
A systematic quantitative review on the performance of some of the recent short-term

rainfall forecasting techniques

Shejule Priya Ashok and Sreeja Pekkat *
Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
*Corresponding author. E-mail: sreeja@iitg.ac.in

SPA, 0000-0001-5895-2002; SP, 0000-0001-9166-5590

ABSTRACT

Rainfall forecasting is a high-priority research problem due to the complex interplay of multiple factors. Despite extensive studies, a systema-

tic quantitative review of recent developments in rainfall forecasting is lacking in the literature. This study conducted a systematic

quantitative review of statistical, numerical weather prediction (NWP) and machine learning (ML) techniques for rainfall forecasting. The

review adopted the preferred reporting items for systematic reviews and meta-analyses (PRISMA) technique for screening keywords and

abstracts, leading to 110 qualified papers from multiple databases. The impact of rainfall threshold, meteorological parameters, topography,

algorithm techniques, geographic location, the horizontal resolution of the model, and lead time on rainfall forecast was examined. The

review shows the importance of precipitable water vapor (PWV) along with other meteorological parameters for accurate nowcasting in

coastal and mountainous regions. An increase in rainfall forecast uncertainty with an increase in the lead time makes the NWP model

less popular for the short-term forecast. The pre-processing techniques increased the accuracy of ML techniques by considering extreme

values and detecting the irregularly distributed multi-scale features of rainfall in space and time. Future research can focus on hybrid

models with improved accuracy for nowcasting. The output from the hybrid model serves as input for the decision support system required

for urban flood risk management.
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HIGHLIGHTS

• The PRISMA method is applied for a systematic quantitative review.

• The Global Navigation Satellite System-derived precipitable water vapor (PWV) is found to be capable of analyzing the real-time profile of

water vapor content.

• Forecast can be improved by considering additional meteorological parameters along with the PWV.

• A longer lead time in the NWP model enhances the forecast uncertainty.

• There is a significant improvement in the forecast by machine learning models after pre-processing.
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GRAPHICAL ABSTRACT

1. INTRODUCTION

According to the IPCC (Intergovernmental Panel on Climate Change) reports, climate change is responsible for extreme
weather events (Pachauri et al. 2014; IPCC 2021), which lead to floods and droughts around the world. On a global scale,

flooding causes significant damage to human lives and properties (Balica et al. 2012). The recent Sixth Assessment Report
(AR6) comprises three groups which are for the physical science basis, impacts, adaptation, vulnerability, and mitigation,
with a greater focus on regional information, which can be utilized for climate risk assessments (IPCC 2021). With changing

hydro-climatology, the frequency and severity of extreme rainfall events are likely to increase, leading to frequent flooding
(Imhoff et al. 2020). While these natural disasters cannot be prevented, the resilience of society toward these events can
be improved by adopting state-of-the-art management techniques. One of the methods is the early and timely forecast of

extreme events providing a sufficient lead time for preparedness. A reliable mitigation and management measure can be
adopted through a decision support system if flooding can be predicted well in advance by integrating flood modeling and
rainfall forecasting. Recent technical advances have significantly enhanced the rainfall forecasting skill (Bauer et al. 2015;
Bhomia et al. 2019), which has steadily evolved over the years. In this context, nowcasting is a useful tool for short-term rain-

fall forecasting in specific urban settings.
The development in technology and knowledge about the atmospheric processes is required for the advances in rainfall

forecast techniques (Benjamin et al. 2019; Randall et al. 2019). Table 1 summarizes the evolution of rainfall forecasting tech-

niques from the 1900 to date and the predominant methods adopted during different periods. There is a gradual development
from statistical methods (blind of processes) in the pre-2000 age to more process-based revolutionary big data and internet of
things (IoT) for refined rainfall forecasting in the present. This was possible only due to the advancement in the real-time
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measurements of weather data and high computational developments including supercomputers (Golding 2000; Kumar et al.
2017; Wiston & Mphale 2018). The role of weather satellites deployed by various nations and the advanced weather radar

system for microclimate monitoring has gone a long way in the improvement of rainfall forecasting (Randall et al. 2019). The
present-day research is mainly focused on very short-term nowcasting and very long-term decadal forecasting, an overlap of
interannual variability and long-term climate change (Krishnan & Sugi 2003; Vareed et al. 2013; Sun et al. 2014; Liu et al.
2015; Foresti et al. 2016; Salvi et al. 2017; Choudhury et al. 2019; Smith et al. 2019; Imhoff et al. 2020). While nowcasting is

mandatory for the timely prediction of flooding at the local scale, decadal forecasting is important for long-term planning
considering the impact of climate variabilities.

The numerical weather prediction (NWP) models are becoming increasingly popular for short-term rainfall forecasting.

The different short-term rainfall forecasting NWP models adopted by different countries are summarized in Table 2. The
NWP models are classified into global models and mesoscale models. The global models are used for the medium-range fore-
cast as they cannot run at high resolution. In contrast, mesoscale models are used for the short-range forecast. The mesoscale

models require weather forecasts obtained from global models for initialization and adjusting the boundary conditions
(Diagne et al. 2013; Cogan 2016; Ramírez & Vindel 2017). Global and mesoscale models can provide surface weather details
and be efficiently used for climatic simulations at a given region of interest (Pu & Kalnay 2019). The global model has global

coverage but less ability to resolve explicitly convective systems, while the regional (mesoscale) model with fine-grid spacing
(a few kilometers) performed better in accurately analyzing convective-scale features (WMO 2017).

STEPS is a probabilistic precipitation forecast approach that combines an extrapolation nowcast and a NWP forecast
(Bowler et al. 2006). The Flash Flood Guidance System (FFGS) in the USA is the hydro-meteorological modeling system

that combines remote sensing of rainfall (radar/satellite) and NWP output to provide early measures on flash floods for
the next 6 h (WMO 2017).

The quantitative rainfall nowcasting techniques used by different countries are based on radar echo-tracking and extrapol-

ation to produce real-time forecasts. The more sophisticated methods involve blending multiple observation systems with the
NWP output for an accurate nowcast (WMO 2017). Based on the extrapolation method, they are classified as ‘area trackers’
and ‘cell trackers’. The IMD uses a Short-rangeWarning of Intense Rainstorms in Localized System (SWIRLS-2) and aWarning

Decision Support System (WDSS) for nowcasting (Roy et al. 2019). The SWIRLS uses an area-tracking extrapolation method
for radar echoes, while the WDSS uses centroid tracking for nowcasting in the Indian region (Li & Lai 2004; Lakshmanan

Table 1 | Evolution of rainfall forecasting techniques

Time period Methods Observational data

Pre-2000 1900–
1940

• Predominance of statistical methods
• Method of correlation coefficients
• Frontal analysis
• Multiple regression equations

• Surface observations
• Graphs, maps for determining pressure
contours

1941–
2000

• Correlated upper-level air/waves with the surface pressure
pattern

• During 1981–1990, focus was on long-range forecast (LRF)
methods, i.e., stochastic methods

• Power regression models
• NWP models

• Aircraft used to collect real-time weather
data
• Satellite and radar observations became
popular

