonomy can be used to improve the quality of software artifacts
and the major results of each study are provided.

To evaluate the feasibility of using a requirement error taxon-
omy, an initial taxonomy was developed using an ad hoc review
(as opposed to this systematic review). Then, a study was con-
ducted to ensure that developers could use the error information
to improve their defect detection capability during the inspection
process. This study utilized a repeated-measures experiment de-
sign, where the subjects were asked to first inspect the require-
ment artifact (which they created) to find as many faults as
possible. These subjects were then trained in the use of error
abstraction (similar to Lanubile et al. [53]) following by training
in the use of error classification (using the requirement error tax-
onomy). The subjects were then asked to return to artifact and
re-inspect it using the knowledge of errors that they committed
to identify additional faults. The results from this study showed
that all the subjects found a considerably large number of addi-
tional faults during the second inspections [89,90].

After this study, the systematic review reported in this paper
was conducted to develop the requirement error taxonomy as de-
scribed in Section 5. A second study was then performed using the
new taxonomy. This study replicated the first study with the addi-
tion of a control group. The goal of this study was to investigate

G.S. Walia, J.C. Carver / Information and Software Technology 51 (2009) 1087–1109 1101
how much of the increase seen during the re-inspection step of
study 1 was due to the requirement error taxonomy and how much
was due simply to performing a second inspection of the same arti-
fact. In this study, the control group simply performed two inspec-
tions to look for faults, while the treatment group performed the
first inspection in the same way as control group followed by error
abstraction and classification to inform their second inspection (as
in study 1). The results from this study showed that the experi-
ment group, using the requirement error taxonomy, was signifi-
cantly more effective than the control group during the re-
inspection [88,90].

A third study also evaluated the usefulness of the requirement
error taxonomy by replicating the first study and adding an obser-
vational variable. The goal of this study was to observe firsthand
the behavior and interactions of subjects while they developed
the requirements document and inspected it using the require-
ment error taxonomy. This study included a participant observer
(one of the researchers) who took notes about the errors commit-
ted by subjects during the development of the requirements and
about their interactions when using the requirement error taxon-
omy. The results from this study also confirmed the effectiveness
of using the requirement error taxonomy to ensure early defect
detection.

In addition, the subjects participating in all the three studies fa-
vored the requirement error taxonomy on different attributes (i.e.,
simplicity, understandability, applicability, intuitiveness, orthogo-
nal, comprehensiveness, usefulness, and uniformity across prod-
ucts). The results from all the three studies showed that the
requirement error taxonomy: (a) improves the effectiveness for
inspection teams and individual inspectors, (b) is useful for
improving the quality of a requirements document, and (c) pro-
vides important insights into the requirement phase of the soft-
ware lifecycle. The results also support the validity of using
human cognition research to better understand software fault pro-
duction, and to increase defect detection [88–90]. These studies
with university students have provided positive initial results
and further validation is underway.

6.3. Contribution to research and practice communities

This paper provides a new perspective for the investigation of
software quality improvement. It outlines the software quality
problem and describes the limitations of the existing practices in
ensuring software quality. A systematic review encompassing a
Table 28
Search strings.

String
#

High level search string Detailed search string

1 Software quality improvement
approach

((software OR development OR application
property OR attribute OR aspect) AND (im
ameliorate OR betterment) AND (approach
OR mechanism OR plan OR pattern))

2 Software inspection methods ((software OR development OR application
OR examination OR review OR measureme
methodology OR procedure OR mechanism

3 Error abstraction OR root causes (error OR mistake OR problem OR reason O
AND (abstraction OR root cause OR cause)

4 Requirement stage errors ((requirement OR specification) AND (phas
state OR facet) AND (error OR mistake OR p
OR slip OR err))

5 Software error/fault/defect
taxonomy

((software OR development OR application
OR fault OR defect OR imperfection OR flaw
categorization OR grouping OR organizatio

6 Human error classification ((human OR cognitive OR individual OR psy
defect OR imperfection OR flaw OR lapse O
grouping OR organization OR terminology

7 Contribution from other fields to
S/W development

((contribution OR significance OR benefit O
AND (software development))
vast body of literature from both the software engineering and cog-
nitive psychology fields was conducted to identify and classify
requirements errors. The result of the review is a requirement error
taxonomy to help developers identify errors at their origin and en-
sure the early detection of defects. Based on the initial empirical
evaluations, the requirement error taxonomy shows promise as
an effective quality improvement approach and provides impor-
tant insights into the requirement phase of software lifecycle.

This work will contribute to the understanding of software
quality assurance through the inclusion of research from cognitive
psychology. Researchers and practitioners from both domains will
benefit from this work. For researchers, this work can serve as a
starting point for future research into the development of similar
errors taxonomies for other lifecycle phases. We also anticipate
that the continuing work in this area will provide additional in-
sights into the cognitive aspects of software development and
quality assurance. For practitioners, software engineers will gain
a more solid psychological basis for understanding software faults
and errors, and developers will be provided with a new set of tools
to prevent, detect, and repair the errors and resulting faults. Future
research into the development of concrete techniques based on the
error taxonomies can be used by developers to efficiently identify
the cause of faults at their source, and improve the quality of their
software.

6.4. Conclusion and future work

Based on the evidence gathered from the review and the data
collected from initial studies, the requirement error taxonomy
shows promise. The evidence provided in this paper has motivated
further investigation of the effectiveness of the proposed taxon-
omy. These results provide additional information for researchers
who are investigating methods to improve quality by developing
more effective tools and methods to assist software developers.

Finally, similar systematic reviews to identify errors in the sub-
sequent software lifecycle phases are needed. Research in this
direction will help the research and practice communities develop
a more complete verification process.

Acknowledgements

We thank the Empirical Software Engineering (ESE) Research
Group at Mississippi State University for providing useful feedback
and suggestions during the systematic review. We also thank Dr.
Review
question

OR product OR project) AND (quality OR condition OR character OR
provement OR enhancement OR advancement OR upgrading OR

OR process OR system OR technique OR methodology OR procedure

1

OR product OR project) AND (inspection OR assessment OR evaluation
nt) AND (approach OR process OR system OR technique OR
OR plan OR pattern))
R fault OR defect OR imperfection OR flaw OR lapse OR slip OR err)

)
e OR stage OR situation OR division OR period OR episode OR part OR
roblem OR reason OR fault OR defect OR imperfection OR flaw OR lapse

2

OR product OR project) AND (error OR mistake OR problem OR reason
OR lapse OR slip OR err) AND (taxonomy OR classification OR

n OR terminology OR systematization))
chological) AND (error OR mistake OR problem OR reason OR fault OR
R slip OR err) AND (taxonomy OR classification OR categorization OR
OR systematization))

3

R supplement OR assistance) AND (human cognition OR psychology)

Table 29
List of requirement errors identified in software engineering literature.

Description of error Reference

Methods (which may be incomplete, ambiguous, wrong, or unenforced); tools and environment (which may be clumsy, unreliable, or defective); and people
(who may lack adequate training and understanding)

[24]

Poor organization of requirements [41]
No use of standard format used for documenting requirements
Inadequate/insufficient training and experience
Inadequate project communications
Changes in the requirements not communicated [46]
Not involvement of all the stakeholders
Poor impact analysis of changing requirements
Lack of trust
People have different interpretation of requirements
Communication error (lack of communication among developers and between developer and users); transcription error (the developer understood

everything but simply made a mistake); and the developer did not understand some aspect of the product or process
[60]

