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Abstract 
Subpopulation identification, usually via some form of unsupervised 
clustering, is a fundamental step in the analysis of many single-cell 
RNA-seq data sets. This has motivated the development and 
application of a broad range of clustering methods, based on various 
underlying algorithms. Here, we provide a systematic and extensible 
performance evaluation of 14 clustering algorithms implemented in R, 
including both methods developed explicitly for scRNA-seq data and 
more general-purpose methods. The methods were evaluated using 
nine publicly available scRNA-seq data sets as well as three 
simulations with varying degree of cluster separability. The same 
feature selection approaches were used for all methods, allowing us 
to focus on the investigation of the performance of the clustering 
algorithms themselves. 
We evaluated the ability of recovering known subpopulations, the 
stability and the run time and scalability of the methods. Additionally, 
we investigated whether the performance could be improved by 
generating consensus partitions from multiple individual clustering 
methods. We found substantial differences in the performance, run 
time and stability between the methods, with SC3 and Seurat showing 
the most favorable results. Additionally, we found that consensus 
clustering typically did not improve the performance compared to the 
best of the combined methods, but that several of the top-performing 
methods already perform some type of consensus clustering. 
All the code used for the evaluation is available on GitHub (
https://github.com/markrobinsonuzh/scRNAseq_clustering_comparison
). In addition, an R package providing access to data and clustering 
results, thereby facilitating inclusion of new methods and data sets, is 
available from Bioconductor (
https://bioconductor.org/packages/DuoClustering2018).
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      Amendments from Version 1

We thank the reviewers for their constructive comments. In 

response, we have made the following modifications to the 

manuscript:

-   Clarified the rationale for including the selected data sets and 

methods

-   Included two additional clustering methods; RaceID2 and 

monocle

-   Exchanged the Venn diagrams in Supplementary Figure 2 for 

UpSet plots

-   Investigated the scalability of each method by subsampling of 

the largest data set

-   Clarified the use of random seeds by the different methods

-  Increased the size of Figure 5B

In addition, the text has been clarified in several places. Detailed 

responses to all points raised by the reviewers are available 

below. 

To provide easy access to the data and clustering results from 

our study, and thereby simplify inclusion of additional clustering 

methods and data sets in the comparison, we now provide an 

R package (available from https://bioconductor.org/packages/

DuoClustering2018 and leveraging the ExperimentHub framework 

from Bioconductor) including accessor functions to retrieve all 

necessary data and result objects, as well as plotting functions to 

generate various types of plots illustrating the performance of the 

methods.

 See referee reports

REVISED

Introduction
Recent advances in single-cell RNA-seq (scRNA-seq) technolo-

gies have enabled the simultaneous measurement of expression 

levels of thousands of genes across hundreds to thousands of  

individual cells1–8. This opens up new possibilities for decon-

volution of expression patterns seen in bulk samples, detection  

of previously unknown cell populations and deeper charac-

terization of known ones. However, computational analyses are  

complicated by the high variability, low capture efficiency and 

high dropout rates of scRNA-seq assays9–11, as well as by strong 

batch effects that are often confounded by the experimental factor 

of interest12.

Given a collection of single cells, a common analysis task  

involves identification and characterization of subpopula-

tions, e.g., cell types or cell states. With lower-dimensional 

single-cell assays such as flow cytometry, cell type detec-

tion is often done manually, by visual inspection of a series of  

two-dimensional scatter plots of marker pairs (“gating”) and 

subsequent identification of clusters of cells with specific  

abundance patterns. With large numbers of markers, such  

strategies quickly become unfeasible, and they are also likely 

to miss previously uncharacterized cell populations. Instead,  

subpopulation detection in higher-dimensional single-cell  

experiments such as mass cytometry (CyTOF) and scRNA-seq 

is often done automatically, via some form of clustering. As a  

consequence, a large number of clustering approaches  

specifically designed for or adapted to these types of assays are  

available in the literature13.

While extensive evaluations of clustering methods have been  

performed for flow and mass cytometry data14,15, there are to date  

fewer such studies available for scRNA-seq. The latter is  

complicated by the large number of different data generation  

protocols available for scRNA-seq, which in turn has a big 

effect on the data characteristics. Menon16 specifically evaluated  

three methods (Seurat17, WGCNA18 and BackSPIN19), illus-

trating their different behavior in low and high read depth data. 

A recent paper20 compared 12 clustering tools on scRNA-seq 

data sets from the 10x Genomics platform, showing that differ-

ent methods generally produced clusterings with little overlap. 

An overview of several different types of clustering algorithms  

for scRNA-seq data is given by Andrews and Hemberg21.

Here, we extend these initial studies to a broader range of data 

sets with different characteristics and additionally consider  

simulated data with different degrees of cluster separability. 

We evaluate 14 clustering algorithms, including both methods  

specifically developed for scRNA-seq data, methods developed 

for other types of single-cell data, and more general approaches, 

on a total of 12 different data sets. In order to focus on the  

performance of the clustering algorithms themselves, we use 

the same preprocessing approach (specifically cell and gene  

filtering) for all methods, and investigate the impact of the  

preprocessing separately. In addition to investigating how well 

the clustering methods are able to recover the true partition if 

the number of subpopulations is known, we evaluate whether 

they are able to correctly determine the number of clusters.  

Further, we study the stability and run time of the methods and 

investigate whether performance can be improved by generating 

a consensus partition based on results from multiple individual  

clustering methods, and the impact of the choice of methods to 

include in such an aggregation.

We observed large differences in the clustering results as well 

as in the run times of the different methods. SC3 and Seurat  

generally performed favorably, with Seurat being several orders 

of magnitude faster. In addition, Seurat typically achieved 

the best agreement with the true partition when the number of  

clusters was the same, while other methods, like FlowSOM, 

achieved a better agreement with the truth if the number of  

clusters was higher than the true number. Finally, we show that 

generally, combining two methods into an ensemble did not 

improve the performance compared to the best of the individual  

methods.

Given the high level of activity in methods research for pre-

processing, clustering and visualization of scRNA-seq data, it is  

expected that many new algorithms (or new flavors of existing 

ones) will be proposed. In order to facilitate re-assessment as new  

innovations emerge and to provide extensibility to new methods 

and data sets, all (filtered and unfiltered) data sets as well as all 

clustering results are accessible via an R/Bioconductor package, 

leveraging the Bioconductor ExperimentHub framework (https://

bioconductor.org/packages/DuoClustering2018). In addition, 

the complete code used to run all analyses is available on https://

github.com/markrobinsonuzh/scRNAseq_clustering_compari-

son. The current system uses a Makefile to run a set of R scripts  

for clustering, summarization and visualization of the results.
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Table 1. Overview of the data sets used in the study.

