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A Systematic Method for Gain Selection of Robust PID Control for Nonlinear
Plants of Second-Order Controller Canonical Form

Pyung Hun Chang, Member, IEEE, and Je Hyung Jung, Member, IEEE

Abstract—A systematic method to select gains of a discrete pro-
portional-integral-derivative (PID) controller is presented. The
PID controller with the gains obtained by the proposed method
can robustly control nonlinear multiple-input–multiple-output
(MIMO) plants in a second-order controller canonical form, such
as robot dynamics. This method has been made possible by the
finding that the discrete PID control is equivalent to the discrete
form of time-delay control (TDC), a robust control method for
nonlinear plants with uncertainty. By using this equivalence,
relationships are obtained between PID gains and parameters of
TDC, which enable a systematic method for the select PID gains.
In addition, based on the systematic method, a simple and effective
method is proposed to tune PID gains applicable to nonlinear
plants with inaccurate models. This method incorporates a set
of independent tuning parameters that is far less than those for
conventional methods for PID gain selection. The usefulness of
the proposed methods is verified through the ease and simplicity
of determining PID gains for six degrees-of-freedom (DOF) pro-
grammable universal machine for assembly (PUMA)-type robot
manipulator; the effectiveness of these PID gains is confirmed by
the adequate and robust performance through experimentation
on the robot.

Index Terms—6-degrees-of-freedom (DOF) programmable
universal machine for assembly (PUMA)-type robot manipulator,
discrete proportional-integral-derivative (PID) controller, discrete
time control system, nonlinear plants, robust PID gains selection,
robust trajectory control, time delay control (TDC), sampled data
system.

I. INTRODUCTION

T
ODAY, proportional-integral-derivative (PID) control is
used in more than 90% of various practical control sys-

tems [1]. For example, most commercial motor drivers have a
PID control law built-in. There are several reasons for the pop-
ularity of the PID control. Chief among them is that their struc-
ture is simple and easy to apply heuristically, regardless of plant
dynamics; in addition, their three gains have such clear physical
meanings that one can attempt to tune the gains without pro-
found theoretical backgrounds. Moreover, an appropriate gain
set tends to yield acceptable performance levels. By the term
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to tune, we mean to adjust by trial-error, whereas to select, we
mean both to tune and to determine analytically.

Recent research trends in the PID control area are well sum-
marized in [2]. However, that study mainly focused on chem-
ical process control systems expressed in Laplace domain. As
the characteristics of most process systems differ from those of
a class of nonlinear plants such as robot manipulators, the re-
sults developed for process control systems cannot be directly
applied to nonlinear plants. It is widely perceived that PID gains
for nonlinear plants are very difficult to select on the analytical
basis of closed-loop stability and performance [3], [4].

For nonlinear plants, PID control has been applied to robot
manipulators as well as machines having similar dynamics to
robot manipulators. The research regarding PID controllers for
robot manipulators can be classified into three categories. The
first is research concerning the tuning methods of PID gains
through the use of intelligent control schemes such as fuzzy
control [3], [5]–[7], neural-net [8], or genetic methods [9]. The
second type is research that focuses on the method of PID gain
selection through the use of other control schemes such as op-
timal controls [10]–[12] or inverse dynamics controls [4]. The
third centers on the method of PID gain selection using a di-
rect stability analysis based on the Lyapunov stability [13], [14].
The foregoing studies on PID controllers for robot manipulators
tend to be theoretically complex, and tend to require exact plant
models.

Owing to their complexity and the need of exact plant models,
the many studies on PID control tend to be difficult for prac-
ticing engineers to fully understand and to competently apply
to practical systems. Furthermore, the difficulty is compounded
in applying the findings of research to many practical devices,
where tuning PID gains is the only thing users are allowed to
do.

It is no wonder that, in practice, the gains have mostly been
tuned heuristically. Yet, a heuristic approach has its own prob-
lems, as there are too many gains to tune simultaneously. For ex-
ample, a 6-degrees-of-freedom (DOF) robot manipulator has 18
gains—three for each joint—to be tuned, and tuning each gain
requires the tunings of the rest of others owing to dynamics cou-
pling, which in turn require the tunings of the rest, and so forth.
An obvious consequence is that one never becomes convinced
as to whether or not the resulting gain set is good enough. Some-
times, the Ziegler–Nichols method [15] helps; but is not always
effective: it has been widely observed that the gains tuned by
this method often do not yield a satisfactory performance for
nonlinear plants [16].