User needs not well-understood or interpreted by different stakeholders [61]
Missing checks (item exists but forgotten)
Mishandling of steps to follow
Lack of understanding of the system
Lack of domain knowledge or lack of system knowledge [55]
Communication problems
Individual mistakes
Lack of change coordination
Lack of domain knowledge [8]
Misunderstanding of problem solution processes
Mistakes in developing models for analyzing requirements
Ineffective method of organizing individual requirements
Carelessness while documenting requirements
Mishandling of certain processes
Poor communication between users and developers, and between members of the development teams [47]
Lack of involvement of users at all times during requirement development
Lack of communication between sub teams; and inadequate requirement development processes [16]
Communication errors between development teams [13]
Lack of user communication
Complexity of problem domain
Problem in assignment of resources to different tasks
Lack of proper methods for collecting requirements
Inadequate requirement traceability
Problem while analyzing the solution space
Communication issues between users and developers [21]
Complexity of problem domain
Constraints on humans as information processors
Lack of developer communication and lack of user communication [42]
Complexity of the application domain
Inadequate requirement traceability
Undefined requirement process
Lack of skills or inappropriate skills or lack of training
Inadequate assignment of resources
Poor communication and interactions among users and developers thorough the requirement development process [81]
Lack of trained or experienced personnel
Misunderstandings of requirements by development team
Lack of domain knowledge or lack of specific task knowledge [82]
Clerical errors [7]
Mistaken assumptions about the problem space
Unclear lines of communication and authority [39]
Lack of involvement due to internal factors like rivalry among developers or lack of the motivation
Only relying on selected users to accurately define all the requirements
Different technical standards followed by sub-teams
Lack of proper environment
Lack of experience and poor communication among developers
Lack of proper methods of collecting requirements [76]
Inadequate setting of goals and objectives
Complex domain [12]
Lack of domain knowledge
Lack of communication
Poor communication among developers [27]
Lack of appropriate knowledge about the application and lack of awareness of sources of requirements; and poor management of people and resources
Lack of domain knowledge [92]
Human nature (mistakes or omissions)
Lack of management leadership and motivation [29]
Lack of skills and poor planning
Impact analysis not systematically achieved and change requests insufficiently formalized
Communication problems [33]
Simple omission
Wrong solution chosen because some system specific information was misunderstood
Not understanding some parts of the problem domain [65]

(continued on next page)

1102 G.S. Walia, J.C. Carver / Information and Software Technology 51 (2009) 1087–1109

Table 29 (continued)

Description of error Reference

Lack of domain knowledge [40]
Lack of task knowledge
Mistakes in setting goals
Incomplete knowledge leading to poor plans on achieving goals
Complexity of the task
Application of wrong rules
Lack of involvement of all the users
Lack of communication within a team or between teams [56]
Misunderstanding of interface specifications
Error in selecting a choice of solution
Mistaken assumptions
Lack of communication of the requirement changes
Misunderstandings about the timing constraints, data dependency constraints, and command ordering constraints [57]
Lack of motivation, inadequate communications, and poor planning [87]
Lack of communication among group of people working together [71]
Lack of knowledge, skills, or experience to perform a task
Deficiency of resource or task management

Table 30
List of other software process errors that can also occur during the requirement.

Description of error Reference

Miscommunication among teams [17,41]
Lack of domain or system knowledge
Misunderstandings caused by working simultaneously with several

different software systems and domains
Using an analogy to derive a sequence of actions from other similar

situations resulting in the wrong choice of a sequence of actions
[63,64]

Mistake while executing the sequence of actions
Misunderstanding of situation while forming a goal
Technological, historical, organizational, individual or other causes [31]
Inattention or over attention [50,51]
Choosing the wrong plan due to information overload
Wrong actions to achieve goals
Incorrect model while trying to understand solution and task

complexity

Table 31
List of abstracted errors.

Description of error

Lack of participation of all the stakeholders
Mistakes or misunderstandings in mapping inputs, outputs, and processes
Unresolved system interfaces and unanticipated dependencies
Misunderstanding of some aspect of the overall functionality of the system
Mistakes while analyzing requirement use cases or different scenarios in which

the system can be used

G.S. Walia, J.C. Carver / Information and Software Technology 51 (2009) 1087–1109 1103
Gary Bradshaw, a human cognition and psychology expert, for pro-
viding information on relevant databases and useful feedback on
our research. We thank Doris Carver and Guilherme Travassos for
reviewing early drafts of this paper. Finally we thank the anony-
mous reviewers for their helpful comments.

Appendix A

To search these databases described in Table 3, a set of search
strings was created for each research question based on keywords
extracted from the research questions and augmented with syn-
onyms. Table 12 shows the search strings used for each research
question (three search strings for question 1, two search strings
for question 2, and two search strings for question 3). In developing
the keyword strings, the following principles were applied:
� The major terms were extracted from the review questions and

augmented with other terms known to be relevant to the
research.

� A list of meaningful synonyms, abbreviations, and alternate
spellings was then generated. This list also included terms iden-
tified via consultation with the librarian and additional terms
from papers that were known to be relevant.

� The following global search string was constructed containing
all of the relevant keywords and their synonyms.

((software OR development OR application OR product OR project)
AND (quality OR condition OR character OR property OR attribute
OR aspect) AND (improvement OR enhancement OR advancement
OR upgrading OR ameliorate OR betterment) AND (approach OR
process OR system OR technique OR methodology OR procedure
OR mechanism OR plan OR pattern) AND (error OR mistake OR
problem OR reason OR fault OR defect OR imperfection OR flaw
OR lapse OR slip OR err) AND (requirement OR specification)
AND (phase OR stage OR situation OR division OR period OR epi-
sode OR part OR state OR facet) AND (taxonomy OR classification
OR categorization OR grouping OR organization OR terminology
OR systematization) AND (human OR cognitive OR individual
OR psychological) AND (abstraction OR root cause OR cause)
AND (inspection OR assessment OR evaluation OR examination
OR review OR measurement) AND (contribution OR significance
OR assistance OR benefit OR supplement) AND (human cognition
OR psychology OR failure management)).

Using this global search string, seven different search strings
(each one with its own purpose) were derived and executed on
each database. These strings are explained in Table 28 with the fol-
lowing attributes: string # – identification; high level search string –
the high level set of keywords used to derive the string; detailed
search string – the more detailed set of keywords used to derive
the string (this string was customized for each database search op-
tions to generate best results); and review question – maps to the
primary research questions.

Appendix B

This appendix describes the all the requirement errors that were
identified in the software engineering literature. The sources used
to identify requirement errors are shown in Table 10 of the journal
paper under research question 2.1, and described in Table 29.

Table 30 describes the list of other software process errors (in
design and coding phases), and are related to errors that can occur
during the requirement stage. Table 30 is related to the research
question 2.2 of the journal paper.

Table 31 describes the list of requirement errors that were ab-
stracted from analysis of source of actual faults. Table 31 is related
to the research question 2.3 of the journal paper.