Data set Sequencing 
protocol

# 
cells

# 
features

Median total 
counts per 
cell

Median # 
features 
per cell

# 
subpopulations

Description Ref.

Koh SMARTer 531 48,981 1,390,268 14,277 9
FACS purified H7 human 
embryonic stem cells in 
different differention stages

24

KohTCC SMARTer 531 811,938 1,391,012 66,086 9
FACS purified H7 human 
embryonic stem cells in 
different differention stages

24

Kumar SMARTer 246 45,159 1,687,810 26,146 3
Mouse embryonic stem 
cells, cultured with different 
inhibition factors

23

KumarTCC SMARTer 263 803,405 717,438 63,566 3
Mouse embryonic stem 
cells, cultured with different 
inhibition factors

23

SimKumar4easy - 500 43,606 1,769,155 29,979 4
Simulation using different 
proportions of differentially 
expressed genes

29

SimKumar4hard - 499 43,638 1,766,843 30,094 4
Simulation using different 
proportions of differentially 
expressed genes

29

SimKumar8hard - 499 43,601 1,769,174 30,068 8
Simulation using different 
proportions of differentially 
expressed genes

29

Trapnell SMARTer 222 41,111 1,925,259 13,809 3

Human skeletal muscle 
myoblast cells, differention 
induced by low-serum 
medium

25

TrapnellTCC SMARTer 227 684,953 1,819,294 66,864 3

Human skeletal muscle 
myoblast cells, differention 
induced by low-serum 
medium

25

Zhengmix4eq 
10xGenomics 

GemCode
3,994 15,568 1,215 487 4

Mixtures of FACS 
purified peripheral blood 
mononuclear cells

5

Zhengmix4uneq 
10xGenomics 

GemCode
6,498 16,443 1,145 485 4

Mixtures of FACS 
purified peripheral blood 
mononuclear cells

5

Zhengmix8eq 
10xGenomics 

GemCode
3,994 15,716 1,298 523 8

Mixtures of FACS 
purified peripheral blood 
mononuclear cells

5

Methods
Real data sets
Three real scRNA-seq data sets were downloaded from  

conquer22 and used for our evaluations: GSE60749-GPL13112 

(here denoted Kumar23), SRP073808 (Koh24) and GSE52529-

GPL16791 (Trapnell25). These data sets were chosen to  

represent different degrees of “difficulty” in the clustering task. In 

particular, the Trapnell data set was not generated with the aim 

of detecting subpopulations, but rather to investigate a continu-

ous developmental trajectory. Nevertheless, it was included in our  

evaluation as an example of a data set where the phenotype  

designated as the “true” cluster labels (see below) may not 

represent the strongest signal present in the data. Table 1 and  

Supplementary Figure 1 give an overview of all data sets used in 

this study. For each of the data sets from conquer, the gene-level 

length-scaled TPM values (below referred to as “counts” since 

they are on the same scale as the raw read counts) and the  

phenotype were extracted from the MultiAssayExperiment26 

object provided by conquer and used to create a SingleCellEx-

periment object. We also estimated transcript compatibility 

counts (TCCs) for each of these data sets using kallisto27,28  

v0.44, and used these as an alternative to the gene-level count 

matrix as input to the clustering algorithms.

The selected cell phenotype was used to define the “true”  

partition of cells when evaluating the clustering methods. For the 

Kumar data set, we grouped the cells by the genetic perturbation 

and the medium in which they were grown. For the Trapnell data 

set we used the time point (after the switch of growth medium) 

at which the cells were captured, and for the Koh data set we  

used the cell type annotated by the data collectors (obtained  

through FACS sorting). We note that the definition of the ground 
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truth constitutes an intrinsic difficulty in the evaluation of  

clustering methods, since it is plausible that there are several  

different, but still biologically interpretable, ways of partitioning 

cells in a given data set, several of which can represent equally  

strong signals. Many public droplet-based data sets contain cell 

type labels, but these are typically inferred by clustering the cells 

using the scRNA-seq data, and thus any evaluation based on 

these labels risks being biased in favor of methods similar to the  

one used to derive the labels in the first place. By using ground 

truths that are defined independently of the scRNA-seq assay, we 

thus avoid artificial inflation of the signal that could result if the 

truth was derived from the scRNA-seq data itself.

In addition to the data sets from conquer, we obtained UMI 

counts from the Zheng data set5, generated by the 10x Genomics  

GemCode protocol, from https://support.10xgenomics.com/ 

single-cell-gene-expression/datasets. We downloaded counts for 

eight pre-sorted cell types (B-cells, naive cytotoxic T-cells,  

CD14 monocytes, regulatory T-cells, CD56 NK cells, memory  

T-cells, CD4 T-helper cells and naive T-cells) and combined  

them into three data sets, with a mix of well-separated (e.g.,  

B-cells vs T-cells) and similar cell types (e.g., different types 

of T-cells) and uniform and non-uniform cluster sizes. For the  

data set denoted Zhengmix4eq, we combined randomly selected 

B-cells, CD14 monocytes, naive cytotoxic T-cells and regulatory 

T-cells in equal proportions (1,000 cells per subpopulation). 

For the Zhengmix4uneq data set, we combined the same four 

cell types, but in unequal proportions (1,000 B-cells, 500 naive 

cytotoxic T-cells, 2,000 CD14 monocytes and 3,000 regulatory  

T-cells). For the Zhengmix8eq data set, we combined cells 

from all eight populations, in approximately equal proportions  

(400–600 cells per population). For these data sets, we used the 

annotated cell type (obtained by pre-sorting of the cells) as the  

true cell label.

Simulated data sets
Using one subpopulation of the Kumar data set as input, we 

simulated scRNA-seq data with known group structure, using 

the splatter package29 v1.2.0. We generated three data sets, 

each consisting of 500 cells, with varying degree of cluster  

separability. For the SimKumar4easy data set, we generated  

4 subpopulations with relative abundances 0.1, 0.15, 0.5 and 

0.25, and probabilities of differential expression set to 0.05, 0.1, 

0.2 and 0.4 for the four subpopulations, respectively. The Sim-

Kumar4hard data set consists of 4 subpopulations with relative 

abundances 0.2, 0.15, 0.4 and 0.25, and probabilities of differential 

expression 0.01, 0.05, 0.05 and 0.08. Finally, the SimKumar8hard 

data set consists of 8 subpopulations with relative abundances  

0.13, 0.07, 0.1, 0.05, 0.4, 0.1, 0.1 and 0.05, and probabilites  

of differential expression equal to 0.03, 0.03, 0.03, 0.05, 

0.05, 0.07, 0.08 and 0.1, respectively. The GitHub repository  

(https://github.com/markrobinsonuzh/scRNAseq_cluster-

ing_comparison) contains a link to a countsimQC report30, 

comparing the main characteristics of the simulated data sets to  

those of the underlying Kumar data set.

