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A systematic procedure for the elasto-dynamic modeling
and identification of robot manipulators

Mathieu Rognant, Eric Courteille, and Patrick Maurine

Abstract—This paper presents a systematic procedure for the elasto-
dynamic modeling of industrial robots, applicable either to serial or
parallel manipulators. This procedure is based on a 3D spacegeneraliza-
tion of the Equivalent Rigid Link System (ERLS) description, the Finite
Element Method (FEM) and the Lagrange principle. It considersflexible
links and joints, and leads to generic equations of motion expressed
according to the angles of the actuated joints and the independent elastic
degrees of freedom. An efficient identification process through modal
analysis is detailed, and the description of damping and joint behavior
according to the model application is discussed. The methodis applied
to a 3D Delta-like parallel structure and successfully validated through
an experimental impact testing-based modal analysis.

Index Terms—Elasto-dynamic Modeling, Calibration and Identifica-
tion, Mechanism Design, Experimental Modal Analysis.

I. I NTRODUCTION

In recent decades, much research has focussed on dynamic mod-
eling of robot manipulators through the definition of accurate math-
ematical models, which are used to predict their dynamic behavior.
However, the assumption of rigid body is no longer sufficient if high
speed, high load and high accuracy applications are considered: laser-
cutting or machining, for instance. Therefore, flexibilities induced by
the different elements of the manipulator structure, such as links,
joints, base and tools, have to be considered carefully in the modeling.
In that research, significant accomplishments have been made in
the kinematic description of flexible multibody systems and have
been applied to manipulators. The first dynamic modeling studies
have concerned serial manipulators [1]–[4] and more recently Parallel
Kinematic Machines (PKMs) [5], [6]. These models are useful for
the optimization of robot design [7], [8] and to implement active
vibration control for real-time applications [9].

In order to implement these models in an industrial context,
we propose extending existing system modeling and identification
techniques to form a general tool for characterizing the elasto-
dynamic behavior of 3D serial and parallel manipulators.

The paper is organized as follows. In the first section, the various
previously published modeling principles are reviewed and analyzed.
Following that, the proposed elasto-dynamic modeling procedure
and its systematic formulation are presented. Thereafter, its imple-
mentation and identification according to the applications concerned
are discussed. The procedure is then applied to a 3D, Delta-like,
parallel structure in order to verify its efficiency through experimental
correlation. The valid domain of the model is limited to smaller
deflections. Indeed, modal identification was conducted using an
instrumented impact hammer. This technique essentially results in
a linear interpretation of the system in a particular configuration, but
the methodology establishes a solid basis for future research on large
nonlinear deflections of these structures or for the development of
control algorithms.

II. M ODELING

A. Modeling principle

In the literature, elasto-dynamic models are commonly based upon
the following techniques.
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1) Floating reference frame:In this method, the body motion,
assuming small deformations, is considered to be the superposition
of a non-linear rigid body displacement and a linear elastic displace-
ment. As a result two sets of coordinates are used to describe the
configuration of the deformable bodies; one set describes the location
and orientation of a selected body coordinate system while the second
set describes the elastic displacement of the body with respect to its
coordinate system. The first set of coordinate systems is obtained
using the classic rigid method of description as in Newton-Euler [10],
[11] or (4× 4) transformation matrices [1], [12], [13]. In particular,
Chang and Hamilton in [12] put forward a kinematic description of
flexible-link manipulators using the ERLS Model. Elastic behavior
is implemented by using the Assumed Modes Method (AMM) [1],
[4], [13], [14], or FEM [5], [15]–[18] in order to obtain a finite-
dimensional model.

2) Lumped parameter model:Lumped parameter models describe
manipulators as a set of rigid bodies which are connected by springs
and/or dampers. These springs and/or dampers are used to describe
the viscoelastic behavior of the joints and links. This method has the
advantage that rigid body methodologies can be used [19]. However,
the accuracy and consistency of the model obtained depend on the
number, size and location of the rigid segments used.

3) Convected coordinate system and large rotation vectors:The
convected coordinate system is employed using the incremental
approach, which is used to solve large rotation problems in nonlinear
finite element analysis. In this approach, the kinematic equations are
first defined in the element coordinate system. It is assumed that
the rotation of the element between two successive configurations is
small enough that the use of the nodal coordinates to describe the
rotation can be justified. However, Shabana demonstrates in [20] that
the incremental finite element formulation does not lead to an exact
modeling of rigid-body dynamics for large-rotation motion of the
structures. In order to avoid this problem, Simo introduces in [21],
[22] the large rotation vector formulation but this formulation can
lead to singularity problems [23].

4) Absolute nodal coordinate:Absolute Nodal Coordinate Formu-
lation (ANCF) is a recently developed non-incremental finite element
approach that has been specially designed for large-deformation,
multibody applications [24], [25]. Nodal coordinates are the position
vector of the nodal points with respect to the global coordinate system
and the vector of the displacement gradients, also defined in the
global coordinate system. The ANCF is equivalent to the floating
reference frame formulation but leads to a different structure for
the dynamic equations of motion. In the ANCF the mass matrix
is constant, Centrifugal and Coriolis inertia forces are equal to zero
and the stiffness matrix is non linear even in the case of linear elastic
behavior [26]. Many simulations based on this formulation have been
recently presented [27], [28].