• Use of sea surface temperature, mean sea
level pressure
• Zonal and meridional wind data

Post-2000 2000–
2017

• Progress in meteorology
• Use of high-speed computational facility
• Radar rainfall forecast
• Advent of empirical/ML methods

• Ground-based/weather satellites
• Deployment of extensive radar networks

Current
research

2018–
2021

• Focus on speedy and effective algorithms
• Era of big data, IoT for rainfall forecast
• Considered the dependence of rainfall on a number of
atmospheric variables

• Efforts to enhance forecast reliability

• Focus on collecting data of high temporal
and spatial resolution
• Advanced radar data
• Wireless and fully automated system for
data collection
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et al. 2007). The Korean Meteorological Administration (KMA) employed the McGill Algorithm for Precipitation Nowcasting

by Lagrangian Extrapolation (MAPLE) and the Korea Local Analysis and Prediction System (KLAPS) for short-term rainfall
forecast (Germann & Zawadzki 2002, 2004). This technique uses variational echo-tracking with semi-Lagrangian advection
of radar reflectivity and correlation of the forecast with the observation. The Shanghai Central Meteorological Observatory

(SCMO) uses Thunderstorm Identification, Tracking, Analysis, and Nowcasting (TITAN) for storm forecasting and rainfall
nowcasting (Dixon & Wiener 1993). The TITAN uses a cell-tracking method for echo movement tracking and extrapolation.
The Hong Kong Observatory (HKO) has developed the SWIRLS model for rainfall nowcast operations, a robust method for
tracking the existing rain system (Li & Lai 2004). The United Kingdom’s Meteorological Office (UKMO) developed an auto-

mated NIMROD (Nowcasting and Initialisation for Modelling Using Regional Observation Data), which uses pixel-based
linear extrapolation of radar echo for quantitative precipitation forecast.

Globally, high spatial and temporal resolution radar networks and satellite data are in use for weather forecasts (Liguori &

Rico-Ramirez 2014; Heuvelink et al. 2020). Satellite-based information is used in mountainous regions and other areas where
a limited number of rain gauge measurements are available (Duan & Bastiaanssen 2013; Zhu et al. 2020). The studies
reported that rainfall forecast for the next 0–6 h can be obtained by integrating the NWPmodels and radar extrapolation tech-

niques (Bowler et al. 2006; He et al. 2013; Liguori & Rico-Ramirez 2014; Wang et al. 2016; Chu et al. 2018; Shehu &
Haberlandt 2021). It is explicit that several models have been developed in the recent past for short-term rainfall forecasting.
Since rainfall depends on several factors and has complex nonlinear associations, the same model may yield different results

in different regions. The main objective of this systematic quantitative review is to appraise such variabilities associated with
some of the recent models used for short-term rainfall forecasting. The review summarizes the findings and factors affecting
the forecasting accuracy by considering rainfall forecasting methods at multiple time scales. The different methods considered
in this study are (1) statistical methods, (2) the NWP model, and (3) machine learning (ML).

2. METHODOLOGY

This study aims for a systematic review (SR) for mapping the findings related to short-term rainfall forecasting reported by
previous researchers to arrive at a generalized conclusion. This SR is mainly performed to address the following research
questions: (1) what are the different short-term rainfall forecasting techniques, (2) how different factors affect the forecast

Table 2 | Summary of NWP models adopted by meteorological centers in different countries

Center Country Model Application

BOM Australia STEPS Short-term rainfall forecast

KMA Korea MAPLE/KLAPS Short-term rainfall forecast

ECMWF Europe SWIRLS Short-term/nowcasting

IMD India WRF/GFS Short-term rainfall forecast

HKO Hong Kong SWIRLS Nowcasting

NOAA USA GFS Short-term rainfall forecast

JMA Japan MSM Very short-term forecast

UKMO UK NIMROD Very short-term forecast

Meteo France France AROME Short-term rainfall forecast

CPTEC Brazil BAM Short-term rainfall forecast

SCMO China TITAN/TREC Nowcasting

CMC Canada GEPS Quantitative precipitation forecast

BOM, Bureau of Meteorology; KMA, Korean Meteorological Administration; ECMWF, European Centre for Medium-range Weather Forecasts; IMD, Indian Meteorological Department;

HKO, Hong Kong Observatory; NOAA, National Oceanic and Atmospheric Administration; JMA, Japan Meteorological Administration; UKMO, United Kingdom’s Meteorological Office;

Meteo France, France Meteorological Service; CPTEC, Centro de Previsão do Tempo e Estudos Climáticos (Portuguese for Center for Weather Forecast and Climatic Studies); SCMO,

Shanghai Central Meteorological Observatory; CMC, Canadian Meteorological Centre; STEPS, Short-Term Ensemble Prediction System; MAPLE, McGill Algorithm for Precipitation

Nowcasting by Lagrangian Extrapolation; KLAPS, Korea Local Analysis and Prediction System; SWIRLS, short-range warning of intense rainstorms in localized systems; WRF, Weather

Research and Forecasting; GFS, Global Forecasting System; MSM, Mesoscale Model; NIMROD, Nowcasting and Initialisation for Modelling Using Regional Observation Data System;

AROME, Applications of Research to Operations at Mesoscale; BAM, Brazilian Global Atmospheric Model; TITAN, Thunderstorm Identification, Tracking, Analysis, and Nowcasting; TREC,

tracking radar echoes by correlation vectors; GEPS, Global Ensemble Prediction System.
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accuracy, and (3) how forecasting accuracy is improved. The methodology of SR performed in this study is explained by a

flowchart as presented in Figure 1. The preferred reporting items for SRs and meta-analyses (PRISMA) method (Debray
et al. 2017) is applied to screen the relevant studies for SR. The SR includes the following steps: (1) identification/formulation
of research questions, (2) identification of keywords using Boolean operators such as AND and OR for search strategy, (3)

extracting and screening relevant publications satisfying the inclusion criteria and excluding the others. The inclusion criteria
considered in this SR are (a) case studies related to rainfall forecasting, (b) factors affecting the nowcast, short, and medium-
range forecast, (c) forecast accuracy, (d) impact factor of journals divided into three categories (high impact factor .30, mod-
erate impact factor 10–3, and low impact factor ,3), and (e) relevant conference proceedings.

According to the PRISMA flowchart shown in Figure 1, 2,100 papers were identified from the electronic databases such as
Elsevier, IEEE, Nature, Springer, Scopus, Taylor and Francis, Web of Science, and Wiley. The manuscripts written in the
English language and available in the database are considered. The keywords selected for SR include short-term rainfall fore-

cast, Global Navigation Satellite System (GNSS)-derived precipitable water vapor (PWV) techniques, pre-processing
techniques, ML, and NWP. The review identifies efficient forecasting techniques based on region, model type/resolution/
lead time, and pre-processing methods. During the initial article reading, duplicated papers were removed. After removing

the duplicates, articles reduced to 1,200 numbers. Further screening was done based on the title review. After reading the
abstract, 200 articles were selected. From these 200 papers, articles satisfying the given setting were selected after full manu-
script reading. Initially, the articles were shortlisted mainly based on the keywords. Those articles satisfying the criteria

presented by PRISMAwere further studied. The articles were then categorized into short-, medium-, and long-range and now-
casting category on the basis of the lead time of prediction. There are a number of statistical techniques available, but this
review focused on recent advancements such as GNSS-derived PWV. Hence, other conventional statistical techniques
were excluded, and only selected papers were considered. After screening ML techniques with pre-processing, a further

filter was applied, and those methods that were highly efficient in noise removal and completely interpreting the time
series were selected. In the case of NWP models, studies showing the influence of location, lead time, and horizontal resol-
ution were included, and the remaining were rejected. Finally, this process yielded 110 eligible articles for further analysis.