In addition, despite that nearly every control platform cur-
rently incorporates digital devices such as microprocessors or
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PCs or digital signal processors (DSPs), previous research has
often been formulated in a continuous time domain.

For the aforementioned reasons, we are going to propose a
systematic method for the gain selection of discrete PID con-
trollers from the viewpoint of sampled-data system—proposing
this method is the first contribution of this article. Incidentally,
by sampled-data system we mean a system having both dis-
crete and continuous signals [17]. Using the proposed system-
atic method, one can determine the robust PID gains analyt-
ically when the plant model is well known. However even if
the plant model is barely known, the method enables to deter-
mine the robust PID gains by simple and effective tuning—this
tuning scheme is the second contribution. The idea central to
the aforementioned gain-selection method is our finding that
PID control is equivalent to time delay control (TDC) [18]–[20]
a well known robust control scheme, when the plant is of the
second-order controller canonical form and when TDC and PID
controls are implemented in discrete time domain. This finding
is the third contribution of this brief.

To briefly explain TDC, it uses the time-delayed values of
control inputs and derivatives of state variables at the previous
time step to cancel the nonlinear dynamics and the uncertainties
such as parameter variations and disturbances. Thus, TDC does
not require any real-time computations of nonlinear dynamics,
nor does it use parameter estimations as an adaptive control
does. As a result, TDC shows unusually robust responses under
the aforementioned uncertainties; yet is simple and computa-
tionally efficient—as efficient as a PID control. Thus far, TDC
has been applied to numerous real systems; such as robot sys-
tems [21]–[25], a magnetic bearing [26], a brushless DC motor
[27], a robotic excavator [28], [29], a telescopic handler [30],
a frictionless positioning device [31], and a PM synchronous
motor [32]. In these applications, TDC has obtained satisfac-
tory results even under large system parameter variations and
disturbances.

Owing to the equivalence to TDC, the PID control with the
gains determined by the aforementioned systematic method,
too, is expected to possess the positive attributes of TDC, that
is, robust performance and simplicity (or efficiency): it could
also display adequate performance under substantial system
uncertainty; and could reduce the number of PID tuning gains,
far less than those for conventional methods for PID gain
selection. These attributes will be confirmed both theoretically
and experimentally throughout this brief.

In Section II, as preliminaries and backgrounds, the plant
of our concern is presented and TDC is reviewed briefly.
Section III presents a discrete PID control and a discrete TDC
as well as their relationship. Section IV describes a systematic
method for robust PID gain selection. Based on the systematic
method, a tuning method of PID gains is also presented for
nonlinear plants the models of which are barely known. In
Section V, we apply the proposed method to tune PID gains
and make experiments on a six-DOF programmable universal
machine for assembly (PUMA)-type robot manipulator whose
dynamics is barely known. In this case, we attempted to verify

the simplicity and effectiveness of the proposed method. Fi-
nally, Section VI summarizes the results and draw conclusions.

II. PRELIMINARIES AND BACKGROUNDS

In this section, as preliminaries, we are going to briefly
present the plant of our concern, and TDC to the extent that is
necessary to investigate the relationship with the PID control.
A more complete coverage of TDC will be found in [18]–[21].

A. Object Plant

An object plant is a nonlinear multiple-input–multiple-output
(MIMO) plant in second-order controller canonical form or
phase variable form described as follows:

(1)

Here, denotes the state vector to be controlled,
the input vector, an unknown nonlinear vector function
including unmodelled terms such as frictions and disturbances,
and denotes an input distribution matrix.

B. Time Delay Control

In this brief, TDC referred to in [19] is used. To derive TDC
for (1), an error vector is defined as

(2)

where denotes the desired output vector. If exists, the
application of control input

(3)

to the plant (1) leads to the cancellation of the nonlinearities,
resulting in a decoupled input–output relation

(4)

where denotes a new input vector. For tasks involving the
tracking of a desired output vector is selected as

(5)

with and being constant diagonal matrices, whose
th diagonal elements and , respectively, are chosen so

that the polynomials

(6)

may become Hurwitz. This leads to an exponentially stable and
decoupled error dynamics

(7)

which implies that the error vector converges to zero vector
.