In recent research, one can see that the floating reference frame
description and FEM are applied to planar PKMs [5], [17]. The
accuracy of this approach is experimentally demonstrated in [17]
and its relevance for real-time applications is shown in [5] by Wang
and Mills. The comparison of the AMM and FEM approaches,
realized in [29] by Theodore and Ghosal, shows that FEM is rec-
ommended for flexible multilink manipulators and it is ideally suited
for dynamic, model-based, real-time controller implementation. In
order to simplify the application of elasto-dynamic modeling in
the industrial context, we suggest synthesizing these works in a
systematic procedure based on FEM, a 3D space generalization of
the ERLS description and the Lagrange principle.

The main advantages of our work resides in the following points.
Firstly, the elasto-dynamic model can be derived automatically.
This is done using a simple description of the structure through
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the establishment of two tables giving respectively the values of
the geometrical and elastic parameters related to all bodies of the
structure. Secondly, the configuration of the manipulator is described
using the independent elastic DOF expressed in the global frame and
the values of the actuated joints. These values can be easily measured,
which simplifies the identification process. This method allows the
description of the behavior of the joints using an appropriately located
stiffness parametrization. Finally, as the elastic potential energy of
the joints is modeled, the constraint equations which link the elastic
DOF are simplified. Thus, generic expressions of stiffness and mass
matrices as a function of the independent coordinates are obtained
which leads to a simple modal analysis computation.

B. Kinematic description

1) ERLS description:In order to achieve a systematic procedure,
Khalil and Kleinfinger’s notation [30] is used to perform the ERLS
description. This method is derived from the well-known Denavit and
Hartenberg’s notation and can be used to describe with a minimum
set of parameters the open- and closed-loop robots. This notation is
based on a specific frame definition, detailed in [30] and [31]. On
each bodyCi, a frameRi is assigned for which,zi axis is aligned
with the axis of joint i andxi is along the common normal tozj .
Therefore, the transformation fromRi with respect to the previous
frameRj is defined by the(4× 4) matrix jTi:

jTi = rot (zj , γi) trans (zj , bi) rot (xj , αi)
trans (xj , di) rot (zi, θi) trans (zi, ri)

(1)

whereγi, αi andθi are angles andbi, di andri are distances. The
description is extended by three parameters. The binary variableσi,
is equal to one if the jointi is prismatic and zero if it is rotoid. The
binary variableµi, is equal to one if the jointi is motorized and zero
if not. The variablea(i) specifies the number of the body preceding
the bodyCi. The geometry of each kinematic chain of the device
can thus be easily defined by table I.

Table I
GEOMETRICAL PARAMETERS

Joint a(i) µi σi γi bi αi di θi ri

1 a(1) µ1 σ1 γ1 b1 α1 d1 θ1 r1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n a(n) µn σn γn bn αn dn θn rn

2) Elastic description:Clearly, Khalil and Kleinfinger’s notation
associates a rigid reference frameRi with each bodyCi. In these
frames the elastic behavior of the system is described using FEM.

Segmentation:In order to model the deformations, the most
common finite element codes typically used are either linear Euler-
Bernoulli, or Timoshenko beams if shear deformations are consid-
ered. Our study focussed principally on manipulators with slender
bodies. Consequently shearing action can be neglected and the Euler-
Bernoulli type beams can be used assuming small deformations.
Thus, one can use the same segmentation as implemented in static
cases presented in [32]–[34]. A bodyCi is segmented intoni beam
elementsBi,j and2ni node elements.

The properties of the beams are summarized in the table II. The

Table II
BEAM PROPERTIES

Length and Cross-sectional li,j andSi,j

Density and Quadratic Moments ρi,j andIxi,j ,Iyi,j ,Izi,j
Young’s and Coulomb’s Modulus Ei,j andGi,j

(4× 1) vector of coordinates of any pointpi,j expressed within a

reference frameRk and that belongs toBi,j is considered as the sum
of a rigid componentri,j , the coordinate vector of the point which
belongs to the ERLS, and an elastic componentei,j , which is the
vector of the elastic displacement of this point (Figure 1):

k
pi,j = k

ri,j +
k
ei,j . (2)

Elastic displacements:A reference frameRi,j is associated with
each beamBi,j and is defined as itsx axis (O,xi,j) is along the
main axis of the beam and its origin is the rigid position of the first
node of the beamrui,2j−1. The vector of elastic displacementsei,j

of any pointpi,j which belongs to the beamBi,j can be expressed
by

i,j
ei,j = Ni,j

[

i,jui,(2j−1)
T i,jui,2j

T
]T

(3)

whereNi,j is the geometrical interpolation matrix andui,j the elastic
displacements of a nodej of the bodyCi. It is described by the vector
ui,j =

[

dPi,j
T dΦi,j

T
]T

where:

dPi,j =
[

dPxi,j dPyi,j dPzi,j

]T
(4)

dΦi,j =
[

dΦxi,j dΦyi,j dΦzi,j

]T
(5)

represent the translational and angular displacements respectively.
These notations are illustrated in Figure 1.

Figure 1. Notation associated with each beamBi,j .