1104 G.S. Walia, J.C. Carver / Information and Software Technology 51 (2009) 1087–1109
Appendix C

This appendix provides a list of all the papers that provided in-
put to this review, including those cited in the main paper and
some additional references. The additional references were not in-
cluded in the main paper because they are either illustration of er-
ror taxonomies that were cited in the main paper, or they are
references that do not add any new information to those that are
cited. This complete list of references is included for the sake of
completeness and may be of interest to some readers. For the sake
of clarity, references marked with a ‘�’ are included in the reference
list for the main paper.
*[1]
 IEEE Std 610.12-1990, IEEE Standard Glossary of Software
Engineering Terminology, 1990.
*[2]
 Software Engineering Laboratory: Software Measurement
Guidebook, NASA/GSFC Software Engineering Laboratory,
1994.
*[3]
 A.F. Ackerman, L.S. Buchwald, F.H. Lewski, Software
inspections: an effective verification process, IEEE
Software 6 (3) (1989) 31–36.
*[4]
 A. Aurum, H. Petersson, C. Wohlin, State-of-the-art:
software inspections after 25 years, Journal of Software
Testing Verification and Reliability 12 (3) (2002) 133–
154.
[5]
 B.P. Bailey, J.A. Konstan, On the need for attention-
aware systems, measuring effects of interruption on
task performance, error rate and affective state. Journal
of Computers in Human Behavior 22 (4) (2006) 685–
708.
[6]
 V. Basili, S. Green, Software process evolution at the SEL,
IEEE Software 11 (2) (1994) 58–66.
*[7]
 V.R. Basili, D.M. Weiss, Evaluation of a software
requirements document by analysis of change data, in:
Proceedings of the Fifth International Conference on
Software Engineering, IEEE Press, San Diego, CA, 1981, pp.
314–323.
*[8]
 V.R. Basili, B.T. Perricone, Software errors and complexity:
an empirical investigation, Communications of the ACM
27 (1) (1984) 42–52.
[9]
 V.R. Basili, E.E. Katz, N.N. Panlilio-Yap, C.L. Ramsey, S.
Chang, Characterization of an ada software development,
IEEE Computer 18 (9) (1985).
*[10]
 V.R. Basili, H.D. Rombach, Tailoring the software process to
project goals and environments, in: Proceedings of Ninth
International Conference in Software Engineering, IEEE
Press, California, United States, 1987, pp. 345–357.
*[11]
 V.R. Basili, H.D. Rombach, The TAME project: towards
improvement-oriented software environments, IEEE
Transactions on Software Engineering 14 (6) (1988) 758–
772.
*[12]
 V.R. Basili, Evolving and packaging reading techniques,
Journal of Systems and Software 38 (1) (1997) 3–12.
*[13]
 S. Basu, N. Ebrahimi, Estimating the number of undetected
errors: Bayesian model selection, in: Proceedings of the
Ninth International Symposium on Software Reliability
Engineering, IEEE Computer Society, Paderborn, Germany,
1998, pp. 22–31.
*[14]
 D. Batra, Cognitive complexity in data modeling: causes
and recommendations, Requirements Engineering Journal
12 (4) (2007) 231–244.
*[15]
 S. Beecham, T. Hall, C. Britton, M. Cottee, A. Rainer, Using
an expert panel to validate a requirements process
improvement model, The Journal of Systems and Software
76 (3) (2005) 251–275.
*[16]
 T.E. Bell, T.A. Thayer, Software requirements: are they
really a problem? in: Proceedings of Second
International Conference on Software Engineering, IEEE
Computer Society Press, Los Alamitos, CA, 1976, pp. 61–68.
[17]
 J.P. Benson, S.H. Saib, A software quality assurance
experiment, in: Proceedings of the Software Quality
Assurance Workshop on Functional and Performance
Issues, ACM Press, 1978, pp. 87–91.
*[18]
 T. Berling, T. Thelin, A case study of reading techniques in a
software company, in: Proceedings of the 2004
International Symposium on Empirical Software
Engineering (ISESE’04), IEEE Computer Society, 2004, pp.
229–238.
[19]
 B. Bernardez, M. Genero, A. Duran, M. Toro, A controlled
experiment for evaluating a metric-based reading
technique for requirement inspection, in: Proceedings of
the 10th International Symposium on Software Metrics
(METRICS’04), IEEE Computer Society, 2004, pp. 257–268.
*[20]
 I. Bhandari, M. Halliday, E. Tarver, D. Brown, J. Chaar, R.
Chillarege, A case study of software process improvement
during development, IEEE Transactions on Software
Engineering 19 (12) (1993) 1157–1170.
*[21]
 I. Bhandari, M.J. Halliday, J. Chaar, R. Chillarege, K. Jones,
J.S. Atkinson, C. Lepori-Costello, P.Y. Jasper, E.D. Tarver,
C.C. Lewis, M. Yonezawa, In process improvement through
defect data interpretation, IBM Systems Journal 33 (1)
(1994) 182–214.
*[22]
 J. Biolchini, P.G. Mian, A.C. Natatli, G.H. Travassos,
Systematic Review in Software Engineering: Relevance
and Utility, PESC-COPPE/UFRJ, Brazil, 2005, <http://
cronos.cos.ufrj.br/publicacoes/reltec/es67905.pdf>.
[23]
 S. Biffl, B. Freimut, O. Laitenberger, Investigating the cost-
effectiveness of reinspections in software development,
in: Proceedings of the 23rd International Conference on
Software Engineering, IEEE Computer Society, Toronto,
Ontario, Canada, 2001, pp. 155–164.
[24]
 M.R. Blackburn, R. Busser, A. Nauman, Eliminating
requirement defects and automating test, in: Test
Computer Software Conference, IEEE Computer Society,
2001, pp. 25–34.
[25]
 A. Blavier, E. Rouy, A.S. Nyssen, V. Keyser, Prospective
issues for error detection, Journal of Ergonomics 48 (7)
(2005) 758–781.
*[26]
 B. Boehm, V.R. Basili, Software defect reduction top 10 list,
IEEE Computer 34 (1) (2001) 135–137.
*[27]
 T. Bove, Development and Validation of Human Error
Management Taxonomy in Air Traffic Control, Risø National
Laboratory and University of Roskilde, 2002, p. 234.
*[28]
 G.J. Browne, V. Ramesh, Improving information
requirements determination: a cognitive perspective,
Journal of Information and Management 39 (8) (2002)
625–645.
*[29]
 B. Brykczynski, A survey of software inspection checklists,
ACM SIGSOFT Software Engineering Notes 24 (1) (1999)
82–89.
[30]
 D.K. Buse, C.W. Johnson, Identification and analysis of
incidents in complex, medical environments, in:
Proceedings of the First Workshop on Human Error and
Clinical Systems, Cambridge University Press, Glasgow,
Scotland, 1999.
*[31]
 P.C. Cacciabue, A methodology of human factors analysis
for systems engineering: theory and applications, IEEE
Transactions on System, Man and Cybernetics – Part A:
Systems and Humans 27 (3) (1997) 325–329.