Data processing
The scater package31 v1.6.3 was used to perform quality  

control of the data sets. Features with zero counts across all cells, 

as well as all cells with total count or total number of detected  

features more than 3 median absolute deviations (MADs) below 

the median across all cells (on the log scale), were excluded. 

Depending on the availability of manual annotation, we  

filtered out cells that were classified as doublets or debris. The  

scater package was also used to normalize the count values, 

based on normalization factors calculated by the deconvolu-

tion method from the scran package32 v1.6.2, and to perform  

dimension reduction using PCA33 and t-SNE34. Either the 

raw feature counts or the log-transformed normalized counts 

were used as input to the clustering algorithms, following the  

recommendations by the authors (see Figure 4 for a summary of  

the input values used for each method).

Gene filtering
We evaluated three methods for reducing the number of genes 

provided as input to the clustering methods. For each filtering  

method, we retained 10% of the original number of genes (with 

a non-zero count in at least one cell) in the respective data sets.  

First, we retained only the genes with the highest average  

expression (log-normalized count) value across all cells (denoted 

Expr below). Second, we used Seurat17 to estimate the vari-

ability of the features and retained only the most highly variable 

ones (HVG). Finally, we used M3Drop35 to model the drop-

out rate of the genes as a function of the mean expression level 

using the Michaelis-Menten equation (M3Drop). The gene-wise  

Michaelis-Menten constants are computed and log-transformed, 

and the genes are then ranked by their p-value from a Z-test  

comparing the gene-wise constants to a global constant obtained 

by combining all the genes. After filtering, we used scran to  

renormalize each data set, excluding cells with negative size  

factors. Supplementary Figure 2 shows the overlap between the 

retained genes with the different filtering methods, for each of the 

12 data sets, and Supplementary Table 1 provides the number of 

cells retained after each type of filtering.

Clustering methods
Fourteen clustering methods, publicly available as R pack-

ages or scripts, were evaluated in this study (see Table 2 for an  

overview). We included general-purpose clustering methods, 

such as hierarchical clustering and K-means, as well as methods  

developed specifically for scRNA-seq data, such as Seurat 

and SC3, and methods developed for other types of high- 

throughput single-cell data (FlowSOM). The collection of 

methods include representatives for most types of algorithms  

commonly used to cluster scRNA-seq data. The type of the  

underlying clustering algorithm for the different methods is  

shown in Figure 4.

All methods except Seurat allow explicit specification of 

the desired number of clusters (k). Seurat instead requires a  

resolution parameter, which indirectly controls the number of  

clusters. For each data set, we ran each method with a range of 

k values (from 2 to either 10 or 15, depending on the true number 

of subpopulations in the data set). We ran Seurat with a range 

of resolution parameter values, yielding approximately the range 

of k values evaluated for the other methods. A subset of the  

methods provide an estimate of the true number of clusters; 

we record this estimate for comparison with the true number of  
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Table 2. Clustering methods.

Method Description Reference

ascend (v0.5.0) PCA dimension reduction (dim=30) and iterative hierarchical clustering 36

CIDR (v0.1.5) PCA dimension reduction based on zero-imputed similarities, followed by hierarchical clustering 37

FlowSOM (v1.12.0) PCA dimension reduction (dim=30) followed by self-organizing maps (5x5, 8x8 or 15x15 grid, 
depending on the number of cells in the data set) and hierarchical consensus meta-clustering to 
merge clusters

38

monocle (v2.8.0) t-SNE dimension reduction (initial PCA dim=50, t-SNE dim=3) followed by density-based clustering 25,39

PCAHC PCA dimension reduction (dim=30) and hierarchical clustering with Ward.D2 linkage 33,40

PCAKmeans PCA dimension reduction (dim=30) and K-means clustering with 25 random starts 33,41

pcaReduce (v1.0) PCA dimension reduction (dim=30) and k-means clustering through an iterative process. 
Stepwise merging of clusters by joint probabilities and reducing the number of dimensions by PC 
with lowest variance. Repeated 100 times followed consensus clustering using the clue package

42

RaceID2 (March 3, 

2017 version)
K-medoids clustering based on Pearson correlation dissimilarities 43

RtsneKmeans t-SNE dimension reduction (initial PCA dim=50, t-SNE dim=3, perplexity=30) and K-means 
clustering with 25 random starts

34,41,44

SAFE (v2.1.0) Ensemble clustering using SC3, CIDR, Seurat and t-SNE + Kmeans 45

SC3 (v1.8.0) PCA dimension reduction or Laplacian graph. K-means clustering on different dimensions. 
Hierarchical clustering on consensus matrix obtained by K-means

46

SC3svm (v1.8.0) Using SC3 to derive the clusters for half of the cells, then using a support vector machine (SVM) 
to classify the rest

46,47

Seurat (v2.3.1) Dimension reduction by PCA (dim=30) followed by nearest neighbor graph clustering 17

TSCAN (v1.18.0) PCA dimension reduction followed by model-based clustering 48

subpopulations. For each choice of k (or resolution), we ran 

each method five times, allowing us to investigate the intrinsic  

stability of the obtained partitions. Note that the data is the 

same for all five instances, and thus only the stochasticity of the  

clustering method affects our stability evaluation. All parameter 

values except for the number of clusters were set to reasonable 

values following the authors’ recommendations or the respective  

manuals (Table 2). Gene and cell filtering within the clustering 

methods were disabled whenever possible, since these steps were 

performed in a uniform way during the preprocessing and gene 

selection steps.

Evaluation criteria
In order to evaluate how well the inferred clusters recovered the 

true subpopulations, we used the Hubert-Arabie Adjusted Rand  

Index (ARI) for comparing two partitions49. The metric is  

adjusted for chance, such that independent clusterings have 

an expected index of zero and identical partitions have an ARI 

equal to 1, and was calculated using the implementation in the  

mclust R package v5.4. We also used the ARI to evaluate the 

stability of the clusters, by comparing the partitions from each  

pair of the five independent runs for each method with a given 

number of clusters.

We used a normalized Shannon entropy50 to evaluate whether 

the methods preferentially partitioned the cells into clusters of  

equal size, or whether they preferred to generate some large 

and some small clusters. Given proportions p
1
, . . . , p

N
 of cells  

assigned to each of N clusters, the normalized Shannon entropy  

is defined by

	 	

2

1 2

.