Assuming small elastic displacements, the following simplification
can be made:

∂dPyi,j

∂xi,j
≈ dΦyi,j and

∂dPzi,j

∂xi,j
≈ dΦzi,j . Consequently,

the Hermite polynomials [16] are used inNi,j to interpolate the
elastic displacements due to the bending phenomenon around their
axis yi,j and zi,j . The elastic displacements due to the traction-
compression phenomenon are deduced by a linear interpolation. As
a resultNi,j is defined withinRi,j by

Ni,j =
[

NdPi,2j−1
NdΦi,2j−1

NdPi,2j
NdΦi,2j

]

(6)

where (in the following expressionsl stands forli,j and ξ is equal
xi,j/li,j):

NdPi,2j−1
=

[

1 − ξ 0 0

0 1 − 3ξ2 + 2ξ3 0

0 0 1 − 3ξ2 + 2ξ3

0 0 0

]

,

NdΦi,2j−1
=

[

0 0 0

0 0 lξ − 2lξ2 + lξ3

0 −lξ + 2lξ2 − lξ3 0

0 0 0

]

,

NdPi,2j
=

[

ξ 0 0

0 3ξ2 − 2ξ3 0

0 0 3ξ2 − 2ξ3

0 0 0

]

,

NdΦi,2j
=

[

0 0 0

0 0 −lξ2 + lξ3

0 lξ2 − lξ3 0

0 0 0

]

.
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In the same way, the rotation of the each beam section around its
own axisxi,j generated by the phenomenon of torsion is deduced
from nodal displacements by the interpolation:

i,j
γi,j = N

t
i,j

[

i,jui,(2j−1)
T i,jui,2j

T
]T

(7)

whereNt
i,j is the (1× 12) geometrical interpolation matrix:

N
t
i,j =

[

01,3 1− ξ 01,5 ξ 01,2

]

. (8)

Elastic deformations and stresses:The elastic displacements
observed are caused by the elastic deformations of the beam and
generate internal stresses. These deformations and stresses have to
be expressed in order to evaluate the elastic potential energy of the
beam. Assuming small deformations, the generalized strain vector
ǫǫǫi,j is defined withinRi,j by

i,j
ǫǫǫi,j = Bi,j

[

i,jui,(2j−1)
T i,jui,2j

T
]T

(9)

whereBi,j is the kinematic interpolation matrix. It is obtained by
derivation of the geometrical interpolation matrices (in the following
expressionsx and l stand again forxi,j and li,j):

Bi,j =
[

BdPi,2j−1
BdΦi,2j−1

BdPi,2j
BdΦi,2j

]

(10)

where:

BdPi,2j−1
=





−

1
l

0 0

0 6

l2
−

12x
l3

0

0 0 6

l2
−

12x
l3

0 0 0



 ,

BdΦi,2j−1
=





0 0 0

0 0 4
l

−

6x
l2

0 −

4
l

+ 6x
l2

0

−

1
l

0 0



 ,

BdPi,2j
=





1
l

0 0

0 −

6

l2
+ 12x

l3
0

0 0 −

6

l2
+ 12x

l3
0 0 0



 ,

BdΦi,2j
=





0 0 0

0 0 2
l

−

6x
l2

0 −

2
l

+ 6x
l2

0

1
l

0 0



 .

In linear elasticity, the stress field depends on deformation and
mechanical properties. By defining the(4× 4) matrix of mechanical
propertiesEi,j of the beamBi,j , the generalized stress vectorσσσi,j

can be written as

i,j
σσσi,j = Ei,j

i,j
ǫǫǫi,j = Ei,jBi,j

[

i,jui,(2j−1)
T i,jui,2j

T
]T

(11)
where

Ei,j =







Ei,jSi,j 0 0 0
0 Ei,jIzi,j 0 0

0 0 Ei,jIyi,j 0

0 0 0 Gi,jIxi,j






. (12)

3) Global expression:
Expression in the body reference frameRi: Roll, pitch and yaw

anglesφi,j , θi,j , andψi,j are used to define the orientation of each
beamBi,j within the reference frameRi. The(3× 3) rotation matrix
between framesRi andRi,j , iRi,j , is defined by

i
Ri,j = rot (zi, φi,j) rot (yi, θi,j) rot (xi, ψi,j) . (13)

Then, by concatenation, the(12× 12) rotation matrix Rui,j is
obtained and one can deduce the expression ofRpi,j , the (4× 4)
transformation matrix between framesRi andRi,j :

Rpi,j =

[

iRi,j

01,3

irui,2j−1

]

. (14)

Assuming small displacements, the nodal displacement vectorui,j

can be rewritten inRi in the following way:

i
ui,j =

[

iRi,j 03

03
iRi,j

]

i,j
ui,j .

This leads to the expression ofpi,j within the reference frameRi:

ipi,j = Rpi,j
i,jri,j +Rpi,jNi,jRui,j

[

iui,(2j−1)
T iui,2j

T
]T

.