The flowchart of article coding is summarized in Figure 2. The papers selected were categorized based on the methods
used for forecast, which include (a) statistical, (b) NWP, and (c) ML techniques. To examine the variability among them,

Figure 1 | Flowchart of PRISMA (preferred reporting items for SRs and meta-analyses) framework adopted for the SR.
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(1) the statistical method was further classified based on location, i.e., temperate, subtropical, and tropical regions; (2) the
NWP method was classified based on resolution, lead time, and location, and (3) ML methods were studied based on pre-

processing techniques.

3. DESCRIPTIVE ANALYSIS OF SHORT-TERM RAINFALL FORECASTING TECHNIQUES

3.1. Short-term rainfall forecast based on GNSS-derived PWV

The IMD and other weather forecasting agencies have been using statistical methods for rainfall forecast for more than 100
years (Thapliyal 1982; Gowariker et al. 1989; Parthasarathy et al. 1993; Singh & Pai 1996; Thapliyal 1997; Rajeevan et al.
2000; Gadgil et al. 2005; Munot & Kumar 2007; Rajeevan et al. 2007; Kumar et al. 2012). The traditional statistical
models are based on the long-term measurement of rainfall and its dependence on various meteorological parameters
(Abbot & Marohasy 2018). Some of the statistical models like auto-regressive moving average (ARMA) and auto-regressive

integrated moving average (ARIMA) methods were applied in the nonlinear hydrological process. However, its accuracy
mainly depends on user knowledge and experience (Anh et al. 2019). These models mainly fall under the paradigm of statio-
narity. However, natural processes like rainfall are chaotic in nature. Despite so many efforts in the forecast by statistical

methods, there is still enough scope for improving the forecast efficiency. This review focused on the more advanced statisti-
cal technique based on GNSS-derived PWV.

The GNSS-derived PWV is a convincing approach for rainfall analysis and forecasting and has wide applications in rainfall

forecasting, global climate analysis (Yao et al. 2017), improving NWP (Gutman et al. 2003; Gendt et al. 2004; Guo et al.
2021). This forecasting technique comes under statistical methods for short-term rainfall forecast, which is further classified
based on the location. The GNSS-derived PWV reflects the water vapor stored in a vertical air column above a certain area
(Manandhar et al. 2018). The GNSS comprises a satellite constellation that transmits a radio signal through the atmosphere,

which is received by the ground-based GNSS receiver. The atmospheric water vapor interferes with the propagated signal
along the path, causing a delay referred to as ‘tropospheric delay’. This tropospheric delay mainly accounts for zenith total
delay (ZTD), from which the PWV can be obtained by a conversion factor (Shi et al. 2015; He et al. 2019; Li et al. 2020;
Zhao et al. 2020). The PWV is the atmospheric water vapor expressed as the height of an equivalent column of liquid
water (Manandhar et al. 2018). It is observed that in coastal and mountainous regions, the convection process arises due
to rapid spatial variation in water vapor content. The GNSS is capable of analyzing the real-time distribution of water

Figure 2 | Details of article coding for manuscripts selected for short-term rainfall forecasting.
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vapor content that can be used for precipitation nowcasting (Yuan et al. 2014). Therefore, PWV is considered to be a more

reliable parameter for rainfall forecasts in mountainous areas (Kawase et al. 2006).
This review summarizes GNSS-derived PWV in the temperate, subtropical, and tropical regions for rainfall nowcast as

shown in Tables 3–5, respectively. These tables represent how the true forecast rate (TFR) and the false forecast rate

(FFR) change with the change in the precipitation threshold, lead time of the forecast, length of data, and algorithm applied
for the rainfall forecast/nowcast. The TFR is defined as the ratio of the number of correctly forecasted rainfall events to the

Table 4 | GNSS-derived PWV for the rainfall nowcast in the subtropical region

Author Study region Threshold
Lead
time Algorithm Data TFR (%) FFR (%)

Yao et al.
(2017)

Zhejiang Province,
China

0.6–0.8 mm/h 5.15 h Precise Point Positioning (PPP)
data-processing software

2014–2015
hourly data

82 66

Zhao et al.
(2018)

Zhejiang Province,
China

– 2–6 h Least-square fitting time- series
analysis

2014–2015
hourly data

90 60–66

Zhao et al.
(2020)

Zhejiang Province,
China

– 2–6 h Precise Point Positioning (PPP)
data-processing software

2014–2015
hourly data

.95 ,30

Li et al. (2020) Subtropical region
of Hong Kong

1.1–1.7 mm/h 5.15 h Pre-processing based on WMO,
U.S. National Weather
Service criteria

2010–2019
hourly data

95.5 28.9

Li et al. (2022) Subtropical region
of Hong Kong

Anomaly-based
percentile
thresholds

4.13 h GNSS data acquisition and pre-
processing

2010–2019
hourly data

97.6 13.4

Table 3 | GNSS-derived PWV for the rainfall nowcast in the temperate region

Author Study region Threshold
Lead
time Algorithm Data TFR (%) FFR (%)

Benevides et al.
(2015)

Temperate region of
Lisbon Portugal

1.5 mm/
h

1–6 h Least-square fitting analysis 2010–2012
hourly data

75 65

Benevides et al.
(2019)

Temperate region of
Lisbon Portugal

0.5 mm/
h

1 h Nonlinear auto-regressive
exogenous neural network model

2011–2015
hourly data

71.9 23.3

Łos ́ et al. (2020) Central and northern
Poland

– 0–2 h Random forest classifier 2017–2019
hourly data

87 –

TFR, true forecast rate; FFR, false forecast rate.