http://cronos.cos.ufrj.br
http://cronos.cos.ufrj.br

G.S. Walia, J.C. Carver / Information and Software Technology 51 (2009) 1087–1109 1105
*[32]
 D.N. Card, Learning from our mistakes with defect causal
analysis, IEEE Software 15 (1) (1998) 56–63.
*[33]
 B. Cheng, R. Jeffrey, Comparing inspection strategies for
software requirement inspections, in: Proceedings of the
1996 Australian Software Engineering Conference, IEEE
Computer Society, Melbourne, Australia, 1996, pp. 203–
211.
[34]
 Y. Chernak, A statistical approach to the inspection checklist
formal synthesis and improvement, IEEE Transactions on
Software Engineering 22 (12) (1996) 866–874.
*[35]
 R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus,
B. Ray, M.Y. Wong, Orthogonal defect classification – a
concept for in-process measurement, IEEE Transactions on
Software Engineering 18 (11) (1992) 943–956.
[36]
 M. Ciolkowski, O. Laitenberger, S. Biffl, Software reviews:
the state of the practice, IEEE Software 20 (6) (2003) 46–51.
[37]
 B. Clark, D. Zubrow, How good is the software: a review of
defect prediction techniques, in: Software Engineering
Symposium, IEEE Computer Press, Pittsburgh, PA, 2001,
pp. 1–35.
*[38]
 J. Coughlan, D.R. Macredie, Effective communication in
requirements elicitation: a comparison of methodologies,
Requirements Engineering Journal 7 (2) (2002) 47–60.
*[39]
 W.J. Cristopher, The cost of errors in software
development: evidence from industry, The Journal of
System and Software 62 (1) (2002) 1–9.
*[40]
 C. Debou, A.K. Combelles, Linking software process
improvement to business strategies: experiences from
industry, Journal of Software Process: Improvement and
Practice 5 (1) (2000) 55–64.
[41]
 S.W.A. Dekker, Illusions of explanation : a critical essay on
error classification, The International Journal of Aviation
Psychology 13 (2) (2003) 95–106.
[42]
 B.S. Dhillon, Y. Liu, Human error in maintenance: a review,
Journal of Quality in Maintenance Engineering 12 (1)
(2006) 21–36.
[43]
 I.M.M. Duncan, D.J. Robson, An exploratory study of
common coding faults in C programs, C Traps and Pittfalls
8 (4) (1996) 251–256.
[44]
 K. Emam, O. Laitenberger, T. Harbich, The application of
subjective estimates of effectiveness to controlling
software inspections, The Journal of Systems and Software
54 (2) (2000) 119–136.
*[45]
 A. Endres, An analysis of errors and their causes in system
programs, IEEE Transactions on Software Engineering 1 (2)
(1975) 140–149.
*[46]
 A. Endres, D. Rombach, A Handbook of Software and
Systems Engineering, first ed., Pearson Addison Wesley,
Harlow, England, 2003.
*[47]
 M.R. Endsley, Situation awareness and human error:
designing to support human performance, in: Proceedings
of the High Consequence Systems Surety Conference, SA
Technologies, Albuquerque, NM, 1999, pp. 2–9.
[48]
 M.E. Fagan, Design and code inspections to reduce errors
in program development, IBM Systems Journal 15 (3)
(1976) 182–211.
*[49]
 N.E. Fenton, M. Neil, A critique of software defect
prediction models, IEEE Transactions on Software
Engineering 25 (5) (1999) 675–689.
*[50]
 P.M. Fitts, R.E. Jones, Analysis of factors contributing to
460 ‘pilot error’ experiences in operating aircrafts control,
in: Selected Papers on Human Factors in the Design and
Use of Control Systems, Dover Publications Inc., New York,
1961, pp. 332–358.
*[51]
 W.A. Florac, Software Quality Measurement: A
Framework for Counting Problems and Defects, Carnegie
Mellon Software Engineering Institute, Pittsburgh, PA,
1992.
[52]
 M. Fredericks, V. Basili, Using Defect Tracking and Analysis
to Improve Software Quality, The Data and Analysis Center
for Software (DACS), 1998.
*[53]
 B. Freimut, C. Denger, M. Ketterer, An industrial case study
of implementing and validating defect classification for
process improvement and quality management, in:
Proceedings of the 11th IEEE International Software
Metrics Symposium, IEEE Press, 2005.
[54]
 M.S. Fujii, A comparison of software assurance methods,
ACM SIGMETRICS Performance Evaluation Review 7 (3–4)
(1978) 27–32.
*[55]
 P. Fusaro, F. Lanubile, G. Visaggio, A replicated
experiment to assess requirements inspection
techniques, Journal of Empirical Software Engineering 2
(1) (1997) 39–57.
*[56]
 D.A. Gaitros, Common errors in large software
development projects, The Journal of Defense Software
Engineering 12 (6) (2004) 21–25.
*[57]
 J. Galliers, S. Minocha, A. Sutcliffe, A causal model of
human error for safety critical user interface design, ACM
Transactions on Computer–Human Interaction 5 (3)
(1998) 756–769.
[58]
 J. Galliers, A. Sutcliffe, S. Minocha, An impact analysis
method for safety-critical user interface design, ACM
Transactions on Computer–Human Interaction 6 (4)
(1999) 341–369.
[59]
 M. Graboswki, K.H. Roberts, Human and organizational
error in large scale systems, IEEE Transactions on System,
Man And Cybernetics – Part A: Systems and Humans 26
(1) (1996) 2–16.
*[60]
 R.B. Grady, Software failure analysis for high-return
process improvement, Hewlett–Packard Journal 47 (4)
(1996) 15–24.
[61]
 W.D. Gray, The nature and processing of errors in
interactive behavior, Journal of Cognitive Science 24 (2)
(2000) 205–248.
*[62]
 T. Hall, S. Beecham, A. Rainer, Requirement problems in
twelve software companies: an empirical analysis, IEE
Proceedings Software 149 (5) (2002) 153–160.
*[63]
 J.H. Hayes, Building a requirement fault taxonomy:
experiences from a NASA verification and validation
research project, in: Proceedings of the 14th International
Symposium on Software Reliability Engineering, IEEE
Computer Society, 2003, pp. 49–59
*[64]
 J.H. Hayes, E.A. Holbrook, I. Raphael, D.M. Pruett, Fault-
based analysis: how history can help improve
performance and dependability requirements for high
assurance systems, in: Fifth International Workshop on
Requirements for High Assurance Systems (RHAS’05), IEEE
Computer Society, Chicago, 2005.
[65]
 K. Henningsson, C. Wohlin, Assuring fault classification
agreement – an empirical evaluation, in: Proceedings of the
2004 International Symposium on Empirical Software
Engineering (ISESE’04), IEEE Computer Society, 2004, pp.
95–104.
[66]
 A. Hobbs, A. Williamson, Skills, rules and knowledge in
aircraft maintenance: errors in context, Journal of
Ergonomics 45 (4) (2002) 290–308.
[67]
 E. Hollnagel, Human Reliability Analysis: Context and
Control, Academic Press, London, 1994.

1106 G.S. Walia, J.C. Carver / Information and Software Technology 51 (2009) 1087–1109
[68]
 J.C. Huang, C.K. Chang, M. Christensen, Event-based
traceability for managing evolutionary change, IEEE
Transactions on Software Engineering 29 (9) (2003) 796–804.
[69]
 W.S. Humphrey, Using a defined and measured personal
software process, IEEE Software 13 (3) (1996) 77–88.
*[70]
 A. Issac, S.T. Shorrock, R. Kennedy, B. Kirwan, H. Andersen,
T. Bove, The Human Error in ATM Technique (HERA-
JANUS), European Air Traffic Management, 2002, pp. 1–94.
*[71]
 J. Jacobs, J.V. Moll, P. Krause, R. Kusters, J. Trienekens, A.
Brombacher, Exploring defect causes in products
developed by virtual teams, Journal of Information and
Software Technology 47 (6) (2005) 399–410.
[72]
 M.S. Jaffe, N.G. Leveson, M.P.E. Heimdahl, B.E. Melhart,
Software requirements analysis for real-time process
control systems, IEEE Transactions on Software
Engineering 17 (3) (1991) 241–258.
[73]
 C. Johnson, Forensic software engineering: are software
failures symptomatic of software problems? Journal of
Safety Science 40 (9) (2002) 835–847.
[74]
 M. Jorgensen, M. Shepperd, A systematic review of software
development cost estimation studies, IEEE Transactions on
Software Engineering 33 (1) (2007) 33–53.
[75]
 W. Joung, B. Hesketh, Using ‘‘war stories” to train for
adaptive performance: is it better to learn from errors or
success? Journal of Applied Psychology: An International
Review 55 (2) (2006) 282–302.
*[76]
 S.H. Kan, V.R. Basili, L.N. Shapiro, Software quality: an
overview from the perspective of total quality
management, IBM Systems Journal 33 (1) (1994) 4–19.
[77]
 E. Kantorowitz, L. Arzi, A. Gutmann, The performance of
the N-fold requirement inspection method, Requirement
Engineering Journal 2 (3) (1997) 152–164.
[78]
 D. Kelly, T. Shepard, Task-directed software inspection
technique: an experiment and case study, in: Proceedings
of the 2000 Conference of the Centre for Advanced Studies
on Collaborative Research, IBM Press, Mississauga,
Ontario, Canada, 2000.
[79]
 T.G. Kirner, J.C. Abib, Inspection of software requirements
specification documents: a pilot study, in: Proceedings of
the 15th Annual International Conference on Computer
Documentation, IEEE Press, Salt Lake City, Utah, United
States, 1997, pp. 161–171.
[80]
 J.C. Knight, A.E. Myers, An improved inspection technique,
Communications of the ACM 36 (11) (1993) 50–69.
*[81]
 A.J. Ko, B.A. Myers, Development and evaluation of a
model of programming errors, in: Proceedings of IEEE
Symposium on Human Centric Computing Languages and
Environments, IEEE Computer Society, 2003, pp. 7–14.
*[82]
 A.J. Ko, B.A. Myers, A framework and methodology for
studying the causes of software errors in programming
systems, Journal of Visual Languages and Computing 16
(2) (2005) 41–84.
*[83]
 J. Kramer, A.L. Wolf, in: Succeedings of the Eighth
International Workshop on Software Specification and
Design, ACM SIGSOFT Software Engineering Notes, vol. 21,
no. 5, 1996, pp. 21–35.
[84]
 J. Krogstie, Integrating the understanding of quality in
requirements specification and conceptual modeling, ACM
SIGSOFT Software Engineering Notes 23 (1) (1998) 86–91.
[85]
 O. Laitenberger, C. Atkinson, Generalizing perspective-
based inspection to handle object-oriented development
artifacts, in: International Conference on Software
Engineering, IEEE Computer Society Press, Los Angeles, CA,
USA, 1999, pp. 494–503.
[86]
 O. Laitenberger, C. Atkinson, M. Schlich, K.E. Emam, An
experimental comparison of reading techniques for defect
detection in UML design documents, The Journal of
Systems and Software 53 (2) (2000) 183–204.
[87]
 O. Laitenberger, J.M. DeBaud, An encompassing lifecycle
centric survey of software inspection, The Journal of
Systems and Software 50 (1) (2000) 5–31.
[88]
 F. Lanubile, G. Visaggio, Assessing Defect Detection
Methods for Software Requirement Inspection Through
External Replication, Department of Informatica,
University of Bari, 1996.
*[89]
 F. Lanubile, F. Shull, V.R. Basili, Experimenting with error
abstraction in requirements documents, in: Proceedings of
the Fifth International Symposium on Software Metrics
(METRIC’98), IEEE Computer Society, Bethesda, MD, USA,
1998, pp. 114–121.
*[90]
 C.P. Lawrence, I. Kosuke, Design error classification and
knowledge management, Journal of Knowledge
Management Practice 10 (9) (2004) 72–81.
*[91]
 M. Leszak, D.E. Perry, D. Stoll, A case study in root cause
defect analysis, in: Proceedings of the 22nd International
Conference on Software Engineering, ACM Press, Limerick,
Ireland, 2000, pp. 428–437.
[92]
 R.R. Lutz, K. Wong, S. Johnny, Constraint checking during
error recovery, in: Proceedings of the NASA Technology 2002
Conference, IEEE Computer Society, 1992, pp. 142–153.
*[93]
 R.R. Lutz, Analyzing software requirements errors in
safety-critical, embedded systems, in: Proceedings of the
IEEE International Symposium on Requirements
Engineering, IEEE Computer Society Press, San Diego, CA,
USA, 1993, pp. 126–133.
*[94]
 R.R. Lutz, Targeting safety-related errors during software
requirements analysis, The Journal of Systems and
Software 34 (3) (1996) 223–230.
[95]
 R.R. Lutz, Requirements analysis using forward and
backward search, Annals of Software Engineering 3 (1)
(1997) 459–475.
*[96]
 J. Martin, W.T. Tsai, N-fold inspection: a requirement
analysis technique, Communications of the ACM 33 (2)
(1990) 225–232.
*[97]
 C. Masuck, Incorporating a fault categorization and
analysis process in the software build cycle, Journal of
Computing Sciences in Colleges 20 (5) (2005) 239–248.
*[98]
 R.G. Mays, C.L. Jones, G.J. Holloway, D.P. Studinski,
Experiences with defect prevention, IBM Systems Journal
29 (1) (1990) 4–32.
[99]
 F. McGarry, G. Page, V. Basili, M. Zelkowitz, Software
Process Improvement in the NASA Software Engineering
Laboratory, Carnegie Mellon Software Engineering
Institute (SEI), 1994.
[100]
 K.S. Mendis, Quantifying software quality, Annual Quality
Congress Transaction 35 (4) (1981) 11–18.
[101]
 J. Miller, M. Wood, M. Roper, Further experiences with
scenarios and checklists, Journal of Empirical Software
Engineering 3 (1) (1998) 37–64.
[102]
 Y. Mohri, T. Kikuno, Fault analysis based on fault
reporting in JSP software development, in: Proceedings
of the 15th Annual International Computer Software and
Applications Conference, IEEE Computer Society, 1991,
pp. 591–596.
[103]
 J.C. Munson, A.P. Nikora, Toward a quantifiable definition
of software faults, in: Proceedings of the 13th
International Symposium on Software Reliability
Engineering, IEEE Computer Society, 2002, pp. 388–395.