(15)
Expression in the global reference frameR0: Using the ERLS

description,pi,j can be easily expressed within the global reference
frameR0:

0
pi,j = 0

Ti
i
pi,j . (16)

Similarly, assuming small displacements,ui,j is expressed withinR0

as:
0
ui,j = 0

A
u
i
i
ui,j (17)

where0Au
i is a (6× 6) rotation matrix defined by concatenation of

the orientation part of0Ti.
The concatenation of the relations obtained for each beam element

leads to simple vectorial expressions to describe the kinematics of
the structure studied. The

(

4
n
∑

i=1

ni × 1

)

vectors of the positionspi,j

within the global reference frameR0 is expressed by

p = Tr+TNAu (18)

wherer is a
(

4
n
∑

i=1

ni × 1

)

vector of the ERLS component expressed

within each body reference frame andu is a
(

12
n
∑

i=1

ni × 1

)

vector

of the nodal coordinates expressed withinR0. N, A and
T are respectively

(

4
n
∑

i=1

ni × 12
n
∑

i=1

ni

)

,
(

12
n
∑

i=1

ni × 12
n
∑

i=1

ni

)

and
(

4
n
∑

i=1

ni × 4
n
∑

i=1

ni

)

matrices. They are respectively obtained by con-

catenating the geometric interpolation matricesNi,j expressed in
Ri using Rui,j and Rpi,j (15), the transfer matrices0Ti and

the rotation matrices0Au
i . Similarly, the

(

n
∑

i=1

ni × 1

)

vector of the

beam section rotationsγγγ, the
(

4
n
∑

i=1

ni × 1

)

vectors of the structure

generalized strainǫǫǫ and structure generalized stressesσσσ, are defined
by γγγ = NtAu, ǫǫǫ = BAu andσσσ = EBAu.

Then, by derivation, one can deduce the translation velocities
vector ṗ and the angular velocities vectorγ̇̇γ̇γ:

ṗ = Ṫr+ ṪNAu+TNȦu+TNAu̇, (19)

γ̇̇γ̇γ = N
t
Ȧu+N

t
Au̇. (20)

C. Dynamic equilibrium expression

Dynamic equilibrium is expressed using the Lagrange principle
equations. The vector of the device DOFw is defined as the
concatenation of the rigid and elastic DOF (q andu):

w =
[

qT uT
]T

(21)

whereq =
[

q1 · · · qn
]T

is the vector of the joint values. Then,
the well-known Lagrange principle is written as follows:

∂

∂t

(

∂L

∂ẇ

)

−

(

∂L

∂w

)

= F (22)

whereL = Ec−Ep is the difference between the kinetic and potential
energies andF is the sum of non-conservative external forces. To
apply this principle, we express the total energy of the kinematic
chains. The resulting relations are then differentiated with respect to
w, ẇ and time. For this purpose, different operators are introduced.
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1) Kinetic energy:The total kinetic energy of the structureEc is
the sum of the kinetic energy stemming from the translational and
rotational movements of the beam sections. Then, using kinematic
expressions ((19),(20)) the kinetic energy is derived by

Ec =
1

2

∫

m

(

ṗ
T
ṗ+ γ̇̇γ̇γ

T
Ixγ̇̇γ̇γ

)

dm+
1

2

n
∑

k=1

σk q̇kIk q̇k (23)

where Ix is a
(

n
∑

i=1

ni ×

n
∑

i=1

ni

)

diagonal matrix gathering the

quadratic momentsIxi,j . Ik is equal to the sum of inertia of the
beams which are aligned with the joint axis andσk is the complement
of the binary parameters defined in table I.

2) Potential energy:The potential energy of the system is the
sum of the joint and body elastic potential energies and potential
gravity energy. As presented in [32], the strain energy of the joints
is introduced by replacing the kinematic relations which connect the
elastic DOF with a joint stiffness matrix. The ERLS is modeled using
Khalil and Kleinfinger’s notation. Consequently,zi is the axis of the
joint i which links the bodyCk to the bodyCi where k = a(i)
(Table I). Thus, the joint stiffness matrixKli expressed in its local
coordinate systemRi between the2nk nodes of the bodyCk and
the first node of the bodyCi is given by:

i
Kli =

[

iKu
li

−
iKu

li

−
iKu

li

iKu
li

]

(24)

where iKu
li

= diag
[

Kri Kri Kai Krri Krri Kari

]

.
Kri , Kai , Krri and Kari stand respectively for the radial, the
axial, the radial rotational and the axial rotational stiffness of the
ith joint. Assuming small displacements, the joint stiffness matrix
can be written in the global frameR0 as 0Kli = 0Au

i
iKli

0Au
i

T

and by concatenation of then matrices0Kli , one can define the
matrix Kl. The deformation energy of flexible body is expressed as
the integral of the product of the generalized strain vectorǫǫǫ and the
generalized stress vectorσσσ. Thus, the potential energy of the system
is derived by

Ep =
1

2






u
T
Klu+

n
∑

i=1

ni
∑

j=1

li,j
∫

0

(

ǫǫǫ
T
σσσ
)

dxi,j






+

∫

m

(

g
T
p
)

dm

(25)
whereg represents the gravity field.

3) Operators: The implementation of the Lagrange principle re-
quires the derivation of energies expressed previously. In order to
simplify the expressions, we define the following matrix operators
(26). These operators can be calculated by simple multiplications; a
detailed example can be found in [12].