=

= −∑
N

i
i

imax

H log p
p

H log N
			 																	

(1)

Since the true degree of equality of the cluster sizes varies  

between data sets, we subtracted the normalized entropy calculated 

from the true partition to obtain the final performance index.

To evaluate the similarities between the partitions obtained 

by different methods, we first calculated a consensus partition  

from the five independent runs for each method, using the 

clue R package51 v0.3-55. Next, for each data set and each 

imposed number of clusters, we calculated the ARI between the  

partitions for each pair of methods, and used hierarchical  

clustering based on the median of these ARI values across all 

data sets to generate a dendrogram representing the similarity 

among the clusters obtained by different methods. To investigate  

how representative this dendrogram is, we also clustered the  

methods based on each data set separately, and calculated the 

fraction of such dendrograms in which each subcluster in the  

overall dendrogram appeared.

Finally, we investigated whether clustering performance was 

improved by combining two methods into an ensemble. For  

Page 6 of 23

F1000Research 2018, 7:1141 Last updated: 26 AUG 2022



each data set, and with the true number of clusters imposed, we 

calculated a consensus partition for each pair of methods using 

the clue R package, and used the ARI to evaluate the agree-

ment with the true cell labels. We then compared the ensemble  

performance to the performances of the two individual methods 

used to construct the ensemble.

Results
Large differences in performance across data sets and 
methods
The 14 methods were tested on real data sets as well as simula-

tions with a varying degree of complexity (Table 1) and across a  

range of the number of subpopulations. Focusing on the agree-

ment between the true partitions and the clusterings obtained  

by imposing the true number of clusters showed a large difference  

between data sets as well as between methods (Figure 1; a  

summary across different numbers of clusters can be found  

in Supplementary Figure 3).

As expected, excellent performances were achieved for the  

well-separated data sets with a strong difference between the  

groups of cells (Kumar, KumarTCC and SimKumar4easy). 

When filtering by expression or variability, close to all methods 

achieved a correct partitioning of the cells in these data sets, 

while the M3Drop filtering led to a poorer performance for the  

simulated data set. All methods failed to recover the partition  

of the cells by time point in the Trapnell data sets, where the 

ARIs were consistently below 0.5. This indicates that there 

are other, stronger, signals in this data set that dominate the  

clustering.

We note that the M3Drop filtering consistently led to a worse  

performance for the simulated data sets, while the performance  

was more similar to the other filterings for the real data sets, which 

may indicate that the simulated dropout pattern is not consist-

ent with the one being modeled by the M3Drop package. Due 

to negative size factor estimates, a larger number of cells had to 

be excluded in the Zhengmix data sets after the M3Drop filter-

ing compared to the expression or HVG filtering (Supplementary  

Table 1). At most just over 20% of the cells in the expression 

and HVG filtering and up to approximately 40% of the cells 

for the M3Drop filtering were excluded, making a direct com-

parison between the filterings difficult. Furthermore, the genes  

retained in the M3Drop and expression filterings showed a 

low degree of overlap in many of the data sets (Supplementary  

Figure 2). Overall, only small differences were seen between 

the results for the data sets containing gene abundances and  

those containing transcript compatibility counts (TCCs).

While none of the methods consistently outperformed the  

others over the full range of the imposed numbers of clusters in 

all data sets, SC3 and Seurat often showed the best perform-

ance. These methods were also the only ones that achieved a 

good separation of the cell types in the droplet-based Zhengmix  

data sets, which have a much higher degree of sparsity and a  

larger number of cells than the other data sets. This is consist-

ent with a previous study16 showing that Seurat performed  

better than other types of algorithms on data with low read depth.  

Generally, the performance of Seurat was also not strongly 

affected by the gene filtering approach (except for the simulated 

data sets), while other methods, like SAFE, were more sensi-

tive to the choice of input genes for some data sets. FlowSOM 

showed a poor performance for the true number of clusters (see  

Supplementary Figure 4 for an illustration, together with a selec-

tion of other data set/method combinations with poor ARI  

values). However, if the number of clusters was increased, the  

performance of FlowSOM improved considerably, and if the  

methods instead were compared at the number of clusters that gave 

the optimal performance for each method, FlowSOM showed a 

better performance (Supplementary Figure 5). RtsneKmeans, 

a general-purpose method, showed a higher average performance  

across the data sets and filterings than many of the clustering  

Figure 1. Median ARI scores, representing the agreement between the true partition and the one obtained by each method, when the 
number of clusters is fixed to the true number. Each row corresponds to a different data set, each panel to a different gene filtering method, 
and each column to a different clustering method. The methods and the data sets are ordered by their mean ARI across the filterings and data 
sets. Some methods failed to return a clustering with the correct number of clusters for certain data sets (indicated by white squares).
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algorithms specifically developed for scRNA-seq data. Compared 

to SC3 and Seurat, RtsneKmeans showed poorer perform-

ance for the SimKumar8hard and Zhengmix4uneq data sets. 

The subpopulations in these data sets are nested in the t-SNE 

space, explaining the difficulty in clustering for the K-means  

algorithm (Supplementary Figure 1).

We also investigated whether the number of detected features 

per cell differed between the clusters, using a Kruskal-Wallis  

test52. No strong association was found for the simulated data sets 

(Supplementary Figure 6), indicating that there is low inherent 

bias in the clustering algorithms. For most of the real data sets,  

we found highly significant differences in the number of  

detected features between cells in different clusters. However, it is 

unclear whether this represents a technical effect or a biological  

difference between the cell populations.

Run times vary widely between methods
We measured the elapsed time for each run, using a single core 

and excluding the time to estimate the number of clusters if this 

was done via a separate function. Since the run times are strongly 

dependent on the number of features and cells in a data set, we 

represent them as normalized run times, by dividing with the time 

required for RtsneKmeans for the same data set (Figure 2A). 

Seurat was the fastest method, while pcaReduce, SAFE 

and SC3 were the slowest, sometimes by a large margin. Clus-

tering only half of the cells with SC3 and predicting the class 

of the others with a Support Vector Machine (SC3svm) gave 

slightly shorter run times than applying the SC3 clustering to 

all cells. The method could potentially be accelerated by using a  

lower proportion of cells as a training subset. A detailed overview 

of the run time and the dependence on the number of clusters is  

given in Supplementary Figure 7 and Supplementary Figure 8. 

Apart from SC3 and SC3svm, the imposed number of clusters  

did not affect the run time.

Plotting the run time versus the ARI for a subset of the data 

sets (excluding the ones with the strongest signal, where all  

methods found the correct clusters, and the TCC data sets)  

(Figure 2B) further illustrated the variability between the  

methods. Interestingly, Seurat was generally the fastest  

method, especially for the droplet-based data sets, but at the  

same time provided among the best partitionings of the data.