Table 5 | GNSS-derived PWV for the rainfall nowcast in the tropical region

Author Study region Threshold Lead time Algorithm Data TFR (%) FFR (%)

Manandhar et al.
(2018)

Tropical region of
Singapore

0.3–0.4 mm/h 5 min – 2010–2013 87.7 38.6

Manandhar et al.
(2019a)

Tropical region of
Singapore

– 5 min Data-driven ML
technique (SVM)

2012–2015 80.4 20.3

Manandhar et al.
(2019b)

Tropical region of
Singapore

0.2–0.3 mm/h 45–60 min – 2010–2016 79.62 50.38

Liu et al. (2019) Tropical region of
Singapore

0.1 mm/h 10–60 min Improved BP-NN 2010–2012 .96 ,40

Biswas et al. (2021) Tropical region of
Singapore
and Brazil

0.7–0.9 mm 6 h GPS-derived
atmospheric
gradient and residual

2010–2013 and
2016

87 36.6

SVM, support vector machine; BP-NN, back-propagation neural network.
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actual number of rainfall events. The FFR represents the false alarm situations and is defined as the ratio of the number of

falsely forecasted rainfall events (no rainfall occurred) to the actual number of rainfall events.
Researchers (Benevides et al. 2015; Yao et al. 2017; Zhao et al. 2020) compared longer duration series of PWV values with

the rainfall series over the same period of time. They found that when the factors such as PWV, PWV variation, and the rate of

change of PWV reached a particular value, the rainfall probability increased significantly. This particular value is known as
the rainfall threshold. From Tables 3–5, it is observed that different threshold gives different forecast results. The TFR values
obtained from the studies ranged between 71.9 and 96%, while the FFR values varied from 20.3 to 66.6%. This indicates that
overall PWV values are a good indicator of rainfall occurrence. In temperate regions, rainfall forecast was obtained with a

lead time of 1–6 h, in subtropical regions 1–5.15 h, and in tropical regions 5–60 min. For meteorological nowcasting
suggested, the lead time is up to 30 min. From Tables 3–5, it is observed that GNSS-derived PWV can be successfully applied
for nowcasting in tropical regions. Also, the forecast accuracy is found to be more in tropical and subtropical regions than in

temperate regions (Li et al. 2020).
In all these studies, hourly data are used for analysis with the data length of 1 year, 2, 3, 6, and 9 years. It is observed that

with an increase in data length, rainfall forecast probability beyond 2 days can be obtained (Seco et al. 2012; Benevides et al.
2015), thereby allowing time for preparedness during extreme events. In tropical regions, mostly convective rainfall occurs
and has a duration of less than 30 min (Manandhar et al. 2019b). Therefore, hourly sample data are not good in this
region. Different algorithms yield different forecast results. Rainfall depends on a number of parameters such as PWV, temp-

erature, pressure, and relative humidity. The method, which can encompass most of these factors, gives an accurate TFR. A
detailed explanation of the influence of PWV and different algorithms on rainfall forecast is explained below.

3.1.1. Relationship between PWV and rainfall

A positive relationship was observed between PWV and rainfall (Champollion et al. 2004; Bastin et al. 2007; Yan et al. 2009;
Brenot et al. 2014; Zhao et al. 2018), with PWV increasing just before the rainfall event and decreasing after the rainfall (Yao
et al. 2017; Barindelli et al. 2018). However, the rise in PWV will not always cause rainfall if other factors are not favorable
(Sharifi et al. 2015). Certain external factors, such as thermodynamic variations, need to be considered as it affects the rainfall

(Shoji 2013). Thermodynamic properties are mainly associated with temperature profile and moisture content determining
the convection process (Pall et al. 2007; Lepore et al. 2015). Thermodynamic indices are important to understand the atmos-
pheric instability, which ultimately triggers the rainfall (Ajilesh et al. 2020). Manandhar et al. (2019b) stated that for temperate

and subtropical regions, an apparent change in PWV values is observed certain hours before the rain. In contrast, PWV
values are very high for tropical regions and change marginally before the rain.

3.1.2. Relationship between threshold PWV and rainfall

Researchers (Jin & Luo 2009; Manandhar et al. 2018; Zhao et al. 2018) have studied the influence of the seasonal variation in

PWV on the rainfall forecast. The seasonal variation in the PWV value was found to be more on a rainy day as compared to a
non-rainy day (Manandhar et al. 2018). Therefore, it is understood that there is a threshold PWV beyond which rainfall can
occur. According to Jin & Luo (2009), the threshold PWV value for rainfall forecast is the location and season-specific. Sea-

sonal variations in PWV were observed over many GNSS stations. The authors noted that, during the intermonsoon season,
PWV values are high as compared to the monsoon season. As the temperature in the intermonsoon is high, it can hold more
water vapor, causing an increase in the PWV values. Zhao et al. (2018) also proved the same results (the PWV value is more

in summer than in winter) based on the rainfall forecast experiment. Researchers concluded that the threshold PWV value is
sensitive to the location (Jin & Luo 2009; Benevides et al. 2015; Yao et al. 2017; Manandhar et al. 2018, 2019b). Manandhar
et al. (2018) stated that the threshold value also changes with the location. The PWV range in temperate, subtropical, and
tropical regions is about 0–45, 0–80, and 30–70 mm, respectively. The PWV values in tropical regions are higher because

of high temperature and relative humidity. Yao et al. (2017) noted that for the same threshold, at different stations, rainfall
forecast results are found to be different. This shows that threshold values vary with the location. It is observed that if the
calculated PWV value (evaluating criteria) exceeds the threshold value, then the probability of rainfall occurrence is high

(Benevides et al. 2015). Researchers stated that the threshold of maximum PWV contributes to rainfall forecast in the tropics,
whereas, in temperate and subtropical regions, the threshold of the maximum rate of the increment of PWV is the deciding
factor (Benevides et al. 2015; Yao et al. 2017; Manandhar et al. 2019b).
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3.1.3. Influence of different algorithms

Previous studies revealed that rainfall depends on a myriad of atmospheric parameters. Researchers implemented different
ML algorithms by considering different parameters to yield an accurate forecast (Rahimi et al. 2018; Sangiorgio et al.
2018; Khaniani et al. 2021; Zhao et al. 2022). Figures 3 and 4 show that different algorithms applied at the same geographical
station give different forecast rates. Manandhar et al. (2019a) improved their previous study by applying the support vector
machine (SVM), an ML technique to classify rainy and non-rainy events. From Table 3, it is noted that forecast accuracy
reached 87% when ML-based random forest (RF) was applied for storm nowcasting (Łos ́ et al. 2020). Employing SVM, it

was noted that the FFR was reduced by 18.3%, as shown in Table 5. Liu et al. (2019) have applied an improved back-propa-
gation neural network (BP-NN) algorithm for short-term rainfall forecast by incorporating more meteorological parameters
such as temperature, relative humidity, dew point, and pressure. Interestingly, the TFR obtained was more than 96% when

more factors were considered. Biswas et al. (2021) applied a new method considering significant weather features, horizontal
tropospheric gradient, and atmospheric residual. The TFR was found to be 87% and the FAR reduced to 36.6% for the next
6 h prediction, as shown in Table 5. Therefore, it shows that it is necessary to include the relevant meteorological parameters

and suitable algorithms for improving the TFR and reducing the FFR and evaluate the same for specific regions and seasons.