∂T
∂qk

= Uk
∂A
∂qk

= Λk
∂Uk

∂ql
= Vk,l

∂Λk

∂ql
= Ωk,l

Ṫ =
n
∑

k=1

Uk q̇k T̈ =
n
∑

k=1

(

n
∑

l=1

Vk,lq̇l

)

q̇k +
n
∑

k=1

Uk q̈k

Ȧ =
n
∑

k=1

Λk q̇k Ä =
n
∑

k=1

(

n
∑

l=1

Ωk,lq̇l

)

q̇k +
n
∑

k=1

Λk q̈k

(26)
4) Dynamic equation:From the operators (26) and by differenti-

ating the expressions (23) and (25), the terms describing the dynamic
equilibrium of the kinematic chain are obtained:

[

Mqq Mqu

MT
qu Muu

] [

q̈

ü

]

+

[

0 0

0 Kuu

] [

q

u

]

= (F− Fc − Fg).
(27)

Mqq, Muu andKuu describe respectively the distribution of mass
on the joint DOF, the distribution of mass on the elastic DOF and
the distribution of the intrinsic stiffness of the bodies and joints. In
this expression, one can note the strong coupling between the joint

and elastic DOF: the component of the mass matrixMqu describes
the effect of elastic DOF on the joint DOF mass expression and the
coriolis and centrifugal forceFc are the sum of three components
Fr, Fu andFu̇ which are respectively functions of(q̇), (q̇,u) and
(q̇, u̇). The gravity and external forces applied on the structure are
expressed byFg andF. The generic expressions of these terms are
detailed in appendix. Assuming deformations and displacements to
be small, the second order terms related to the elastic variables are
neglected.

D. Constraint equations

The dynamic equations (27) are formulated in terms of a set of
coordinates that are not totally independent. The kinematic relations
between the internal nodes can be expressed independently within
each body reference frameRi. This leads to linear equations using the
Boolean matrix as demonstrated by Shabana in [35]. Concerning joint
constraints: the kinematic relations must link nodes which belong to
different bodies leading to non-linear equations which are functions
of the joint parameters [35]. However, in our case the stiffness values
of the joints are represented in (24); consequently the joint constraints
are already considered within the formulation of the potential energy
(25). A similar approach, called the penalty method, is presented
in [36]. Hence, the constraint equations which link the independent
elastic variablesui to the dependent onesud can be written as
Cud

ud + Cuiui = 0 whereCui and Cud
are Boolean matrices.

Then the elastic coordinates can be expressed by

u =

[

I

−C−1
ud

Cui

]

ui, ü =

[

I

−C−1
ud

Cui

]

üi . (28)

As regards joint coordinates, kinematic constraints have to be
considered for mechanisms with closed kinematic chains and PKMs.
In this case, the loop closure conditions are defined by nonlinear
holonomic constraint equations. Much research is available on this
subject and several formulations are proposed in [36]–[39]. In order
to obtain the dynamic equations expressed in independent joint
coordinates, embedding techniques can be used. In this method, the
coordinates are partitioned in independent and dependent sets. From
the kinematic constraint vectorC (q, t) = 0, the application of
Alembert’s principle leads to

Cqiδqi +Cqd
δqd = 0 (29)

where qi and qd are respectively the independent and dependent
joint vectors.Cqi andCqd

are defined as the jacobian matrices of
C (q, t) relative toqi andqd [40]. Then, by successive derivations
according to time, the joint acceleration vector can be written in terms
of independent accelerations as

q̈ =

[

q̈i

q̈d

]

=

[

I

−C−1
qd

Cqi

]

q̈i +

[

0

−C−1
qd

Fl

]

(30)

whereFl = −

(

∂Cq

∂q
q̇
)

q̇ represents the constraint forces generated
by the looping of the kinematic chains. As result, assuming that
the joint and elastic coordinates are rearranged according to the
partitioning of equalities (28) and (30),̈wi =

[

q̈T
i üT

i

]T the set
of independent coordinates is obtained by

ẅ = Bdi
ẅi + Fli, (31)

where Bdi
=

[

I
(

−C
−1
qd

Cqi

)T
I

(

−C
−1
ud

Cui

)T
]T

and

Fli =
[

0
(

−C
−1
qd

Fl

)T
0 0

]T

. Then, the dynamic equilib-
rium (27) can be expressed in the base of independent parameters
by

Miẅi +Kiwi = Fi (32)
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whereMi, Ki andFi are, respectively, the mass, stiffness matrices
and the force vector, defined by:

Fi = B
T
di

(F− Fc − Fg)−B
T
di
MFli,

Mi = B
T
di
MBdi

,

Ki = B
T
di
KBdi

.

E. Identification and correlation methods

The previous procedure allows dynamic model to be worked
out from input parameters describing the mass, the damping and
the stiffness properties. However, the joint stiffnesses and damping
phenomenon have complex behaviors which are functions of the
excitation amplitude, the frequency and the joint coordinates. The
common damping models are based on parameterized rheologic
laws (structural [41], the Rayleigh coefficient [17], modal damping,
fractionary derivative). The non-linear behavior of joint stiffness can
be described through non-parametric models (linear interpolation
parameters into several configurations [41]) and parametric models
(stiffness value expressed as a function of the local effort supported
by the joint [42]).