In practice, however, it is impossible to know the exact
models of and . Therefore, it becomes desirable
to design a control law that cancels the nonlinear dynamics like
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(3) does, even when the exact models of and
are not known. To this end (1) is rearranged into the following:

(8)

where denotes a constant diagonal matrix with non-zero ele-
ment and consists of all the terms representing uncertainties,
expressed as

(9)

Set the control law as

(10)

where denotes an estimation of . Note that, if , (10)
is equivalent to (3), that is, simply another expression of (3).

Instead of trying to achieve , TDC uses the following
estimation scheme. If is continuous, and time delay
is sufficiently small so that does not vary significantly
during , then the following approximation holds:

(11)

This relationship is used together with (8) to obtain what is
called time-delay estimation (TDE) as the following:

(12)

In addition, in (11) is termed TDE error at . Combining (5)
and (10) with (12), TDC is obtained as

(13)

Note that , and determine the performance and sta-
bility of TDC. In previous research works [18]–[23], has been
selected in two different manners as the following.

• Type I: , where denotes a constant and
denotes a identity matrix. That is, all diagonal ele-
ments of are identical to .

• Type II: Diagonal matrix with different diagonal values
( for ).

Remark 1: As shown in (13), since TDC does not use the
knowledge of and , it is robust for systems with
poorly known dynamics. In many previous works [18]–[32],
this fact is well shown by means of analysis, simulations, and
experiments.

Remark 2: Due to the approximation of (11), if the discontin-
uous uncertainties are included in , they cause a consider-
able estimation error in discontinuous region. This phenomenon
and the remedies for that are well presented in [29], [34], and
[35].

Fig. 1. Causality relationship between � and � in the discrete time control
system.

III. RELATIONSHIP BETWEEN DISCRETE TDC AND DISCRETE

PID CONTROLLER

In discrete time control systems, the control input is imple-
mented with digital devices such as microprocessors or PCs ac-
cording to causality relationship between and —the relation-
ship specifying which variable is independent, and which de-
pendent. Fig. 1 illustrates the relationship: and
determines (or causes) , which together with deter-
mines . Here, denotes the time at the th sampling instant

, that is, , with being the sampling period.

A. Discrete Time Delay Control

1) Discrete TDC Law: Although (13) is in continuous form,
TDC law is usually implemented in digital devices. Considering
that in (13) needs to be sufficiently small and that the smallest

one can achieve in digital devices is the sampling period ,
one may express (13) in a discrete form as

(14)

In deriving (14) from (13), the causality relationship mentioned
before has made it necessary to transform to

instead of .
In addition, owing to the limited availability of sensors, and
are usually obtained by numerical differentiation, as follows:

(15)

If and are also obtained by numerical differentiation as in
(15), (14) is rewritten as

(16)

Note that (16) represents the discrete TDC that will be used.
2) Stability of Discrete Time Delay Control: Owing to the

finite time delay one can achieve in digital devices, there exists
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the TDE error defined in (11), and as the result of [33], the error
dynamics (7) can be transformed as

(17)

Under the assumption of , where
is defined as the set of all piece-wise continuous functions

, such that

(18)

a sufficient condition for closed-loop stability under discrete
TDC is presented in [33] as the following:

(19)

where the subscript denotes the induced matrix two-norm,
and

(20)

In addition, and denote the gains defined as

(21)

where denotes a diagonal matrix with the th diagonal term as
and a diagonal matrix with the th di-

agonal term as , with transfer functions
and defined by

(22)

(23)

where denotes the th element of the th element of ,
and the th element of of (17).

B. Discrete PID Controller

For plant (1), the PID control is expressed in a continuous
time domain as

(24)

where denotes a constant diagonal proportional gain
matrix, a constant diagonal matrix representing
derivative time, a constant diagonal matrix rep-
resenting a reset or integral time, and denotes a

constant vector representing a dc-bias decided by initial condi-
tions. Clearly, the number of PID gains is except for .

When a PID control is implemented in digital devices, by the
causal consideration, (24) can be obtained in discrete form as

(25)

It is possible to transform (25) into another form by the fol-
lowing procedures.

First, obtain for by using (25) and subtract it
from in (25), then results the following relationship:

(26)

Second, use (15) to obtain and in order to determine
terms in (26). Rearranging it leads to

(27)

for . Note that (27) is the result for discrete PID controller
which is to be compared with the discrete TDC.

C. Relationship Between Discrete TDC and Discrete PID

Controller

The relationship between discrete TDC and discrete PID con-
troller is established in the following Theorem 1.