3.1.4. Effect of using multiple meteorological parameters on the rainfall forecast

Several studies have been carried out throughout the world considering the effect of meteorological parameters on rainfall
forecast skills (Holloway & Neelin 2010; Seco et al. 2012; Chen & Li 2013; Sharifi et al. 2015; Suparta & Alhasa 2015;

Priego et al. 2017; Yeh et al. 2018; Mawandha et al. 2019; Guo et al. 2021). A summary of meteorological parameters con-
sidered in the literature is listed in Table 6. Figure 5 shows the TFR and FFR values for the rainfall forecast in the temperate
and subtropical regions. From Table 6, it is seen that Benevides et al. (2015) has considered PWV as a primary factor for the

Figure 3 | Comparison of the true forecast rate affected by different algorithms for the same geographical location (the tropical region of
Singapore).
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rainfall forecast. Benevides et al. (2019) considered other meteorological parameters such as temperature, pressure, and rela-

tive humidity along with the PWV, which resulted in the reduction of the FFR by 5% as compared to the previous study.
A few studies carried out in the temperate region of Austria, Europe, and Italy include Karabatić et al. (2011), Guerova et al.

(2016), and Barindelli et al. (2018). Karabatić et al. (2011) observed that prediction errors mainly occurred due to uneven

topography in the alpine region of Austria. Therefore, the author has considered the effect of station height, latitude, and
temperature gradient while calculating/extrapolating the pressure at the station. Guerova et al. (2016) studied the GNSS
meteorology in Europe and presented state-of-the-art weather prediction, climate monitoring, and the assimilation of

GNSS products into the NWP models. Barindelli et al. (2018) evaluated the relationship between PWV time variations
and rainfall events. The author observed the peak in PWV when the rain clouds approached the station, followed by a
decrease in the value by 5–10 mm when they moved past the station.

Yao et al. (2017) considered PWV variation, monthly PWV, and the rate of change of PWV values. In this case, the
obtained TFR was 81% and the FFR was 66%. In the subtropical region, Li et al. (2020) considered two new predictors,
PWV decrement and the rate of the PWV decrement, for the first time, along with the PWV values for short-term rainfall
forecast/nowcast. With this addition, it was noted that TFR improved around 20% from 75 to 95.5% as compared to the

studies in the temperate region, and the FFR significantly reduced to 28.9%. Zhao et al. (2018) considered the PWV value
ZTD as the main parameter. The TFR was quite good with a value of 90%, but the FFR was around 65%, which was not
an improvement. Therefore, to improve results, Zhao et al. (2020) considered additional parameters such as PWV first deriva-

tive, ZTD variation, and ZTD first derivative, and noted that FFR was significantly reduced to 30% with the same TFR of 90%.
Li et al. (2022) used seven predictors, including hourly PWV and its six types of derivatives, showing the overall picture of
PWV variation prior to the rainfall event. The TFR was found to be as high as 97.6%, and the FFR reduced to 13.4% for a

prediction window of 4.13 h. This comparison plot is shown in Figure 5.

Figure 4 | Comparison of the false forecast rate affected by different algorithms for the same geographical location (the tropical region of
Singapore).
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From Table 6, it is seen that only one study has considered the impact of solar radiation on rainfall forecast. Very few

researchers have considered the decrement of PWV and first-order and second-order derivatives of PWV values. However,
the performance is marginally high for the three-factor model (three-meteorological parameters) and five-factor models
(five meteorological parameters). Li et al. (2020) obtained a better forecast by using a combination of PWV increment,

PWV increment rate, PWV decrement, PWV decrement rate, and PWV values. This is one of the reasons for the better per-
formance of the method in the tropical and subtropical regions compared to the temperate region. It is evident from the above
discussion that the PWV, when reinforced with other meteorological parameters, improved the TFR of short-term rainfall

forecasts. Further studies are needed for optimizing and identifying the meteorological parameters required for accurate
nowcasting.

3.2. NWP models

The NWP model represents the numerical simulation of atmospheric conditions to forecast the evolution of weather. A high-
resolution model is required for the detailed representation and understanding of the atmospheric condition. The chaotic
nature of the weather significantly affects the NWP forecast. A summary of rainfall forecast by popular NWP models is

listed in Table 7. The different NWP models presented in Table 7 include the fifth-generation mesoscale model (MM5),
Australian Community Climate Earth-System Simulator (ACCESS), Global/Regional Integrated Model system (GRIMs),
WRF, Advanced Research WRF (ARW), GFS, the UKMO, Advanced Regional Prediction System (ARPS), and the Unified

Model (UM). Table 7 describes various studies based on different factors such as the location of the study, different
models used for short-term rainfall forecast, resolution of the model, and the forecast lead time. The following section
explains the factors that influence the rainfall forecast by NWP models.

3.2.1. Influence of horizontal resolution on the rainfall forecast accuracy of NWP models

The NWPs are mostly grid models, in which the horizontal resolution is defined as the spacing between the grid cells. For

other models with a global domain, such as spectral models, it is related to the number of waves that can be resolved by
the model (Giunta et al. 2019). It was observed that the accuracy of the forecast can be enhanced with finer grid cells
(Subramanian & Gopalakrishnan 2020). The short-term rainfall forecast skill depends on the location, season, and model
resolution (Mass et al. 2002; Das et al. 2008). Researchers have performed sensitivity studies to understand the impact of hori-

zontal resolution on NWPmodel forecast (Martin 1998; Gallus 1999; Goswami et al. 2012; Jang & Hong 2014; Li et al. 2016;
Wang et al. 2016). To assess the performance of different methods, the statistical measures, including the probability of detec-
tion (POD), bias score (BS), false alarm ratio (FAR), critical success index (CSI), and equitable threat score (ETS), were used

and are listed in Table 8.
Table 9 shows the effect of horizontal resolution on the rainfall forecast skill. Mass et al. (2002) applied the MM5 model

and found that rainfall is underestimated at 12 km resolution as the coarser-resolution model does not identify small-scale

Figure 5 | Statistics (true/false forecast rate) related to rainfall forecasting for different studies.
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features. However, increasing the resolution to 4 km over predicts the rainfall, thereby reducing the overall forecast skill. Jang

& Hong (2014) applied the GRIMs with different horizontal resolutions of 25, 50, and 100 km for the quantitative forecast of
heavy rainfall events over the Korean peninsula. It was noted that with enhanced resolution, complex topography can be well
represented with an improved ETS.

According to Kumar et al. (2016), increasing resolution improves rainfall forecasting skills. The POD increases by 40%
when the resolution decreases from 45 to 5 km, and the BS increases by 24.3%. This indicated that better topographic rep-
resentation positively impacts rainfall forecasting in the mountainous region. Sridevi et al. (2018) found that a high-resolution

model has less overestimation with a BS of 1–1.25, while a low-resolution model has a significant overestimation with a BS of
1.5–2, implying that higher resolution improves forecast performance. The same results were observed by other studies
reported in the literature (Li et al. 2016; Sharma et al. 2017, 2021). Li et al. (2016) observed that at high resolution

(5 km), the BS was proportional to the rainfall threshold.
It is concluded that the standard verification metrics (POD, ETS, CSI, and BS) increase with an increase in the

horizontal resolution with a sufficient reduction in the FAR. The accuracy improvement was mainly due to the accurate
prediction of moisture and temperature with increased horizontal resolution. The above discussion noted that

coarser horizontal resolution may not accurately represent land surface characteristics and topography, ultimately
influencing the rainfall forecast accuracy. The finer resolution provided better orographic and mesoscale features
and can be considered as an essential step toward accurate short-term rainfall forecasts. However, the model

skill does not necessarily relate to increased horizontal resolution (Wang et al. 2004). The computational cost increases
with the resolution (Mass et al. 2002) and also the increased resolution comes at the cost of substantial computational
effort.