Many description models can be used. The selection criteria of
choice are ease of use and similarity with the experimental behavior
in the workspace, for the amplitude and frequency domain of the
application considered. In the pre-design stage, quantitative values
are set based on the properties of the material and the designer’s
experience. For model correlations on a real structure and for con-
trol purposes, these values have to be accurately estimated. Then,
according to research, various methods are presented involving the
identification process in time [17], [43] or frequency domains [9],
[41], [44], [45].

In the time domain, identification is based on the comparison of the
trajectories and the efforts measured and calculated at different points
of the structure. As the dynamic model does not include control and
its perturbations, the actuator wrenches have to be directly measured
[17]. The quality of the obtained results on trajectories used.

In the frequency domain, modal analysis is performed using
specific algorithms [46] to estimate the natural frequencies and mode
shapes. In the case of a slightly damped system, the conservative and
damped modes present few differences. As a result, the frequencies
and shapes of the theoretical normal modes obtained by solving the
eigenvalues problem defined by the dynamic matrixM−1

i Ki can be
directly compared to the estimated modes. This method is interesting
because the stiffness and damping parameters are identified separately
using a progressive approach. The first step consists of identifying
the stiffness properties by minimizing frequency deviations and
maximizing the Modal Assurance Criterion (MAC). This criterion
evaluates the degree of linearity between the estimated and the
theoretical modal vectors [47]. In step two, damping is considered
to minimize the deviations between the theoretical and measured
Frequency Response Functions (FRFs).

In conclusion, the level of description of the model used is a
compromise between the accuracy required by the application and the
cost of the experiments required to achieve the identification process.

III. A PPLICATION TO A DELTA LIKE STRUCTURE

In order to illustrate the proposed procedure, the elasto-dynamical
modeling of a 3-DOF translational parallel manipulator is achieved
and the potential of this structure for use in machining applications
is investigated.

A. System description

The mechanical system studied here is the Surgiscope Delta-like
parallel manipulator, developed by the ISIS1 company. This structure
combined with a decoupled serial wrist is involved in neurosurgery
to accurately move and place a microscope, a laser guiding system
as well as some surgical tools (Figure 2(a)). In the following, only
the positioning mechanism is considered. The mechanism described
in Figure 2(b) is composed of a moving platform connected to the
fixed base by three identical kinematic chains. Each kinematic chain
consists of a single link-based forearm connected to a planar, four-bar
parallelogram. Concerning the structure available in our laboratory,
the numerical values of the main geometrical parameters areLb =
0.75 m for the length of the arms andLc = 0.125 m;Lp = 0.95
m for the width and the length of the parallelograms. The platform
massMn is 6.64 kg.

(a) Surgiscope

 

R 

R R 

R R 

R 

R 

R 

R R 

R R 

R 

R 

R 

R R 

R R 

R 

R 

BASE 
 

MOVING PLATEFORM 

(b) Kinematics

Figure 2. Surgiscope kinematics.

B. Input parameters

The kinematic description presented in section II is implemented
on each kinematic chain as indicated in Figure 3 and the associated
parameter setting is summarized in Table III(a) and Table III(b).
The values of these parameters are deduced from the geometrical
calibration and the elastic modeling of this structure which are
respectively detailed in [48] and [32]. As the structure is in a quasi-
static configuration and the amplitude of the dynamic excitation is
low, the effects of non-linearities are first neglected in machining
applications. Then, the joint stiffness values (24) identified in [32] are
used to perform the correlation on the first natural frequencies and
MAC values. As the structure is axisymmetric, the elastic behavior of
their joints can be described by 21 stiffness parameters. Their values
were identified in [32] by minimizing the difference between the
measured and modeled elastic displacement of the tool center point
for a force of−200 N acting along the z axis applied on the mobile
platform. The identification was carried out with 11 measurement
points distributed on the line of equation y =−x in the plane
z =−1478 mm and the identified values were experimentally checked
using 11 other measurement points distributed on the line of equation
y = x in the plane z =−1326 mm.

Concerning the damping, the models mentioned in II-E differ
from each other by a variation of its frequence-dependent behavior
[49]. However, for a lightly damped system at low frequencies,
these models are equivalent. Consequently, we favor simplicity:
structural modeling is commonly used in the frequency domain, while
equivalent viscous modeling is in the time domain. We use a similar
approach to the one proposed in [41] by Zhou et al. who assume
that the system has structural damping proportional to the system

1ISIS: Intelligent Surgical Instrument & Systems http://www.isis-
robotics.com/



6

stiffness matrix. Then the equation of motion for free vibration of
the mechanism becomes:

Miẅi + (1 + jη)Kiwi = 0 (33)

where η is the damping factor. This factor is identified from the
measured FRFs (Figure 4(c)) by minimizing the criterion:

JQ =

∑

(i,j),E,l

∣

∣Htheo
(i,j),E(ωl)−Hmea

(i,j),E(ωl)
∣

∣

2

∑

(i,j),E,l

∣

∣

∣Hmea
(i,j),E(ωl)

∣

∣

∣

2 (34)

where:Htheo
(i,j),E(ωl) andHmea

(i,j),E(ωl) are respectively the calculated
and measured FRFs for frequencyl at point (i, j) and for a vertical
impact at the center of the platformE. The identified damping factor
η is 0.096, which is high compared to standard material values
(typically 0.013 for aluminium such as that used in this robot [49])
since it also includes the effects of unmodeled structural elements
(e.g. joint frictions, belts, etc) not captured by the model in (33).