The scalability of the methods was investigated by subsampling 

the largest data set (Zhengmix4uneq) and plotting the run  

time as a function of the number of cells (Supplementary  

Figure 9). The majority of the methods showed a linear increase 

in run time as a function of the number of cells, while CIDR 

and RaceID2 scaled worse. The run time of SC3 and SC3svm, 

and to some extent SAFE, showed more complex patterns since  

these methods reduce the number of random starts of the Kmeans 

algorithm drastically if the number of cells exceeds 2,000.

High stability between clustering runs
Figure 1 illustrated the average performance of each method  

across the five runs on each data set, for the true number of  

clusters. By comparing the partitions obtained in the individual  

runs, we could also obtain a measure of the stability of each  

method (Figure 3A).

CIDR, monocle, RaceID2, PCAHC, TSCAN, ascend 

and Seurat returned the same clusters in all five instances 

for all data sets, while the stability of the other methods 

depended on the data set. TSCAN and monocle set the  

random seed to a fixed value internally, which explains the high  

stability of these methods. Seurat, SC3 and RaceID2 allow  

the user to set the random seed via an input argument, and we 

explicitly set this to different values in the five independent  

runs. Again, the stability was lower for the simulated data sets 

after gene filtering by M3Drop (note that the same genes were 

Figure 2. (A) Normalized run times, using RtsneKmeans as the reference method, across all data set instances and number of clusters.  
(B) Run time versus performance (ARI) for a subset of data sets and filterings, for the true number of clusters.
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Figure 3. (A) Median stability (ARI across different runs on the same data set) for the methods, with the annotated number of clusters 
imposed. Some methods failed to return a clustering with the correct number of clusters for certain data sets (indicated by white squares). 
(B) The difference between the normalized entropy of the obtained clusterings and that of the true partitions, across all data sets and for 
the annotated number of clusters. (C) The difference between the number of clusters giving the maximal ARI and the annotated number of 
clusters, across all data sets.

used in all five runs), indicating that the selection of genes may be  

suboptimal.

A summary of the variability both within and between the  

different filterings is shown in Supplementary Figure 10. It is 

worth noting that comparing the performances between the  

different filtering approaches is difficult for two reasons: first, the  

variability of the clustering runs for a given filtering might  

exceed the variation between the filterings, and second, filter-

ing with M3Drop led to the exclusion of a large number of 

cells in the Zhengmix data sets, and these cells can not be used 

for the comparison. For the stable methods CIDR, TSCAN, 

ascend and PCAHC, the type of filtering had a relatively large 

impact on the clustering solutions, and often filtering on the mean  

gene expression and the gene variability gave more similar  

clusters than filtering with M3Drop. The stochastic methods 

showed both a high variability between the individual runs for a 

given filtering and between runs with different filterings.

Qualitative differences between cluster characteristics
By computing the Shannon entropy for the various partitions, 

we obtained a measure of the equality of the sizes of the clusters  

(Figure 3B). Since the true degree of cluster size uniformity as 

well as the number of clusters are different between data sets, we 

compared the normalized Shannon entropy of the clusterings to  

that of the true partitions. Thus, a positive value of this  

statistic indicates that a method tends to produce more equally 

sized clusters than the true ones, and a negative value instead  

indicates that the method tends to return more unequal clus-

ter sizes, e.g., one large cluster and a few small ones. Most  

methods gave cluster sizes that were compatible with the true 

sizes for most data sets (a statistic close to 0), while especially  
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FlowSOM was more variable, and often tended to group the 

cells into one large cluster and a few very small ones (see  

Supplementary Figure 4 for an example). One consequence of 

this was that FlowSOM often showed higher ARI values for a 

larger number of clusters, while the performance of many of 

the other methods decreased with increasing k (Supplementary  

Figure 3). These methods tended to have more equally sized  

clusters for larger numbers of clusters than the true number, 

leading to a higher disagreement between the true classification  

and the clusterings (the entropy across the range of k is shown in 

Supplementary Figure 11).

The optimal number of clusters can differ from the ”true” 
one
Above, we investigated the performance and stability of the 

methods when the true number of clusters (the number of differ-

ent labels in the partitioning considered as the ground truth) was  

imposed. Whether this number of clusters actually provided 

the highest ARI value (i.e., the best agreement with the ground 

truth) mainly depended on the difficulty of the clustering task  

(Figure 3C), and the choice of method. No method achieved 

the best performance at the annotated number of clusters in 

all the data sets, although generally, the methods reached their  

maximum performance at or near the annotated number of  

clusters. The notable exception was FlowSOM, which required 

a relatively large number of clusters to reach its maximal  

performance.

SC3, CIDR, ascend, SAFE and TSCAN all have built-in 

functionality for estimating the optimal number of clusters. In 

most cases, the estimated number was close to the true one;  

however, ascend and CIDR had a tendency to underestimate 

the number of clusters, while SC3 and TSCAN instead tended to  

overestimate the number (Supplementary Figure 12). The tendency 

of SC3 to overestimate the cluster number is consistent with a 

previous publication16. The agreement with the true partition 

at the estimated number of clusters is shown in Supplementary  

Figure 13. SC3 is still the best-performing method in this  

situation.

Inconsistent degree of similarity between methods
The similarity between each pair of methods was quantified 

by means of the ARIs for each pair of consensus clusterings 

(across the five runs of each method for each data set and number 

of clusters). Figure 4 shows a dendrogram of the methods  

obtained by hierarchical clustering based on the average ARI 

values across all data sets for the true number of clusters. The  

numbers shown at the internal nodes indicate the stability of the 

subclusters, that is, the fraction of the corresponding dendro-

grams from the individual data sets where a particular subcluster  

could be found. In general, the groupings of the methods shown 

in the dendrogram were unstable across data sets, indicated by 

the low stability fractions of all subclusters. This is consistent 

with previous studies showing generally poor concordance  

that varied across data sets20,45. Even SC3 and SC3svm had  

surprisingly different clusterings; in less than a third of the 

data sets, these two methods showed the most similar cluster-

ings. In addition, no apparent association between the similarity 

of the clusterings and the type of input or the dimension  

reduction or underlying type of clustering algorithm was seen  

(Figure 4).

Ensembles often don’t improve clustering performance
Next, we investigated whether we could improve the cluster-

ing performance by combining methods into an ensemble. For 

each pair of methods, we generated a consensus clustering and 

evaluated its agreement with the true partition using the ARI.  