Table 6 | List of meteorological parameters considered in the literature

Predictor

Study

Benevides
et al. (2015)

Yao
et al.
(2017)

Manandhar
et al. (2018)

Zhao
et al.
(2018)

Benevides
et al. (2019)

Liu
et al.
(2019)

Manandhar
et al. (2019a)

Manandhar
et al. (2019b)

Li et al.
(2020)

Zhao
et al.
(2020)

PWV value � � √ √ √ √ √ � √ √

PWV variation/
PWV
increment

√ √ � � � � � √ √ √

PWV increment
rate/first
derivative

� √ � � � � � √ √ √

ZTD variation � � � � � � � � � √

ZTD first
derivative

� � � √ � � � � � √

PWV second
derivative

� � √ � � � � � � �

Monthly PWV � √ � � � � � √ � �
Seasonal PWV � � √ � � � � � � �
Pressure � � � � √ √ � � � �
Temperature � � � � √ √ √ � � �
Relative humidity � � � � √ √ √ � � �
Dew temperature � � � � � √ √ � � �
PWV decrement � � � � � � � � √ �
PWV decrement
rate

� � � � � � � � √ �

Solar radiation � � � � � � √ � � �
PWV, precipitable water vapor; ZTD, zenith total delay.
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Table 7 | Summary of literature with different NWP models reviewed in the present study

Reference Coverage Model Resolution Lead time

Mass et al. (2002) Washington MM5 4/12/36 km 24 h

Goswami et al. (2012) India MM5 10/30/90/60 km 24 h

Shrestha et al. (2012) Southeast Australia ACCESS 80 km/37.5 km/12 km/5 km 1–24 h

Jang & Hong (2014) Korea GRIM 25/50/100 km 24 h

Kumar et al. (2016) India WRF 5/15/45 km 24 h

Li et al. (2016) China WRF 5/10/15/20/30/45 km 24/48/72/96 h

Prakash et al. (2016) India GFS
UKMO

22/17 km Days 1–5

Shahrban et al. (2016) Southeast Australia ACCESS 12 km 13–24 h

Wang et al. (2016) China ARPS 3 km 1–6 h

Jee & Kim (2017) Korea WRF 5 km – outer
1 km – inner

18/12/6 h

Moya-Álvarez et al. (2018) Peru WRF 0.75/3/6/18 10 days

Chu et al. (2018) China WRF-ARW 3 km 1–6 h

Jabbari et al. (2020) Korea WRF 1/2/4/8/12/16/20 km 12/24/36/48/60/72 h

Sridevi et al. (2018) India GFS 25 km Days 1–5

Zhou et al. (2018) China WRF 10 km 36 h

Bhomia et al. (2019) India WRF 0:25� � 0:25� 24/48 h

Sharma et al. (2021) India UM 10/40 km 24/48/72 h

MM5, fifth-generation mesoscale model; ACCESS, Australian Community Climate Earth-System Simulator; GRIMs, Global/Regional Integrated Model system; WRF, Weather Research

and Forecasting; ARW, Advanced Research WRF; GFS, Global Forecast System; UKMO, the UK Met Office Unified Model; ARPS, Advanced Regional Prediction System; UM, Unified

Model.

Table 8 | Description of statistical measures appearing in this review for assessing model performance

Acronym Full form Description

POD Probability of Detection Fraction of events correctly forecasted

ETS Equitable Threat Score Account for the hits that would occur purely due to random chance

CSI Critical Success Index Fraction of all correctly diagnosed observed and forecast events (excluding false and missed alarms)

FAR False Alarm Ratio Fraction of events that were actually non-events

BS Bias Score The ratio of predicted to observed rain

RMSE Root Mean Square Error Average error magnitude

TFR True Forecast Rate The ratio of the number of correctly forecasted rainfall events to the actual number of rainfall events

FFR False Forecast Rate The ratio of the number of forecasted rainfall events but no rainfall actually occurred to the actual
number of rainfall events

r Correlation Coefficient Measures the degree of a linear relationship between observed and forecasted data

R2 Coefficient of
Determination

How well the model represents the data

MAE Mean Absolute Error Used for error characterization of a model

NSE Nash–Sutcliffe Efficiency To measure the model performance

CE Coefficient of Efficiency To check how well the observed and forecasted value fits
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3.2.2. Influence of lead time on rainfall forecast accuracy

The lead time is defined as the length of time between the forecast issuance of the event and the occurrence of the forecasted
event (Subramanian & Gopalakrishnan 2020). For many flood warning/forecasting studies, a lead time of 6–48 h is con-
sidered optimal (Herath et al. 2016). However, the forecast uncertainty increases with the lead time due to limited
knowledge about the complex atmospheric processes. Therefore, the research efforts are directed toward increasing the

lead time along with forecast accuracy, so that real-time measures can be taken against extreme events. The effect of lead
time on rainfall forecasting skills was studied based on theoretical and modeling studies (Das et al. 2008; Shrestha et al.
2012; Jang & Hong 2014; Wang et al. 2016; Jee & Kim 2017; Chu et al. 2018; Sridevi et al. 2018; Bhomia et al. 2019; Jabbari
et al. 2020; Sharma et al. 2021). Das et al. (2008) applied different mesoscale models, namely the MM5, Regional Spectral
Model (RSM), the Eta model, and the WRF model over India, to check the forecast skill. It is noted that the mesoscale
models performed better for the 1-day forecast, and the model’s skill decreases with an increase in the lead time. The results

of the performance score are summarized in Table 10. Shrestha et al. (2012) found that POD, which suggests the ability of the
model to correctly diagnose the event, decreases with the lead time (POD reduces from 70 to 30%). The FAR increases, and
the statistical measurement of the mean difference given by the BS fluctuates as the lead time increases. According to Jang &
Hong (2014), the root mean square error (RMSE) increases, and bias decreases as the lead time increases by 24 h. The

decrease in forecasting skills with an increase in the lead time was also endorsed by other literature (Chu et al. 2018; Sridevi
et al. 2018; Jabbari et al. 2020).

Results reported in the literature (Shrestha et al. 2012; Jee & Kim 2017; Bhomia et al. 2019; Sharma et al. 2021) clearly
show that FAR increased with the lead time, while CSI and POD decreased with the lead time. A higher lead time causes
large internal variabilities (i.e., chaotic variabilities of the climate caused by the model itself), resulting in high uncertainty
in the forecast skill (Lafaysse et al. 2014). Therefore, it is crucial to determine the optimum lead time for NWP models

before employing it for rainfall forecasting.