(a) Geometrical description (b) Beam reference frame

Figure 3. Kinematic chain description.

C. Measurements and correlation

The application of experimental modal testing to the Surgiscope
architecture is done through impact hammer excitation and data
post-processing, conducted using SmartOffice software. The point
and direction of excitation are chosen in the middle of the moving
platform along the vertical axis. Piezoelectric triaxial accelerometers
are used to pick up the 3 acceleration responses at 40 measured
points as in the simulation. The acquisitions are performed for two
structure configurations, one of which is symmetrical and the other
is not (First configurationxE = yE = 0 m and zE = −1.1 m;
second configurationxE = 0.19 m, yE = −0.33 m andzE = −0.9
m). In order to avoid controller perturbations, the brakes are locked.
Sampling parameters were specified in order to calculate the FRFs
from a 2.046 s time window discretized with 1024 samples. The FRFs
are calculated for a frequency range of 0 to 250 Hz at a frequency
resolution of 0.49 Hz. A force window was applied to the signal from
the hammer’s force transducer and exponential windows were applied
to the signals from the accelerometers. Each measurement is the
averaged result of three impacts. Figure 4(a), 4(b) and 4(c) show one
test setting in the first configuration, the time domain measurements,
and the associated FRFs, respectively.

Table III
PARAMETERS SETTING

(a) Geometrical Parameters of thekth kinematic chain of the Surgiscope
Joint a(i) µi σi γi bi αi di θi ri

1 0 1 0 γ1,k 0 - π
2

Rb q1,k 0
2 1 0 0 0 0 0 Lb q2,k Lc

3 2 0 0 0 0 π
2

0 q3,k 0
4 3 0 0 0 0 0 Lp q4,k 0
5 4 0 0 0 0 - π

2
0 q5,k −Lc

6 2 0 0 0 −2Lc
π
2

0 q6,k 0
7 6 0 0 0 0 0 Lp q7,k 0
8 4 0 2 π

2
0 0 −2Lc - π

2
0

E 5 0 2 0 0 π
2

−Rn 0 0

(b) Elastic Parameters of kinematic chain
body beam lij Sij Iyij Izij Eij Gij ρij φij θij ψij

1 1 Lb
3

Sb Iyb
Izb

Eal Gal ρal 0 0 0

1 2 Lb
3

Sb Iyb
Izb

Eal Gal ρal 0 0 0

1 3 Lb
3

Sb Iyb
Izb

Eal Gal ρal 0 0 0

2 1 Lc Sc Iyc Izc Eac Gac ρac −
π
2

π
2

π
2

2 2 Lc Sc Iyc Izc Eac Gac ρac −
π
2

π
2

π
2

3 1 Lp
3

Sp Iyp Izp Eal Gal ρal 0 0 0

3 2 Lp
3

Sp Iyp Izp Eal Gal ρal 0 0 0

3 3 Lp
3

Sp Iyp Izp Eal Gal ρal 0 0 0

4 1 Lc Sc Iyc Izc Eac Gac ρac −
π
2

0 0
4 2 Lc Sc Iyc Izc Eac Gac ρac −

π
2

0 0
5 1 Rn Sr Iyr Izr Er Gr ρr π 0 0

6 1 Lp
3

Sp Iyp Izp Eal Gal ρal 0 0 0

6 2 Lp
3

Sp Iyp Izp Eal Gal ρal 0 0 0

6 3 Lp
3

Sp Iyp Izp Eal Gal ρal 0 0 0

In order to evaluate the model quality, considering all FRFs, the
natural frequency deviations between test and modal analysis as well
as the MAC values of the corresponding mode shapes are used.
The values of natural frequencies and associated mode shapes are
extracted from the experimental data using the MDOF (Multiple
Degree of Freedom) estimation algorithm available on NV Solutions
SmartOffice2. This algorithm, called Polyreference Time Domain,
is based on finite difference and quadrature methods [50]. The
experimental and theoretical natural frequencies for the first five
modes and corresponding MAC values are given in Tables IV(a) and
IV(b). Similar mode shapes between theoretical and experimental
approaches are found at the lowest resonances. The initial modeling
provides consistent correlation for the relevant mode shapes in the
frequency range from 0 to 50 Hz. The modes obtained are due
to the link elasticity (phenomena of flexion of the lower arms in
Figure 5(a)) as well as the joint stiffness (structural modes on Figure
5(b)). For higher frequencies, the variations increase. Indeed the
behavior of the structure is more complex and the discretization
that is used by the model becomes insufficient. Concerning the
damping phenomenon: the structural description whose identification
is detailed in III-B fits well on the range from 0 to 100 Hz as shown
in Figure 4(c). The criteriumJQ defined in (34) is equal to 12.7 %.
For higher frequencies, this description is insufficient: on the range
from 0 to 250 Hz,JQ is equal to 33.6 %.