G.S. Walia, J.C. Carver / Information and Software Technology 51 (2009) 1087–1109 1107
[104]
 N. Nachiappan, W. Laurie, H. John, S. Will, V. Mladen,
Preliminary results on using static analysis tools for
software inspection, in: Proceedings of the 15th
International Symposium on Software Reliability
Engineering (ISSRE’04), IEEE Press, 2004, 429–439.
*[105]
 T. Nakashima, M. Oyama, H. Hisada, N. Ishii, Analysis of
software bug causes and its prevention, Journal of
Information and Software Technology 41 (15) (1999)
1059–1068.
[106]
 C.R. Nelms, The latent causes of industrial failures how to
identify them, and what to do about them, in: Proceedings of
the IEEE Sixth Conference on Human Factors and Power
Plants, 1997, Global Perspectives of Human Factors in Power
Generation, IEEE Press, Orlando, FL, USA, 1997, pp. 7–12.
[107]
 J.M. Nieves, A.P. Sage, Human and organizational error as a
basis for process reengineering: with applications to
system integration planning and marketing, IEEE
Transactions on System, Man And Cybernetics – Part A:
Systems and Humans 28 (6) (1998) 742–762.
*[108]
 D. Norman, The Psychology of Every Day Things, Basic
Books, New York, 1988.
*[109]
 D.A. Norman, Steps towards a cognitive engineering:
design rules based on analyzes of human error,
Communications of the ACM 26 (4) (1981) 254–258.
*[110]
 D.A. Norman, Design rules based on analyzes of human
error, Communications of the ACM 26 (4) (1983) 254–258.
*[111]
 K.M. Oliveira, F. Zlot, A.R. Rocha, G.H. Travassos, C. Galotta,
C.S. Menezes, Domain-oriented software development
environment, The Journal of Systems and Software 72 (2)
(2004) 145–161.
*[112]
 F. Paterno, C. Santoro, Preventing user errors by systematic
analysis of deviations from the system task model,
International Journal of Human–Computer Studies 56 (2)
(2002) 225–245.
[113]
 F. Patrick, L. David, M. Melinda, P. Andy, Tree-based
methods for classifying software failures, in: Proceedings
of the 15th International Symposium on Software
Reliability Engineering (ISSRE’04), IEEE Press, 2004, pp.
451–462.
*[114]
 A.A. Porter, L.G. Votta, V.R. Basili, Comparing detection
methods for software requirements inspections: a
replicated experiment, IEEE Transactions on Software
Engineering 21 (6) (1995) 563–575.
[115]
 A.A. Porter, L.G. Votta, What makes inspections work? IEEE
Software 14 (6) (1997) 99–102.
[116]
 L. Prechelt, Accelerating learning from experience:
avoiding defects faster, IEEE Software 18 (6) (2001) 56–61.
*[117]
 J. Reason, Human Error, Cambridge University Press,
Cambridge, USA, 1990.
[118]
 S. Reinach, A. Viale, Application of a human error
framework to conduct train accident/incident
investigations, Journal of Accident Analysis and
Prevention 38 (2) (2006) 396–406.
[119]
 P.N. Robillard, The role of knowledge in software
development, Communications of the ACM 42 (1) (1999)
87–92.
[120]
 W.N. Robinson, S.D. Pawlowski, Managing requirement
inconsistency with development goal monitors, IEEE
Transactions on Software Engineering 25 (6) (1999) 816–
835.
[121]
 G. Sabaliauskaite, S. Kusumoto, K. Inoue, Assessing defect
detection performance of interacting teams in object-
oriented design inspections, Journal of Information and
Software Technology 46 (13) (2004) 875–886.
*[122]
 S. Sakthivel, A survey of requirement verification
techniques, Journal of Information Technology 6 (2)
(1991) 68–79.
[123]
 K. Sandahl, O. Blomkvist, J. Karlsson, C. Krysander, M.
Lindvall, N. Ohlsson, An extended replication of an
experiment for assessing methods for software
requirements inspections, Journal of Empirical Software
Engineering 3 (4) (1998) 327–354.
*[124]
 K. Sasao, J. Reason, Team errors: definition and taxonomy,
Journal of Reliability Engineering and System Safety 65 (1)
(1999) 1–9.
[125]
 P. Sawyer, I. Sommerville, S. Viller, Capturing the benefits
of requirement engineering, IEEE Software 16 (2) (1999)
78–85.
*[126]
 G.M. Schneider, J. Martin, W.T. Tsai, An experimental study
of fault detection in user requirements documents, ACM
Transactions on Software Engineering and Methodology 1
(2) (1992) 188–204.
*[127]
 L.W. Senders, N.P. Moray, Human Error: Cause, Prediction,
and Reduction, Lawrence Erlbaum, Hillslade, NJ, 1991.
[128]
 S.A. Shappell, D.A. Weigmann, A human error approach to
accident investigation: the taxonomy of unsafe
operations, The International Journal of Aviation
Psychology 7 (4) (1997) 269–291.
[129]
 W. Shen, M. Guizani, Z. Yang, K. Compton, J. Huggins,
Execution of a requirement model in software development,
in: Proceedings of the 13th International Conference on
Intelligent and Adaptive Systems and Software Engineering,
IEEE Press, Nice, France, 2004, pp. 203–208.
*[130]
 S.T. Shorrock, B. Kirwan, Development and application of a
human error identification tool for air traffic control,
Journal of Applied Ergonomics 33 (4) (2002) 319–336.
*[131]
 F. Shull, I. Rus, V. Basili, How perspective based reading
can improve requirement inspection, IEEE Computer 33
(7) (2000) 73–79.
[132]
 I. Sommerville, Software Engineering, eighth ed., Addison
Wesley, Harlow, England, 2007.
*[133]
 J. Smith, The 40 root causes of troubled IT projects, Journal
of IEEE Computer and Control Engineering 13 (3) (2002)
109–112.
*[134]
 N.A. Stanton, S.V. Stevenage, Learning to predict human
error: issues of acceptability, reliability and validity,
Journal of Ergonomics 41 (11) (1998) 1737–1756.
*[135]
 M.A. Stutzke, C.S. Smidts, A stochastic model of fault
introduction and removal during software development,
IEEE Transactions on Reliability 50 (20) (2001) 184–193.
*[136]
 A. Sutcliffe, G. Rugg, A taxonomy of error types for failure
analysis and risk assessment, International Journal of
Human–Computer Interaction 10 (4) (1998) 381–405.
*[137]
 A. Sutcliffe, A. Economou, P. Markis, Tracing requirements
errors to problems in the requirements engineering
process, Requirements Engineering Journal 4 (3) (1999)
134–151.
*[138]
 A. Sutcliffe, B. Gault, N. Maiden, ISRE: immersive scenario-
based requirements engineering with virtual prototypes,
Requirements Engineering Journal 10 (1) (2004) 95–111.
*[139]
 A. Swain, H. Guttman, Handbook of Human Reliability
Analysis with Emphasis on Nuclear Power Plant
Applications, Nuclear Regulatory Commission,
Washington, DC, 1983.
*[140]
 T. Thelin, P. Runeson, C. Wohlin, T. Olsson, C. Andersson,
Evaluation of usage based reading-conclusion after three
experiments, Journal of Empirical Software Engineering 9
(1–2) (2004) 77–110.