In general, the performance of the ensemble was worse than the  

better of the two combined methods, and better than the worse 

of the two methods (Figure 5A), suggesting that we would 

obtain a better performance by choosing a single good clustering  

method rather than combining multiple different ones. This is 

Figure 4. Clustering of the methods based on the average similarity of their partitions across data sets, for the true number of clusters. 
Numbers on internal nodes indicate the fraction of dendrograms from individual data sets where a particular subcluster was found.
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Figure 5. Comparison between individual methods and ensembles. (A) Difference between the ARI of each ensemble and the ARI of 
the best (left) and worst (right) of the two methods in the ensemble, across all data sets and for the true number of clusters. (B) Difference 
between the ARI of each ensemble and each of the components, across all data sets and for the true number of clusters. The histogram in 
row i, column j represents the differences between the ARIs of the ensemble of the methods in row i and column j and the ARI of the method 
in row i on its own.

largely consistent with a recent study evaluating the combination 

of four methods (SC3, CIDR, Seurat, tSNE+Kmeans), 

where the ensemble performance was generally on par with 

the best individual method45. It is still possible that an ensemble  

method could provide a general improvement over a given  

single method, since it is unlikely that the same method will 

be the best performing in all conceivable data sets. In fact, 

among the methods we evaluated, both SC3 and SAFE combine  

multiple individual methods to achieve the final clustering result. 

Studying individual combinations in more detail, we observed 

that combining SC3 or Seurat with almost any other method 

led to a worse performance than obtained by these methods alone 

(consistent with the observation that they were among the meth-

ods giving the best performance). On the other hand, methods 

like CIDR, FlowSOM and TSCAN could often be improved  

by combining them with another method (Figure 5B).

Discussion and conclusions
In this study, we have evaluated 14 clustering methods on both 

real and simulated scRNA-seq data. There were large differences 

in the ability of the methods to recover the annotated clusters, 

and performance was also strongly dependent on the degree of  

separation between the true classes. SC3 and Seurat, two  

clustering methods developed specifically for single-cell  

RNA-seq data, delivered the overall best performance, and were 

the only ones to properly recover the cell types in the droplet-

based data sets. There was, however, a large difference in the run 

time, with SC3 being several orders of magnitude slower than  

Seurat. Another difference between these two methods 

is that SC3 includes a method for estimating the number of  

clusters (which has a tendency towards overestimation), while 

Seurat will determine the number of clusters based on a  

resolution parameter set by the user.

The same preprocessing steps and fixed gene sets were used for 

all clustering methods. This enabled us to investigate the impact 

of the clustering algorithm itself, rather than entire pipelines or  

workflows. The selection of the filtering approach had an 

impact on the majority of the methods and resulted in different  

clustering solutions. Specifically for the more difficult data sets 

there was a higher dissimilarity. However, this did not necessarily 

affect the performances of the methods.
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The stability of clustering algorithms can be evaluated by  

generating perturbed subsamples of the data set and redoing the 

clusterings. These subsamples can be created in several ways, 

e.g., by random subsampling with or without replacement, by  

adding noise to the original data53 or by simulating technical  

replicates54. Freytag20 showed that SC3, Seurat, CIDR and 

TSCAN were stable under cell-wise perturbations. In our study, 

we evaluated the methods with respect to their sensitivity to  

random starts. Overall, the methods showed a high degree of  

stability across all data sets, except for the simulated data sets 

in combination with the M3Drop filtering, where the stochas-

tic methods showed a decrease in stability. This may be due to 

a disagreement between the mean-dropout relationship in the 

simulated data and the one assumed by M3Drop, leading to a  

suboptimal gene selection.

The evaluated methods are based on a broad spectrum of 

approaches for dimensionality reduction and clustering. We note 

that the majority of the methods use PCA or PCoA for dimension 

reduction or Euclidean distances as the distance metric (ascend  

allows for other alternatives). Thus, no clear advice on the type 

of algorithm that is best suited for clustering single-cell RNA-

seq data can be made based on our results. In fact, the two best- 

performing methods, SC3 and Seurat, rely on very different 

underlying clustering algorithms.

We investigated the impact of changing the imposed number of 

clusters for the different methods, which revealed that a subset 

of the methods, in particular FlowSOM, consistently showed 

a better agreement with the true subpopulations if the number of  

clusters was increased beyond the true number. The reason for 

this appears to be that FlowSOM tends to split off a few very  

small clusters. In addition to the number of clusters, most  

methods rely on other hyperparameters. In this study, we have 

fixed these to reasonable values. However, additional investiga-

tions into the effect of these hyperparameters on the results would  

be an interesting direction for future research.
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Please clarify what metric(s) you are using to assess "most favorable results" ie. "most favorable 
results in terms of overall accuracy in cell-type identification", "in terms of run time", "in terms of 
stability", etc. Based on your new Supplemental Figure 9, it seems that SC3 would not be favorable 
in terms of runtime/scalability.  
 
With this minor comment addressed, I find this article now suitable for indexing in F1000 and look 
forward to the authors' future follow-up work.
 
Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 21 Sep 2018
Angelo Duò, University of Zurich, Switzerland 

Thank you for your comment. SC3 and Seurat show the highest accuracy when the true 
number of clusters is used as the input parameter. Also, SC3 has the highest median ARI 
when the estimated number of clusters is imposed. Similarly, using the number of clusters 
that gives the maximum performance, SC3 evaluates best. These two methods have both 
the lowest variability within and between the different filterings. Seurat is stable with 
regards to random starts and at least for the datasets filtered on the average expression 
and the variability. Finally, whereas Seurat was generally the fastest method, we agree that 
SC3 is currently not favorable in terms of the runtime or scalability.  

Competing Interests: No competing interests were disclosed.
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Overview 
 
The authors present comprehensive benchmarking of clustering tools in R on real and simulated 
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single-cell RNA-seq datasets. Their work includes performance, stability and run time analysis. 
Furthermore, they also investigate whether combining results from different methods increases 
performance. 
 
 
Major comments 
 

Throughout the entire manuscript the authors should make it clear that only clustering 
tools available in R were investigated. This is important, as there are quite a number of 
popular python applications for clustering of single cell RNA-seq data available.

○

Like Jean Fan, I am concerned about the appropriateness of the Trapnell et al. dataset and 
the Zheng et al. 10x datasets. Furthermore for the Zheng et al. dataset, I would like to know 
why the authors did not use all 10 pre-sorted cell populations available? Furthermore, how 
did the authors choose which cell populations to combine for their Zhengmix4 and 
Zhengmix8 datasets?

○

 
 
Minor comments

The authors show nicely that Seurat is not very strongly affected by gene filtering. Could 
this be a result of its clustering approach being based on the 500 most variable genes?