D. Discussion

The proposed procedure implemented with static joint stiffnesses
and identified structural damping as input values, presents a good
correlation with the measurements obtained with the impact hammer
excitation. This kind of excitation is an effective method to estimate
the dynamic characteristics. However it does not characterize the non-
linearities of the structure. Thus, the obtained model is limited to
applications with low amplitudes of excitation. To extend its validity

2http://www.mpihome.com/english/modaltesting.htm
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Figure 4. Experimental validation through impact hammer excitation, measurements and data post-processing.
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Figure 5. Mode shape corellation.

Table IV
CORRELATION

(a) First configuration correlation
Measure (Hz)

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Measured (Hz) 11.8 15.2 31.2 36.1 38.8

Model (Hz) 11.3 15.7 31.8 36.4 38.4
MAC 0.921 0.964 0.825 0.673 0.627

(b) Second configuration correlation
Measured (Hz)

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Measure (Hz) 12.4 15.4 26.1 36.2 42.5
Model (Hz) 12.5 16.0 25.8 37.3 40.9

MAC 0.956 0.904 0.833 0.635 0.641

domain for many source amplitudes, a shaker excitation is more
suitable. Although the duration of tests is longer, it should provide
better peak to RMS level especially for low frequencies, and a good
characterization of the nonlinear behavior of the structure. One of the
non-linear description models detailed in II-E can be implemented
and adjusted through the computational model updating method to
consider the joint and damping non-linearities. However, this topic is
not covered in this paper and is referred to future studies.

IV. CONCLUSION

In this paper, a systematic procedure for the elasto-dynamic
modeling of both serial and parallel three dimensional manipulators
has been developed. It can be used in an industrial context for
mechanical design as well as for realtime control. The identification
of the input parameters according to the model application has been
investigated, and an efficient identification method based on modal
analysis has been detailed. The proposed procedure has been applied
on a Delta like, parallel structure and successfully validated by
experimental modal testing with impact hammer excitation. In order
to verify the quality of the model, the natural frequency deviations
between test and analysis, the MAC values of the corresponding mode
shapes and the measured and computed FRFs show a consistent

correlation. Current studies concern experimental investigations of
damping and joint stiffness non-linearities of serial and parallel
manipulators through the use of a multi-input shaker excitation.

APPENDIX

MATHEMATICAL DEVELOPMENT

The mass and stiffness matrixMuu andKuu are defined by

Muu =

∫

m

(

A
T
N

T
NA

)

dm+

∫

m

(

A
T
N

tT
IxN

t
A
)

dm,(35)

Kuu =







n
∑

i=1

ni
∑

j=1

li,j
∫

0

(

A
T
B

T
EBA

)

dxi,j






+Kl. (36)

Mqq and the vectorMqku are respectively:

Mqkql =

∫

m





rTUT
k Ulr+ rTUT

k UlNAu

+rTUT
l UkNAu+ rTUT

k TNΛlu

+rTUT
l TNΛku



 dm, (37)

Mqku =

∫

m

(

rTUT
k TNA+ uT

(

ΛT
k N

TNA

+ATNTUT
k TNA

) )

dm

+
∫

m

(

uTΛT
k N

tT IxN
tA

)

dm.
(38)

The various coriolis, centrifugal and gravity forces are expressed
by the vectors

Fr =
[

Frq1 . . . Frqn Fru
T

]T
, (39)

Fu =
[

Fuq1 . . . Fuqn Fuu
T

]T
, (40)

Fu̇ =
[

Fu̇q1 . . . Fu̇qn Fu̇u
T

]T
, (41)

Fg =
[

Fgq1 . . . Fgqn Fgu
T

]T
, (42)



8

where each component are defined by

Frqk =

∫

m

(

r
T
U

T
k

∑

(

∑

Vi,j q̇j

)

q̇ir
)

dm, (43)

Fru =

∫

m

(

A
T
N

T
T

T
∑

(

∑

Vi,j q̇j

)

q̇ir
)

dm, (44)

Fuqk =

∫

m

























rTUT
k

∑

(
∑

Vi,j q̇j) q̇iNA

+2rTUT
k ṪNȦ

+rT
∑

(
∑

Vi,j q̇j) q̇i
T
UkNA

+rTUT
k TN

∑

(
∑

Ωi,j q̇j) q̇i
+rT

∑

(
∑

Vi,j q̇j) q̇i
T
TNΛk













u













dm, (45)

Fuu =

∫

m

















ATNTTT
∑

(
∑

Vi,j q̇j) q̇iNA

+ATNTTT ṪNȦ

−ATNT ṪTTNȦ

+ATNTN
∑

(
∑

Ωi,j q̇j) q̇i









u









dm

+
∫

m

(

ATNtT IxN
t
∑

(
∑

Ωi,j q̇j) q̇iu
)

dm,

(46)

Fu̇qk =

∫

m

(

2
(

r
T
U

T
k ṪNA+ r

T
U

T
k TNȦ

)

u̇
)

dm, (47)

Fu̇u =

∫

m









ATNTTT ṪNA

−ATNT ṪTTNA

+2ATNTNȦ



 u̇



 dm

+
∫

m

(

2ATNtT IxN
tȦu̇

)

dm,

(48)

Fgqk =

∫

m

(

g
T
Ukr+ g

T
UkNAu+ g

T
TNΛku

)

dm, (49)

Fgu =

∫

m

(

A
T
N

T
T

T
g
)

dm. (50)
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