3.2.3. Influence of location

The location and its topography play an important role in the short-term rainfall forecast efficiency. Shrestha et al. (2012)
showed that the NWP models, such as Australian Community Climate Earth-System Simulator-VICTAS (ACCESS-VT)

and Australian Community Climate Earth-System Simulator-Australia (ACCESS-A), overestimated rainfall up to 60% in
low elevation and underestimated rainfall up to 30% in high elevation. Shahrban et al. (2016) also proved similar results
with the ACCESS-A model showing the overestimation of rainfall in low precipitation areas and underestimation in high rain-
fall areas. Kumar et al. (2016) noted that with an increase in resolution, better topographic representations over hilly areas

were obtained, improving the forecasting efficiency over the mountainous regions compared to plain areas. Bhomia et al.
(2019) found that a high correlation between IMD observed (ground observation) and WRF forecasted results over central
India with less bias and standard deviation (SD), indicating a better forecast efficiency. The Western Ghats (WG) and the

north-east (NE) region of India receive the highest amount of monsoon rainfall during the month of June, July, August,
and September (JJAS). Over the WG region (72 °E–76 °E, 13 °N–21 °N), the correlation between the IMD observed rainfall
and WRF forecasted rainfall was good, but the increased BS indicated overestimation. High SD was found over the NE region

Table 9 | Effect of horizontal resolution on rainfall forecast skill

Reference
Horizontal resolution
change (km)

Improvement

POD/ETS (%) CSI (%) BS (%) FAR reduction (%)

Mass et al. (2002) 12 4 – – 35 –

Jang & Hong (2014) 100 50 13 – – –

Kumar et al. (2016) 45 5 40 – 24.3 –

Li et al. (2016) 45 20 12 9.0 3.0 13.6

Sharma et al. (2017) 40 17 29 – – 24

Sridevi et al. (2018) 25 12 – – 20 –

Sharma et al. (2021) 45 10 10 9.0 – 10

POD, probability of detection; ETS, equitable threat score; CSI, critical success index; FAR, false alarm ratio; BS, bias score.
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(90 °E–98 °E, 22 °N–30 °N), showing low forecast efficiency. This suggests the lower accuracy of WRF over high terrain areas.
The BS was found to be less over the NW and SE regions of India, suggesting the underestimation of rainfall. Sridevi et al.
(2018) found that the rainfall is overestimated by 1–3 mm by the GFS model compared to observed rainfall in different parts
of India. It is apparent that more studies are needed to clearly draw the bounds within which NWP models work efficiently
with respect to resolution, lead time, and location.

3.3. ML methods

The above discussion clearly highlights the need for alternate methods of short-term rainfall forecasting that are versatile and,
at the same time, provide high efficiency. In the recent past, researchers have attempted to resolve some of the drawbacks of
statistical and physically based models by using the capabilities of ML approaches or hybrid models (Hong 2008; Sumi et al.
2012; Cramer et al. 2017; Balamurugan &Manojkumar 2021; Ridwan et al. 2021). Artificial neural network (ANN), k-nearest
neighbor (KNN), SVM, decision tree (DT), and RF are some of the popular ML models that were employed to handle com-
plex nonlinear association (Hong & Pai 2007; Hong 2008; Sumi et al. 2012; Akrami et al. 2014; Cramer et al. 2017; Abbot &
Marohasy 2018). These models are entirely based on the relationship among input and output variables and do not require
knowledge of the underlying physical process (Solomatine & Ostfeld 2008). The ML models were applied for short-term as
well as long-term rainfall forecasts.

3.3.1. Pre-processing of ML techniques

It was noted that the peak values of rainfall and lag effect are not efficiently captured by ML models (Dawson & Wilby 2001;
Jain & Srinivasulu 2004; De Vos & Rientjes 2005). Therefore, researchers proposed pre-processing the rainfall data before
model application to improve the forecast accuracy (Chau & Wu 2010; Kalteh 2017; Ouyang & Lu 2018; Li & Zhang 2019).

In this review, three pre-processing algorithms were studied: (1) singular spectrum analysis (SSA); (2) wavelet analysis

(WA); and (3) ensemble empirical mode decomposition (EEMD). These three pre-processing techniques are powerful math-
ematical tools that analyze the internal structure of non-stationary time series (Chau & Wu 2010; Feng et al. 2015; Ouyang &
Lu 2018). Furthermore, these techniques are reported to be capable of removing the noise, providing time–frequency domains

of the analyzed signal, and giving insights into the physical aspect of the data series, which helps improve the forecast quality.
Table 11 shows the performance comparison of various ML methods with and without pre-processing. It is seen that ML
methods were used for daily rainfall forecast (Partal & Kisi 2007; Chau & Wu 2010; Kisi & Cimen 2012; Sumi et al.

Table 10 | Studies highlighting the effect of lead time on NWP model performance

Study Lead time

Improvement (%)

POD/RS CSI/ETS Bias FAR/RMSE POD/RS

Das et al. (2008) Day 1 Day 3 MM5-Western India – ETS¼ 44.5 – –

ETA-Western India – 25.5 – –

MM5-Eastern India – 39 – –

ETA-Eastern India – 10 – –

Shrestha et al. (2012) Short Long 30 33 – 31

Jang & Hong (2014) 24 h 48 h – – – RMSE¼ 13.67

Wang et al. (2016) 1 h 6 h – 11 11.55 –

Jee & Kim (2017) 6 h 18 h 4 ETS-2 – 3

Chu et al. (2018) 1 h 6 h – 9 – –

Jabbari et al. (2020) 0–12 h 61–72 h Event-2001 – – 28 –

Event-2007 – – 11 –

Event-2011 – – 24 –

Sridevi et al. (2018) Day 1 Day 5 12.5 km RS¼ 2 – – –

25 km RS¼ 1 – – –

Bhomia et al. (2019) 24 h 48 h – 7 4 5

Sharma et al. (2021) Day 1 Day 3 11 7.5 – 11

POD, probability of detection; ETS, equitable threat score; CSI, critical success index; FAR, false alarm ratio; RMSE, root mean squared error; RS, ratio score.
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2012; Unnikrishnan & Jothiprakash 2020) and monthly rainfall forecast (Nourani et al. 2009; Ramana et al. 2013; Feng et al.
2015; Kalteh 2017; Ouyang & Lu 2018; Li & Zhang 2019) in different parts of the world. Conjunction/hybrid models per-
formed better than a single model in both cases. The ML models were used to forecast rainfall a few days to a few months
ahead; however, the forecast accuracy reduces with an increase in the lead time. The three data pre-processing techniques

stated above were mainly used by studies presented in Table 11. The performance of each of these techniques for rainfall fore-
casting is explained below.