Theorem 1: Consider the nonlinear plant (1), discrete TDC
(14), and discrete PID control (25). If the following hold:

a) first and second differentiation of output and desired
output for time are obtained by numerical differentia-
tion of and like (15);

b) of the PID control has the relationship to
of TDC as:

Relationship 1:

c) of PID control (25) is determined by

(28)

where , and denote the initial values of
, and , then discrete TDC (14) is equivalent

with the discrete PID control (25).
Proof: Comparing (16) with (27) makes it clear that (14)

and (25) are equivalent to each other and hence yields the rela-
tionship between of TDC and of the
PID control as Relationship 1 for . To show equivalence
between (14) and (25) at , the condition (c) is required.
This part is described as follows.
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When , the discrete TDC (14) and discrete PID control
(25) are expressed, respectively, as

(29)

(30)

where denotes the initial TDC input which is generally
set to zero vector . To guarantee the equivalence
between the discrete TDC and discrete PID control at ,
(29) should be equal to (30), that is

(31)

By substituting Relationship 1 into (31) and rearranging it,
under the assumption that is derived as

(32)

The right-hand side of last term in (32) is the same as that of
(28). Finally, of (25) is determined by (28), the discrete
TDC and the discrete PID control become identical at .

Therefore, if conditions (a)–(c) are satisfied, (14) is equiva-
lent with (25) for .

Since the two controls are identical, it is logical to conclude
that the discrete PID control possesses the same properties as the
discrete TDC such as simplicity and robust performance, which
will be confirmed by experiments.

IV. SYSTEMATIC METHOD FOR GAIN SELECTION OF

PID CONTROLLER

On the basis of Theorem 1, the PID gains , and
can be selected systematically. In their selections, notice

that there are two different ways depending the availability
of : when it is available, the gains are determined
analytically; if unavailable, the gains are determined by tuning

, that is, adjusting by trial and error. It is widely recognized
that for robot manipulators—the inverse of inertia
matrix—is very difficult to estimate [36]. The procedure of
selecting PID gains is described as follows.
Step 1) Select a sampling period as small as possible, con-

sidering the CPU power of the digital devices; some
commercial devices, however, have sampling pe-
riods already set in the factory.

Step 2) Specify and in (17) by considering desired
closed-loop eigenvalues.

Fig. 2. Six-DOF PUMA-type robot manipulator (Faraman AC2): (a) without
payload; (b) with 4.4-kg payload.

Fig. 3. D-H parameters of Faraman AC2. The robot is of a PUMA type robot
having 6 DOF.

Step 3) By using and , obtain and by Rela-
tionship 1. too can be calculated by Relationship
1, but we need to determine first. The selection
of is done either analytically or heuristically (by
tuning) depending on the availability of as
follows.
1) When is well known, determine first the

right-hand side of (19) by calculating by
(21) and by (20), and then analyti-
cally select satisfying (19).

2) When is unavailable, it becomes nec-
essary to tune —either for Type I or

for Type II. The tuning is
to be done by gradually increasing from a small
value until satisfactory performance is obtained.
This tuning procedure is exemplified by the ex-
periment in Section V.

Using , whether analytically selected or tuned, one
can also determine by (28), completing the gain
selection procedure.

Associated with the previous procedure as well as measure-
ment noise and TDE error , there are the following remarks to
be made.

1) In Step 2), when the desired error dynamics is specified by
the designer in terms of natural frequencies vector and
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Fig. 4. Hardware structure of the control system.

damping ratios vector , they are readily determined by the
following relationships:

(33)

where denotes the th diagonal element of
the th diagonal element of the th element of
and the th element of .

2) In our gain selection method, of the PID gains
, and are determined directly by

design specifications, for and
by Relationship 1, and , are to be specified when
error dynamics is defined. This property is significant in
the following two respects.
(2.1) Since and are specified by designers,

they are automatically determined at the very
beginning of Step 3), leaving only to be de-
termined—through the selection of either by
analytical computation or tuning as described in
Step 3). Even in the case of tuning, the number
of tuning parameters is either one for Type I ,
or two and no more than for Type II ( for

). For a 6-DOF PUMA-type robot,
for instance, the proposed method requires to tune
either , or two for the arm part (joints
1–3) and for the wrist part (joints 4–6). By con-
trast, conventional methods necessitate to tune 18
gains— , and for 6 joints.