1108 G.S. Walia, J.C. Carver / Information and Software Technology 51 (2009) 1087–1109
*[141]
 C. Trevor, S. Jim, C. Judith, K. Brain, Human Error in
Software Generation Process, University of Technology,
Loughborough, England, 1994.
[142]
 V. Venkatasubramaniam, R. Rengaswamy, S.K. Kavuri, A
review of process fault detection and diagnosis Part 2:
qualitative models and search strategies, Journal of
Computers and Chemical Engineering 27 (2) (2003) 313–
326.
[143]
 V. Venkatasubramaniam, R. Rengaswamy, K. Yin, S.K.
Kavuri, A review of fault detection and diagnosis Part 1:
quantitative model-based methods, Journal of Computers
and Chemical Engineering 27 (2) (2003) 293–311.
*[144]
 S. Viller, J. Bowers, T. Rodden, Human factors in
requirement engineering: a survey of human sciences
literature relevant to the improvement of dependable
systems development processes, in: Cooperative Systems
Engineering Group Technical Report, Computing
Department, Lancaster University, Lancaster, 1997.
*[145]
 G.S. Walia, J. Carver, T. Philip, Requirement error
abstraction and classification: an empirical study, in: IEEE
Symposium on Empirical Software Engineering, ACM
Press, Brazil, 2006, pp. 336–345.
*[146]
 G. Walia, J. Carver, T. Philip, Requirement error abstraction
and classification: a control group replicated study, in:
18th IEEE International Symposium on Software
Reliability Engineering, Trollhättan, Sweden, 2007.
*[147]
 G.S. Walia, J. Carver, Development of a Requirement Error
Taxonomy as a Quality Improvement Approach: A
Systematic Literature Review MSU-070404, Department of
Computer Science and Engineering, Mississippi State
University, 2007, <http://www.cse.msstate.edu/
PUBLICATIONS/TECHNICAL_REPORTS/MSU-070404.pdf>.
*[148]
 G.S. Walia, Empirical Validation of Requirement Error
Abstraction and Classification: A Multidisciplinary
Approach, M.S. Thesis, Computer Science and Engineering,
Mississippi, Starkville, 2006.
[149]
 D.M. Weiss, Evaluating software development by error
analysis: the data from architecture research facility,
Journal of Systems and Software 4 (4) (1979) 289–300.
[150]
 T. Yamamura, K. Yata, T. Yasushi, H. Yamaguchi, A basic
study on human error in communication network
operation, in: IEEE Global Telecommunications
Conference, 1989, and Exhibition, Communications
Technology for the 1990s and Beyond, GLOBECOM’89,
IEEE Press, Dallas, TX, USA, 1989, pp. 795–800.
[151]
 D. Zage, W. Zage, An analysis of the fault correction
process in a large-scale SDL production model, in:
Proceedings of the 25th International Conference on
Software Engineering, IEEE Computer Society, Portland,
Oregon, 2003, pp. 570–577.
*[152]
 X. Zhang, H. Pham, An analysis of factors affecting
software reliability, The Journal of Systems and Software
50 (1) (2000) 43–56.
References

[1] IEEE Std 610.12-1990, IEEE Standard Glossary of Software Engineering
Terminology, 1990.

[2] Software Engineering Laboratory: Software Measurement Guidebook, SEL-94-
002, NASA/GSFC Software Engineering Laboratory, 1994.

[3] A.F. Ackerman, L.S. Buchwald, F.H. Lewski, Software inspections: an effective
verification process, IEEE Software 6 (3) (1989) 31–36.

[4] E.B. Allen, Computer Aided Dispatch System for the London
Ambulance Service: Software Requirement Specification, MSU-030429,
Department of Computer Science and Engineering, Mississippi State
University, 2003.
[5] A. Aurum, H. Petersson, C. Wohlin, State-of-the-art: software inspections after
25 years, Journal of Software Testing Verification and Reliability 12 (3) (2002)
133–154.

[6] V.R. Basili, D.M. Weiss, Evaluation of a software requirements document by
analysis of change data, in: Proceedings of the Fifth International Conference
on Software Engineering, IEEE Press, San Diego, CA, 1981, pp. 314–323.

[7] V.R. Basili, B.T. Perricone, Software Errors and Complexity: An Empirical
Investigation, Communications of the ACM 27 (1) (1984) 42–52.

[8] V.R. Basili, H.D. Rombach, Tailoring the software process to project goals and
environments, in: Proceedings of Ninth International Conference in Software
Engineering, IEEE Press, California, United States, 1987, pp. 345–357.

[9] V.R. Basili, H.D. Rombach, The TAME project: towards improvement-oriented
software environments, IEEE Transactions on Software Engineering 14 (6)
(1988) 758–772.

[10] V.R. Basili, Evolving and packaging reading techniques, Journal of Systems and
Software 38 (1) (1997) 3–12.

[11] S. Basu, N. Ebrahimi, Estimating the number of undetected errors: bayesian
model selection, in: Proceedings of the Ninth International Symposium on
Software Reliability Engineering, IEEE Computer Society, Paderborn, Germany,
1998, pp. 22–31.

[12] D. Batra, Cognitive complexity in data modeling: causes and
recommendations, Requirements Engineering Journal 12 (4) (2007) 231–244.

[13] S. Beecham, T. Hall, C. Britton, M. Cottee, A. Rainer, Using an expert panel to
validate a requirements process improvement model, The Journal of Systems
and Software 76 (3) (2005) 251–275.

[14] T.E. Bell, T.A. Thayer, Software requirements: are they really a problem?, in:
Proceedings of Second International Conference on Software Engineering, IEEE
Computer Society Press, Los Alamitos, CA, 1976, pp 61–68.

[15] T. Berling, T. Thelin, A case study of reading techniques in a software company,
in: Proceedings of the 2004 International Symposium on Empirical Software
Engineering (ISESE’04), IEEE Computer Society, 2004, pp. 229–238.

[16] I. Bhandari, M. Halliday, E. Tarver, D. Brown, J. Chaar, R. Chillarege, A case study
of software process improvement during development, IEEE Transactions on
Software Engineering 19 (12) (1993) 1157–1170.

[17] I. Bhandari, M.J. Halliday, J. Chaar, R. Chillarege, K. Jones, J.S. Atkinson, C.
Lepori-Costello, P.Y. Jasper, E.D. Tarver, C.C. Lewis, M. Yonezawa, In process
improvement through defect data interpretation, IBM Systems Journal 33 (1)
(1994) 182–214.

[18] J. Biolchini, P.G. Mian, A.C. Natatli, G.H. Travassos, Systematic Review in
Software Engineering: Relevance and Utility, PESC-COPPE/UFRJ, Brazil, 2005,
<http://cronos.cos.ufrj.br/publicacoes/reltec/es67905.pdf>.