○

On page 7 in the paragraph “Run Times vary widely between methods” the authors use 
Adjusted Rand Index instead of its already introduced abbreviation 

○

Could the size of Figure 5 be increased?○

Why did some methods get raw and some methods log-transformed normalized counts?○

Consider changing Supplementary Figure 2 to a visual representation that represents size 
differences between sets, like UpSetR plots.

○

On page 10 the authors say: ”In addition, no apparent association between the similarity of 
the clusterings and the type of input or dimension reduction or underlying type of 
clustering algorithm was found.” Could the authors explain in more detail how this analysis 
was performed.

○

On page 6, the authors speculate that there are stronger signals that dominate clustering in 
the Trapnell et al dataset that are not time points. What could these be? Have the authors 
investigated cell cycle?

○

 
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
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Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 31 Aug 2018
Charlotte Soneson, University of Zurich, Zurich, Switzerland 

Thank you for reviewing our manuscript and for your constructive comments. Below are point-by-
point responses to the individual comments. 
 
Throughout the entire manuscript the authors should make it clear that only clustering 
tools available in R were investigated. This is important, as there are quite a number of 
popular python applications for clustering of single cell RNA-seq data available. 
 
This has been clarified in the Abstract as well as in the Methods part of the text. Some of the most 
widely used clustering methods implemented in Python (e.g., scanpy) implement the same or 
similar clustering methods as those evaluated in this study, and could thus be considered to be 
implicitly investigated. Also, the evaluation system we provide (via the code in the GitHub 
repository and the associated data package) is not strictly limited to methods implemented in R; 
other methods can be included e.g. using system() calls.  
 
Like Jean Fan, I am concerned about the appropriateness of the Trapnell et al. dataset and 
the Zheng et al. 10x datasets. Furthermore for the Zheng et al. dataset, I would like to know 
why the authors did not use all 10 pre-sorted cell populations available? Furthermore, how 
did the authors choose which cell populations to combine for their Zhengmix4 and 
Zhengmix8 datasets? 
 
We agree that the Trapnell data set was not generated with the purpose of finding cell types - 
however, we still find it useful to illustrate the performance of the methods in a data set where 
the “true clusters” (defined as the time point at which the cells where collected) do not represent 
the main/strongest signal in the data (see e.g. the t-SNE plots in Supplementary Figure 1). We 
have clarified this in the “Methods-Real data sets” section of the revised paper. 
 
For the Zhengmix data sets, our aim was to generate data sets with a mix of well-separated (e.g., 
B-cells vs T-cells)  and similar cell types (e.g., different types of T-cells). In addition, we wanted to 
investigate if the number of cell populations and/or the equality of the population sizes had an 
impact on the performance. The included cell type combinations were selected to allow us to 
address these questions; however, given the richness of this data set, there are certainly many 
more possible combinations to explore. We have expanded the description in the “Methods-Real 
data sets” section a bit to highlight these goals.  

 
Page 17 of 23

F1000Research 2018, 7:1141 Last updated: 26 AUG 2022



 
The authors show nicely that Seurat is not very strongly affected by gene filtering. Could 
this be a result of its clustering approach being based on the 500 most variable genes? 
 
In all our investigations, we preselect the genes that are used as input for each clustering 
algorithm using three different variable selection methods, and internal variable selection or 
filtering steps are disabled. Specifically, for Seurat we perform the PCA using all the genes 
remaining after our filtering, and the clustering is then performed in the principal component 
space. Thus, the stability of Seurat should be affected in the same way as that of the other 
methods by the selection of variables.  
 
On page 7 in the paragraph “Run Times vary widely between methods” the authors use 
Adjusted Rand Index instead of its already introduced abbreviation 
 
Thanks for noticing this, we now use the abbreviation also here. 
 
Could the size of Figure 5 be increased? 
 
We have increased the size of Figure 5B. 
 
Why did some methods get raw and some methods log-transformed normalized counts? 
 
The methods are based on different distributional assumptions and underlying models, affecting 
the type of values that are most suitably used as input. We followed the recommendations of the 
authors of the respective methods, and the type of input used for each method is summarized in 
Figure 4. 
 
Consider changing Supplementary Figure 2 to a visual representation that represents size 
differences between sets, like UpSetR plots. 
 
We have replaced the Venn diagrams in Supplementary Figure 2 with UpSet plots.  
 
On page 10 the authors say: ”In addition, no apparent association between the similarity of 
the clusterings and the type of input or dimension reduction or underlying type of 
clustering algorithm was found.” Could the authors explain in more detail how this analysis 
was performed. 
 
This conclusion is drawn based on Figure 4, where no association between the clustering of 
methods by cluster similarity and any of the method characteristics can be seen. This has been 
clarified in the “Results-Inconsistent degree of similarity between methods” section of the revised 
paper.  
 
On page 6, the authors speculate that there are stronger signals that dominate clustering in 
the Trapnell et al dataset that are not time points. What could these be? Have the authors 
investigated cell cycle? 
 
We have not explicitly investigated the interpretation of the strongest signal in the Trapnell data 
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set. However, Supplementary Figure 1 suggests that the annotation that we used to define the 
“true” clusters (the time at which the cells were collected) does not fully explain the grouping of 
the cells in the t-SNE visualization (in particular, the T12 and T24 groups are intermingled). As 
noted above, the main purpose of including this data set was to investigate the behaviour of the 
various methods in a data set where the clusters were less apparent.  

Competing Interests: No competing interests were disclosed.

Reviewer Report 27 July 2018

https://doi.org/10.5256/f1000research.17093.r36544

© 2018 Fan J. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Jean Fan   
1 Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA 
2 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA 

Overview 
 
Duo et al compare multiple single-cell RNA-seq clustering approaches on real and simulated 
single-cell RNA-seq datasets.  
 
 
Major comments 
 
- Quite a number of single-cell RNA-seq datasets are available for benchmarking but only a few 
were explored here. While an exhaustive interrogation of all single-cell RNA-seq datasets available 
is beyond the scope of this paper, it would be worthwhile for the readers if the authors could 
comment briefly on the appropriateness of the datasets used here in terms of their cell-type 
diversity or other factors that may impact benchmarking. As the authors note, a method's 
performance is inherently tied to the degree to which the tested subpopulations are truly  (or 
artificially) transcriptionally distinct. In particular, I am concerned about the appropriateness of 
the Trapnell dataset, as it was originally intended for pseutotime/trajectory inference and may not 
even contain discrete transcriptional subpopulations. The poor performance as noted in Figure 1 
for this dataset may simply arise from different methods cutting along this continuous trajectory 
in different ways. Similarly, for the Zheng 10x datasets, since each cell-type was sorted and 
sequenced separately, there is inevitably some degree of confounding of cell-type specific effects 
with batch effects that could make clustering much easier.  
 