(2.2) Since and are specified to define error dy-

namics in TDC, whereas is selected on different
basis, determination of and are decoupled

from that of , and vice versa. That is, we can deter-
mine without regard to , and regardless
of ; furthermore, specifying and does
not necessitate subsequent adjustments of , and se-
lecting does not require to adjust and . In
contrast, the tuning of a conventional PID gain de-
mands the adjustment of other gains, which in turn
requires further tunings of the rest of other gains, and
so on.

3) In TDC, the purpose of replacing with a constant
diagonal matrix in (8) is to cancel the off-diagonal
residue in (9) with time-delay estimation
in (12). As a result, TDC in (13) has a decoupled form
without any off-diagonal term and the intended closed-loop

Fig. 5. Desired joint trajectory for each joint made by a fifth polynomial
trajectory.

dynamics, (4), is also decoupled. Hence, selection of is
meant to be decoupled: is tuned independently without
regard to , and vice versa. Thus, can be selected
without regard to and according to aforementioned
remark (2.2) and a component of itself may be selected
without regard to its other components.

4) It is interesting to observe in Relationship 1 how ,
and are related to one another. Tuning , and
without knowing the relationship would make it almost im-
possible to achieve a decoupled tuning. Fortunately, how-
ever, the proposed method first determines , and
in a decoupled manner, and then determine , and
by Relationship 1.

5) Remedy for measurement noise—Since TDC (14) requires
the first and second derivative signals of output of system,
the effect and remedy of measurement noise have been well
reported in several previous TDC papers [18]–[20], [22].
In many real applications of TDC, in order to smooth out
high frequency noise, the low-pass filter has been used with
TDC as follows:

(34)
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Fig. 6. Experimental results of Faraman AC2 without payload under the PID control by the proposed method. Joints 1–3 have the same PID gains and joints 4–6
same PID gains.

where denotes the input to the filter and the
output filter, i.e.,

(35)

where denotes a cut-off frequency and a sampling pe-
riod. Substituting (34) into (35), is obtained by

(36)

Therefore, Relationship 1 is changed by the following.
Relationship 2:

.

From Relationship 2, in order to smooth out high frequency
measurement noise, the proportional gain matrix must
be smaller than the case without the output measurement
noise. This is well-know fact like Remark 7 in [4].

6) Effect of TDE error given by (11) increases with the
following two cases:

Case 1) when the discontinuous uncertainties are included
in a system dynamics (Remark 2);

Case 2) when time delay (sampling period ) increases.
Since our approach is based on equivalent relationship be-
tween TDC and PID controller in discrete-time domain,
PID controller with the gains obtained by our method has
the same weak point as TDC under Case 1). By equiva-
lence with TDC, we can guess that this problem can be
solved similarly to the case of TDC [29], [34], [35]. How-
ever, since this topic deviates from main objective of this
brief, we will deal with this matter as further research work.
In relation to Case 2), it is well-known fact that the selec-
tion of sampling period needs to be based on the higher
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Fig. 7. Experimental results of Faraman AC2 with 4.4 kg payload under the PID control with the same PID gains (38) as the case without payload. The accuracy
achieved for all joints is almost the same as the case without payload, demonstrating the robust performance of the control.

bandwidth than that of system dynamics [18], [20], [27],
[34]. By Relationship 1, the proportional gain matrix
decreases as the sampling period increases. That is, as
the estimation error increases, decreases. Generally, the
robot control engineers have avoided intentionally the use
of high-gain feedback in presence of large modeling esti-
mation error (Remark 7 in [4]). Our results show that why
PID gains become small under large modeling estimation
error.

V. EXPERIMENTS

The purpose of this experiment is to show how the PID gains
are tuned for a real application where dynamic model including

is barely known and to examine how the resulting
closed-loop system performs with these gains.

The system used in the experiment is a six-DOF PUMA-type
robot manipulator having maximum payload of 5 kg, Faraman
AC2, made by SAMSUMG Company, as shown in Fig. 2. The

DH-parameters of Faraman AC2 are listed in Fig. 3. The struc-
ture of the control system for the experiment is shown in Fig. 4.
A PC was used for the main controller, and a Sensoray 626 board
was used as the input/output (I/O) card. The operating system
(OS) was QNX 4.2, a real-time OS, and the algorithm of the PID
control was implemented in the PC.

To verify the robust performance of the PID gains, we have
experimented under two different conditions: the one is without
payload as illustrated in Fig. 2(a); and the other is with a
payload of 4.4 kg-88% of maximum payload—as shown in
Fig. 2(b). Since the change of payloads results in a significant
inertia change, and more broadly in the system parameter
variation, the response under it serves an excellent indication
for the robust performance of the system.