[19] B. Boehm, V.R. Basili, Software defect reduction top 10 list, IEEE Computer 34
(1) (2001) 135–137.

[20] T. Bove, Development and Validation of Human Error Management Taxonomy
in Air Traffic Control, Ph.D. Thesis, Risø National Laboratory and University of
Roskilde, 2002.

[21] G.J. Browne, V. Ramesh, Improving information requirements determination: a
cognitive perspective, Journal of Information and Management 39 (8) (2002)
625–645.

[22] B. Brykczynski, A survey of software inspection checklists, ACM SIGSOFT
Software Engineering Notes 24 (1) (1999) 82–89.

[23] P.C. Cacciabue, A methodology of human factors analysis for systems
engineering: theory and applications, IEEE Transactions on System, Man and
Cybernetics – Part A: Systems and Humans 27 (3) (1997) 325–329.

[24] D.N. Card, Learning from our mistakes with defect causal analysis, IEEE
Software 15 (1) (1998) 56–63.

[25] B. Cheng, R. Jeffrey, Comparing inspection strategies for software requirement
inspections, in: Proceedings of the 1996 Australian Software Engineering
Conference, IEEE Computer Society, Melbourne, Australia, 1996, pp. 203–211.

[26] R. Chillarege, I.S. Bhandari, J.K. Chaar, M.J. Halliday, D.S. Moebus, B.K. Ray, M.Y.
Wong, Orthogonal defect classification – a concept for in-process
measurement, IEEE Transactions on Software Engineering 18 (11) (1992)
943–956.

[27] J. Coughlan, D.R. Macredie, Effective communication in requirements
elicitation: a comparison of methodologies, Requirements Engineering
Journal 7 (2) (2002) 47–60.

[28] W.J. Cristopher, The cost of errors in software development: evidence from
industry, The Journal of System and Software 62 (1) (2002) 1–9.

[29] C. Debou, A.K. Combelles, Linking software process improvement to business
strategies: experiences from industry, Journal of Software Process:
Improvement and Practice 5 (1) (2000) 55–64.

[30] T. Dyba, Experiences of Undertaking Systematic Reviews, SINTEF ICT,
Queensland, 2005.

[31] A. Endres, An analysis of errors and their causes in system programs, IEEE
Transactions on Software Engineering 1 (2) (1975) 140–149.

[32] A. Endres, D. Rombach, A Handbook of Software and Systems Engineering, first
ed., Pearson Addison Wesley, Harlow, England, 2003.

[33] M.R. Endsley, Situation awareness and human error: designing to support
human performance, in: Proceedings of the High Consequence Systems Surety
Conference, SA Technologies, Albuquerque, NM, 1999, pp. 2–9.

[34] N.E. Fenton, M. Neil, A critique of software defect prediction models, IEEE
Transactions on Software Engineering 25 (5) (1999) 675–689.

[35] P.M. Fitts, R.E. Jones, Analysis of factors contributing to 460 ‘pilot error’
experiences in operating aircrafts control, in: Proceedings of Selected Papers
on Human Factors in the Design and Use of Control Systems, Dover
Publications Inc., New York, 1961, pp. 332–358.

http://www.cse.msstate.edu
http://www.cse.msstate.edu
http://cronos.cos.ufrj.br

G.S. Walia, J.C. Carver / Information and Software Technology 51 (2009) 1087–1109 1109
[36] W.A. Florac, Software Quality Measurement: A Framework for Counting
Problems and Defects, CMU/SEI-92-TR-22, Carnegie Mellon Software
Engineering Institute, Pittsburgh, PA, 1992, <http://citeseer.ist.psu.edu/
florac92software.html>.

[37] B. Freimut, C. Denger, M. Ketterer, An industrial case study of implementing
and validating defect classification for process improvement and quality
management, in: Proceedings of the 11th IEEE International Software Metrics
Symposium, IEEE Press, 2005.

[38] P. Fusaro, F. Lanubile, G. Visaggio, A replicated experiment to assess
requirements inspection techniques, Journal of Empirical Software
Engineering 2 (1) (1997) 39–57.

[39] D.A. Gaitros, Common errors in large software development projects, The
Journal of Defense Software Engineering 12 (6) (2004) 21–25.

[40] J. Galliers, S. Minocha, A. Sutcliffe, A causal model of human error for safety
critical user interface design, ACM Transactions on Computer–Human
Interaction 5 (3) (1998) 756–769.

[41] R.B. Grady, Software failure analysis for high-return process improvement,
Hewlett–Packard Journal 47 (4) (1996) 15–24.

[42] T. Hall, S. Beecham, A. Rainer, Requirement problems in twelve software
companies: an empirical analysis, IEE Proceedings Software 149 (5) (2002)
153–160.

[43] J.H. Hayes, Building a requirement fault taxonomy: experiences from a NASA
verification and validation research project, in: Proceedings of the 14th
International Symposium on Software Reliability Engineering, IEEE Computer
Society, 2003, pp. 49–59.

[44] J.H. Hayes, E.A. Holbrook, I. Raphael, D.M. Pruett, Fault-based analysis: how
history can help improve performance and dependability requirements for
high assurance systems, in: Proceedings of Fifth International Workshop on
Requirements for High Assurance Systems (RHAS’05), IEEE Computer Society,
Chicago, 2005.

[45] A. Issac, S.T. Shorrock, R. Kennedy, B. Kirwan, H. Andersen, T. Bove, The Human
Error in ATM Technique (HERA-JANUS), HRS/HSP-002-REP-03, European Air
Traffic Management, 2002.

[46] J. Jacobs, J.V. Moll, P. Krause, R. Kusters, J. Trienekens, A. Brombacher, Exploring
defect causes in products developed by virtual teams, Journal of Information
and Software Technology 47 (6) (2005) 399–410.

[47] S.H. Kan, V.R. Basili, L.N. Shapiro, Software quality: an overview from the
perspective of total quality management, IBM Systems Journal 33 (1) (1994)
4–19.

[48] B. Kitchenham, Procedures for Performing Systematic Reviews, Technical
Report TR/SE-0401, Department of Computer Science, Keele University and
National ICT, Australia, Ltd., 2004, <http://www.elsevier.com/
framework_products/promis_misc/inf-systrev.pdf>.

[49] B. Kitchenham, E. Mendes, G.H. Travassos, A systematic review of cross- vs.
within-company cost estimation studies, in: Proceedings of 10th International
Conference on Evaluation and Assessment in Software Engineering (EASE’06),
Keele University, 2006.

[50] A.J. Ko, B.A. Myers, Development and evaluation of a model of
programming errors, in: Proceedings of IEEE Symposium on Human
Centric Computing Languages and Environments, IEEE Computer Society,
2003, pp. 7–14.

[51] A.J. Ko, B.A. Myers, A framework and methodology for studying the causes of
software errors in programming systems, Journal of Visual Languages and
Computing 16 (2) (2005) 41–84.

[52] J. Kramer, A.L. Wolf, in: Succeedings of the Eighth International Workshop on
Software Specification and Design, ACM SIGSOFT Software Engineering Notes,
vol. 21, no. 5, 1996, pp. 21–35.

[53] F. Lanubile, F. Shull, V.R. Basili, Experimenting with error abstraction in
requirements documents, in: Proceedings of Fifth International Software
Metrics Symposium, METRICS’98, IEEE Computer Society, Bethesda, MD, 1998,
pp. 114–121.

[54] C.P. Lawrence, I. Kosuke, Design error classification and knowledge
management, Journal of Knowledge Management Practice 10 (9) (2004) 72–
81.

[55] M. Leszak, D.E. Perry, D. Stoll, A case study in root cause defect analysis, in:
Proceedings of the 22nd International Conference on Software Engineering,
ACM Press, Limerick, Ireland, 2000, pp. 428–437.

[56] R.R. Lutz, Analyzing software requirements errors in safety-critical, embedded
systems, in: Proceedings of the IEEE International Symposium on
Requirements Engineering, IEEE Computer Society Press, San Diego, CA, USA,
1993, pp. 126–133.

[57] R.R. Lutz, Targeting safety-related errors during software requirements
analysis, The Journal of Systems and Software 34 (3) (1996) 223–230.