- As datasets get bigger, the scalability of each method will be an important consideration. The 
authors provide a preliminary look into this via the different run time of each method in Figure 2, 
but how this run time depends on the number of cells is unclear. Readers will be interested in 
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whether some methods scale better than others. It is worth having an additional figure of run 
time as a function of number of cells (via downsampling cells and then extrapolating to larger 
datasets) to fully capture the scalability of each method.  
 
- With regard to the stability between cluster runs, some methods may internally set various 
random seeds to ensure reproducibility. Please double check that the stability observed in Figure 3 
is not simply the result of which methods uses random seeds. If a method does use an (or likely 
multiple) internal random seed, the seed must be changed to accurately assess stability.  
 
 
Minor comments 
 
- There are quite a number of single-cell RNA-seq clustering approaches and the list keeps 
growing (https://github.com/seandavi/awesome-single-cell). Only a fraction is represented in this 
comparison. While an exhaustive comparison of all methods is beyond the scope of this paper, the 
authors should comment briefly on how these particular 12 clustering algorithms were chosen. 
 
- While nearly all methods assessed use dimensionality reduction as a first step, it is unclear why 
some were allowed to reduce to 30 dimensions while others 50. It seems that particularly as 
datasets get larger with presumably more cell-types captured in each datasets, we will likely want 
to increase the number of PCs to fully capture the variation present in the data. While the authors 
have left the investigation into the effects of the number of PCs to future research, they should 
briefly note the reason for the choice of PCs used for each method.
 
Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.
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Author Response 31 Aug 2018
Charlotte Soneson, University of Zurich, Zurich, Switzerland 

Thank you for reviewing our manuscript and for your constructive comments. Below are point-by-
point responses to the individual comments. 
 
Quite a number of single-cell RNA-seq datasets are available for benchmarking but only a 
few were explored here. While an exhaustive interrogation of all single-cell RNA-seq 
datasets available is beyond the scope of this paper, it would be worthwhile for the readers 
if the authors could comment briefly on the appropriateness of the datasets used here in 
terms of their cell-type diversity or other factors that may impact benchmarking. As the 
authors note, a method's performance is inherently tied to the degree to which the tested 
subpopulations are truly  (or artificially) transcriptionally distinct. In particular, I am 
concerned about the appropriateness of the Trapnell dataset, as it was originally intended 
for pseutotime/trajectory inference and may not even contain discrete transcriptional 
subpopulations. The poor performance as noted in Figure 1 for this dataset may simply 
arise from different methods cutting along this continuous trajectory in different ways. 
Similarly, for the Zheng 10x datasets, since each cell-type was sorted and sequenced 
separately, there is inevitably some degree of confounding of cell-type specific effects with 
batch effects that could make clustering much easier. 
 
There is indeed a large (and increasing) number of public scRNA-seq data sets available, 
generated with many different types of protocols. However, the main issue (especially with 
droplet-based data sets) is that no independent annotation of the cells is available, which implies 
that they are not suitable for unbiased benchmarking like we are doing here. Many public 
droplet-based data sets do contain “cell type labels”, but these are typically inferred by clustering 
the cells based on the scRNA-seq data itself, and thus any evaluation risks being biased in favor of 
methods similar to the one used to derive the labels in the first place. This is the main reason 
behind the selection of these data sets. We agree that the Trapnell data set was not generated 
with the purpose of finding cell types - however, we still find it useful to illustrate the performance 
of the methods in a data set where the “true clusters” (defined as the time point at which the cells 
where collected) do not represent the main/strongest signal in the data (see e.g. the t-SNE plots in 
Supplementary Figure 1). For the Zheng data set, it’s true that there could be confounding with 
batch effects, and ambiguous cells may be excluded, which would also make clusters more 
distinct. For our Zhengmix data sets, we therefore included both very different (e.g., B-cells and T-
cells) and more similar (e.g., different types of T-cells) cell types (Supplementary Figure 1). We 
have expanded the discussion in the “Methods-Real data sets” section of the revised paper to 
clarify these issues.  
 
As datasets get bigger, the scalability of each method will be an important consideration. 
The authors provide a preliminary look into this via the different run time of each method in 
Figure 2, but how this run time depends on the number of cells is unclear. Readers will be 
interested in whether some methods scale better than others. It is worth having an 
additional figure of run time as a function of number of cells (via downsampling cells and 
then extrapolating to larger datasets) to fully capture the scalability of each method. 
 
Thanks for pointing this out. We have included a plot illustrating the scalability, investigated by 
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downsampling of the largest data set, in Supplementary Figure 9.  
 
With regard to the stability between cluster runs, some methods may internally set various 
random seeds to ensure reproducibility. Please double check that the stability observed in 
Figure 3 is not simply the result of which methods uses random seeds. If a method does use 
an (or likely multiple) internal random seed, the seed must be changed to accurately assess 
stability. 
 
Two of the methods (TSCAN and monocle) set random seeds internally and do not allow these to 
be changed by the user. Other methods (SC3, Seurat and RaceID2) set a random seed but let the 
user specify it. For these methods, we explicitly set the random seed to different values in the five 
runs. We have clarified this in the “Results-High stability between clustering runs” section of the 
revised text.  
 
There are quite a number of single-cell RNA-seq clustering approaches and the list keeps 
growing (https://github.com/seandavi/awesome-single-cell). Only a fraction is represented 
in this comparison. While an exhaustive comparison of all methods is beyond the scope of 
this paper, the authors should comment briefly on how these particular 12 clustering 
algorithms were chosen. 
 
The methods were chosen to represent the most common types of algorithms used for clustering 
of scRNA-seq data. We have tried to include the most widely used methods, but also to include 
methods from tangential fields as well as more traditional clustering methods to serve as a 
baseline. We have clarified this in the text. 
 
While nearly all methods assessed use dimensionality reduction as a first step, it is unclear 
why some were allowed to reduce to 30 dimensions while others 50. It seems that 
particularly as datasets get larger with presumably more cell-types captured in each 
datasets, we will likely want to increase the number of PCs to fully capture the variation 
present in the data. While the authors have left the investigation into the effects of the 
number of PCs to future research, they should briefly note the reason for the choice of PCs 
used for each method. 
 
We extracted 50 principal components for the methods that performed an additional dimension 
reduction (by t-SNE), and 30 principal components for methods where the clustering was done in 
the principal component space. The only exception was FlowSOM; this was unintentional and has 
been harmonized in the revised version to use the same number of PCs as the rest of the 
methods.  
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