Note that the same set of control gains were used for these two
experiments, which was selected by using the proposed method
under no-payload condition. From control designers’ viewpoint,
this is especially convenient, since they are free to select gains
without having to pay attention to variation of payloads.
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Fig. 8. Comparison of tracking error responses of the PID control with those of TDC for Faraman AC2 without payload. The responses due to the PID control
are virtually identical to those of TDC, confirming the identicalness of the two.

A. Selection of PID Gains For Faraman AC2

A discrete PID controller for this robot manipulator is given
by

(37)

where denotes the torque input vector,
, with the desired joint vector,

the real joint vector at the th sampling instant and
denotes the constant vector determined by (28).

The PID gain matrices , and are determined
by the proposed method as follows.

Step 1) A sampling period is set to 0.001 s; the value
of the sampling time was chosen by considering the
specification of used PC and I/O card.

Step 2) For all joints, it is considered that identical desired
error dynamics is achieved by and ,
that is, and .

Step 3) By and in Step 1) and Relationship 1,
and are obtained as

In determining , Type II was used: for the arm
part and for the wrist part in
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By Relationship 1 and (28), and are given as

As for desired joint trajectory, a fifth polynomial
trajectory was incorporated for each joint, as shown
in Fig. 5. As for the
desired trajectory, .
As was mentioned, and have
been tuned in a decoupled way by trial-and-error,

has been determined accordingly. At first, letting
be zero, is increased from very small value

(0.000001) until acceptable tracking errors of joint
1–3 are obtained. The reason of starting from very
small value is to avoid divergent situation of robot
manipulator for the sake of safety. After finishing se-
lection of is increased from very small value
(0.000001) until acceptable tracking errors of joint
4–6 are obtained. At this moment, is set to tuned
value.
The procedure was truly simple, straightforward,
and fast; it took about 30 minutes to select the com-
plete gains. The final values for and are:

and ; and
was obtained as follows:

Finally, 18 PID gains were determined as

(38)

B. Control of Faraman AC2

The experimental results of the PID control with the gains of
(38) are shown in Figs. 6 and 7: Fig. 6 shows the results under
no payload condition and Fig. 7 shows the payload of 4.4 kg.
Given the desired joint trajectory in Fig. 5, all the joints are to
track it under the two conditions.

Fig. 6 shows the tracking errors of all the joints,
the size of which are , for and

, for . Expressing the results in terms of % error

defined as

% (39)

we could achieve the accuracy of 0.25% error for
and that of 0.5% error for .

Fig. 7 shows experimental results with 4.4-kg payload.
Clearly the sizes of errors are nearly the same as those in
Fig. 6. These results show that the PID gains selected with
the proposed tuning method has robust performance. This is
in accordance with our reasoning and prediction in Section III
that the discrete PID control shares the robust performance
and simplicity with the discrete TDC because the two controls
are identical. The identicalness, too, can be confirmed quan-
titatively by comparing the responses in Fig. 8 due to the two
inputs. In Fig. 8, TDC means the response controlled by (16)
with

and obtained from Steps 2) and 3). As was
predicted in Section III, the two inputs create nearly equivalent
error responses.

VI. CONCLUSION

This study has produced three important results: the first is a
systematic method to select gains of a robust PID control appli-
cable to nonlinear systems; the second is a simple and effective
method for tuning PID gains applicable to nonlinear systems
with inaccurate models; and the third is an equivalence rela-

tionship between the PID control and TDC in a discrete-time
domain. These results have been made possible by relating a
well proven control technique for nonlinear plants to the PID
control through the finding of the equivalence relationship.

Through experiments with the industrial 6-DOF PUMA-type
robot, the model of which is not well known, we have demon-
strated that the proposed tuning method is simple and straight-
forward, yielding rapidly the PID gains. The closed-loop re-
sponses with these gains displayed adequate and robust perfor-
mances.

The first and second results are especially useful for prac-
ticing control engineers who are familiar with PID control, but
not familiar with (or not able to use) TDC. In addition, the tuning
method will be particularly valuable in many application situa-
tions where a PID is the only control structure provided, and
where users are required to tune its gains. The third result will
be useful for providing valuable insights, as progress on either
TDC or PID control can lead to an immediate mutual benefit.
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