[58] J. Martin, W.T. Tsai, N-fold inspection: a requirement analysis technique,
Communications of the ACM 33 (2) (1990) 225–232.

[59] C. Masuck, Incorporating a fault categorization and analysis process in the
software build cycle, Journal of Computing Sciences in Colleges 20 (5) (2005)
239–248.

[60] R.G. Mays, C.L. Jones, G.J. Holloway, D.P. Studinski, Experiences with defect
prevention, IBM Systems Journal 29 (1) (1990) 4–32.

[61] T. Nakashima, M. Oyama, H. Hisada, N. Ishii, Analysis of software bug causes
and its prevention, Journal of Information and Software Technology 41 (15)
(1999) 1059–1068.

[62] D. Norman, The Psychology of Every Day Things, Basic Books, New York, 1988.
[63] D.A. Norman, Steps towards a cognitive engineering: design rules based on
analyses of human error, Communications of the ACM 26 (4) (1981) 254–258.

[64] D.A. Norman, Design rules based on analyses of human error, Communications
of the ACM 26 (4) (1983) 254–258.

[65] K.M. Oliveira, F. Zlot, A.R. Rocha, G.H. Travassos, C. Galotta, C.S. Menezes,
Domain-oriented software development environment, The Journal of Systems
and Software 72 (2) (2004) 145–161.

[66] F. Paterno, C. Santoro, Preventing user errors by systematic analysis of
deviations from the system task model, International Journal of Human–
Computer Studies 56 (2) (2002) 225–245.

[67] S.L. Pfleeger, J.M. Atlee, Software Engineering Theory and Practice, third ed.,
Prentice Hall, Upper Saddle River, NJ, 2006.

[68] A.A. Porter, L.G. Votta, V.R. Basili, Comparing detection methods for software
requirements inspections: a replicated experiment, IEEE Transactions on
Software Engineering 21 (6) (1995) 563–575.

[69] J. Reason, Human Error, Cambridge University Press, Cambridge, USA, 1990.
[70] S. Sakthivel, A survey of requirement verification techniques, Journal of

Information Technology 6 (2) (1991) 68–79.
[71] K. Sasao, J. Reason, Team errors: definition and taxonomy, Journal of Reliability

Engineering and System Safety 65 (1) (1999) 1–9.
[72] G.M. Schneider, J. Martin, W.T. Tsai, An experimental study of fault detection in

user requirements documents, ACM Transactions on Software Engineering and
Methodology 1 (2) (1992) 188–204.

[73] L.W. Senders, N.P. Moray, Human Error: Cause, Prediction, and Reduction,
Lawrence Erlbaum, Hillslade, NJ, 1991.

[74] S.T. Shorrock, B. Kirwan, Development and application of a human error
identification tool for air traffic control, Journal of Applied Ergonomics 33 (4)
(2002) 319–336.

[75] F. Shull, I. Rus, V. Basili, How perspective based reading can improve
requirement inspection, IEEE Computer 33 (7) (2000) 73–79.

[76] J. Smith, The 40 root causes of troubled IT projects, Journal of IEEE Computer
and Control Engineering 13 (3) (2002) 109–112.

[77] I. Sommerville, Software Engineering, eighth ed., Addison Wesley, Harlow,
England, 2007.

[78] N.A. Stanton, S.V. Stevenage, Learning to predict human error: issues of
acceptability, reliability and validity, Journal of Ergonomics 41 (11) (1998)
1737–1756.

[79] M.A. Stutzke, C.S. Smidts, A stochastic model of fault introduction and removal
during software development, IEEE Transactions on Reliability 50 (20) (2001)
184–193.

[80] A. Sutcliffe, G. Rugg, A taxonomy of error types for failure analysis and risk
assessment, International Journal of Human–Computer Interaction 10 (4)
(1998) 381–405.

[81] A. Sutcliffe, A. Economou, P. Markis, Tracing requirements errors to problems
in the requirements engineering process, Requirements Engineering Journal 4
(3) (1999) 134–151.

[82] A. Sutcliffe, B. Gault, N. Maiden, ISRE: immersive scenario-based requirements
engineering with virtual prototypes, Requirements Engineering Journal 10 (1)
(2004) 95–111.

[83] A. Swain, H. Guttman, Handbook of Human Reliability Analysis with Emphasis
on Nuclear Power Plant Applications, Nuclear Regulatory Commission,
Washington, DC, 1983.

[84] T. Thelin, P. Runeson, Robust estimation of fault content with capture–
recapture and detection profile estimators, The Journal of Systems and
Software 52 (2) (2000) 139–148.

[85] T. Thelin, P. Runeson, C. Wohlin, T. Olsson, C. Andersson, Team based fault
content estimation in the software inspection process, in: Proceedings of the
26th International Conference on Software Engineering (ICSE’04), IEEE
Computer Society, 2004, pp. 263–272.

[86] C. Trevor, S. Jim, C. Judith, K. Brain, Human Error in Software Generation
Process, University of Technology, Loughborough, England, 1994, <http://
www.branchlines.org.uk/Research/Tread1.pdf>.

[87] S. Viller, J. Bowers, T. Rodden, Human Factors in Requirement Engineering: A
Survey of Human Sciences Literature Relevant to the Improvement of
Dependable Systems Development Processes, Cooperative Systems
Engineering Group Technical Report, CSEG/8/1997, Computing Department,
Lancaster University, Lancaster, 1997, <http://citeseer.ist.psu.edu/
viller97human.html>.

[88] G. Walia, J. Carver, T. Philip, Requirement error abstraction and classification: a
control group replicated study, in: 18th IEEE International Symposium on
Software Reliability Engineering, Trollhättan, Sweden, 2007.

[89] G.S. Walia, Empirical Validation of Requirement Error Abstraction and
Classification: A Multidisciplinary Approach, M.S. Thesis, Computer Science
and Engineering, Mississippi, Starkville, 2006.

[90] G.S. Walia, J. Carver, T. Philip, Requirement error abstraction and classification:
an empirical study, in: Proceedings of IEEE Symposium on Empirical Software
Engineering, ACM Press, Brazil, 2006, pp. 336–345.

[91] G.S. Walia, J. Carver, Development of a Requirement Error Taxonomy as a
Quality Improvement Approach: A Systematic Literature Review MSU-070404,
Department of Computer Science and Engineering, Mississippi State
University, 2007, <http://www.cse.msstate.edu/PUBLICATIONS/TECHNICAL_
REPORTS/MSU-070404.pdf>.

[92] X. Zhang, H. Pham, An analysis of factors affecting software reliability, The
Journal of Systems and Software 50 (1) (2000) 43–56.

http://citeseer.ist.psu.edu
http://citeseer.ist.psu.edu
http://www.elsevier.com
http://www.elsevier.com
http://www.branchlines.org.uk
http://www.branchlines.org.uk
http://citeseer.ist.psu.edu
http://citeseer.ist.psu.edu
http://www.cse.msstate.edu
http://www.cse.msstate.edu

	A systematic literature review to identify and classify software requirement errors
	Introduction
	Background
	Existing quality improvement approaches
	Background on error abstraction

	Research method
	Research questions
	Source selection and search
	Data extraction and synthesis

	Reporting the review
	Question 1: Is there any evidence that using error information can improve software quality?
	Question 1.1: Are there any processes or methods reported in literature that use error information to improve software quality?
	Question 1.2: Do any of these processes address the limitations and gaps identified in Section 2 of this paper?
	Question 2: What types of requirement errors have been identified in the software engineering literature?
	Question 2.1: What types of errors can occur during the requirement stage?
	Question 2.2: What errors can occur in other phases of the software lifecycle that are related to errors that can occur during the requirements phase?
	Question 2.3: What requirement errors can be identified by analyzing the source of actual faults?
	Question 3: Is there any research from human cognition or psychology that can propose requirement errors?
	Question 3.1: What information can be found about human errors and their classification?
	Question 3.2: Which of the human errors identified in question 3.1 can have corresponding errors in software requirements?
	Question 4: How can the information gathered in response to questions 1–3 be organized into an error taxonomy?

	Process of developing the requirement error taxonomy
	Developing the requirement error classes
	Development of requirement error types

	Discussion
	Principal findings
	Strengths and weaknesses
	Contribution to research and practice communities
	Conclusion and future work

	Acknowledgements
	Appendix A
	Appendix B
	Appendix C
	References