3.3.1.1. SSA as a pre-processing technique. The effectiveness of SSA as a data pre-processing tool for nonlinear time-series
analysis was demonstrated by earlier studies (Sivapragasam et al. 2001; Marques et al. 2006; Chau & Wu 2010; Zhang et al.
2011; Latifoğlu et al. 2015; Wang et al. 2015; Kalteh 2017; Li & Zhang 2019; Unnikrishnan & Jothiprakash 2020). It is a well-

developed, data-adaptive, non-parametric methodology and successfully analysed the internal structure of the time series.
Some studies have employed SSA for monthly rainfall forecasts (Latifoğlu et al. 2015; Kalteh 2017; Li & Zhang 2019).
Before applying the model, SSA decomposes the time series into different components such as trend, periodicity, cyclic

components, and noise. The model is then applied to each subcomponent for forecasting the data series. Figure 6
indicates that SSA pre-processing helps to reduce the rainfall forecasting error and improves ML model performance.
According to Chau & Wu (2010), SSA applied to a hybrid ANN–SVR (support vector regression) model significantly

reduced RMSE (Figure 6(d)) as compared to only the ANN model. The author concluded that three local models could
better approximate the rainfall characteristics than a single global model. Unnikrishnan & Jothiprakash (2020) applied the
SSA technique to separate stationary and non-stationary components. The author modeled the stationary part by the

ARIMA model and the non-stationary part by the ANN model. The forecasted components from both models were added
to get the daily rainfall forecast for the whole year, improving previous research limitations. Figure 6 a) to e) indicates that
SSA pre-processing helps to reduce the rainfall forecasting error and improves ML model performance.

3.3.1.2. WA and EEMD as a pre-processing technique. Researchers (Partal & Kisi 2007; Wang et al. 2009; Adamowski &
Chan 2011; Kisi & Cimen 2012; Ramana et al. 2013; Feng et al. 2015; Ouyang & Lu 2018) demonstrated the feasibility of
hybrid WT models in different hydrological operations. The study performed by Ramana et al. (2013) stated that the

performance of WA-ANN was better than ANN (Figure 7(a)), which was attributed to the ability of wavelet-based
models to capture variation in nonlinear dynamics of the temperature. It is established that temperature plays a crucial
role in the rainfall process for hilly areas. The efficiency index increased by 30% after applying the wavelet transform.
Feng et al. (2015) applied the WA-SVM model for monthly rainfall forecast in arid regions. The WA-SVM model

performed better than the ANN-SVM model, providing a multi-time ahead rainfall forecast. It was noted that the WA-
SVM model does not require much information related to physical processes and can be applied when limited input
information is available. The performance at three stations before and after pre-processing is given in Figure 7(b). The

authors successfully predicted 1-, 3-, and 6-month-ahead rainfall forecasts using the WA-SVM model, which was superior to
ANN and SVM models.

Ouyang & Lu (2018) applied multi-gene genetic programming (MGGP) and echo state networks (ESN) methods for

monthly rainfall forecasts. The author used SSA, wavelet transform (WT), and ensemble empirical mode decomposition
(EEMD) as data pre-processing techniques. WT and SSA performed better, while the performance of EEMD at all three
stations was inferior. Among all, the WT technique was recommended for short-term rainfall forecast as it can capture the

exact locality of any variation in data series (Ramana et al. 2013; Ouyang & Lu 2018). The study conducted by Partal &
Kisi (2007) applied a wavelet and neuro-fuzzy conjunction model for a 1-day ahead daily precipitation forecast (Figure 7(c)).
The determination coefficient by the neuro-fuzzy method was around 0.1, while the conjunction model increased 8–9 times,
significantly improving the results. This may be due to the efficient forecast of extreme values by the conjunction model. In

another study, wavelet transform was combined with support vector regression (WSVR) for daily precipitation forecast (Kisi
& Cimen 2012). The mean absolute error (MAE), RMSE, Nash–Sutcliffe Efficiency (NSE), R2 value for the single SVR model
(without pre-processing), and the hybrid model WSVR is presented in Table 11. Figure 7(d) represents a reduction in MAE

and RMSE values after pre-processing at two different stations in Turkey. Previous studies conclude that WT is a superior tool
for detecting irregularly distributed multi-scale rainfall features in space and time (Partal & Kisi 2007; Kisi & Cimen 2012;
Ouyang & Lu 2018).
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Table 11 | Performance comparison of ML models before and after pre-processing for rainfall forecast

Author
Study
region Data Model

Performance index (with
pre-processing)

Performance index
(without pre-processing)

MAE (mm)
RMSE
(mm)

CE/
NSE r/R2

MAE
(mm)

RMSE
(mm)

CE/
NSE r/R2

Partal & Kisi (2007) Turkey Daily precipitation data 1987–2001
Afyon station

WTþNeuro-fuzzy – 1.06 – 0.913 – 3.53 – 0.037

Izmir station – 2.17 – 0.913 – 6.83 – 0.124
Mugla station – 3.07 – 0.881 – 8.14 – 0.146

Nourani et al. (2009) Iran Monthly precipitation 1973–1999 WTþANN – – – 0.784 – – – 0.31

Chau & Wu (2010) China Daily rainfall Wuxi station 1988–2007 ANNþ SVRþ SSA – 4.18 0.87 – – 10.59 0.17 –
Zhenwan station 1989–1998 ANNþ SVRþ SSA – 3.18 0.92 – – 10.68 0.09 –

Kisi & Cimen (2012) Turkey Daily Precipitation 1987–2001
Afyon station

WTþ SVM 9.0 21.4 0.647 0.815 14.2 38.7 0.154 0.103

Izmir station 13.6 46.5 0.593 0.782 19.6 71.6 0.037 0.276

Sumi et al. (2012) Japan Daily rainfall 1975–2009 ANNþMulti-modelþ PCA – 7.555 0.9973 – – 14.633 0.9880 –

Ramana et al. (2013) India Monthly rainfall 1901–1975 WAþANN – 63.01 94.78 0.974 – 163.79 64.73 0.807

Feng et al. (2015) China Monthly rainfall 1960–2012
Yeniugou station

WAþ SVM 10.424 12.642 0.863 0.929 12.018 12.568 0.806 0.905

Qilian station WAþ SVM 7.828 12.689 0.892 0.945 11.57 18.777 0.762 0.875
Tuole station WAþ SVM 7.345 11.574 0.888 0.943 11.66 18.92 0.7 0.888

Kalteh (2017) Iran Monthly precipitation data 1986–2005 ANNþ SSA – 52.257 0.731 0.858 – 91.096 0.183 0.444

Ouyang & Lu (2018) China Monthly rainfall 1964–2013
Bamiansha-zhao, Chaganhua, and
Chatai station

MGGPþESNþEEMDþ
WTþ SSA

1.7703 2.6787 0.9953 – 3.8910 5.15570 0.9850 –

Li & Zhang (2019) China 1983–2013 Monthly average
precipitation data

SSAþDAþ SVR 5.6120 7.4430 0.9751 0.9782 23.8732 30.4194 0.3430 0.5383

Unnikrishnan & Jothiprakash
(2020)

India 1961–2013 Daily rainfall data SSA–ARIMA–ANN 8.29 15.58 0.69 0.68 9.06 21.83 0.39 0.41

WA, wavelet analysis; EEMD, ensemble empirical mode decomposition; SSA, singular spectrum analysis; ARIMA, auto-regressive integrated moving average; ANN, artificial neural network; WA, wavelet analysis; WT, wavelet transform;

ESN, echo state networks; SVR, support vector regression; ANFIS, adaptive neuro-fuzzy inference system; DA, dragonfly algorithm; MGGP, multi-gene genetic programming.
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From the above discussion, the pre-processing technique considerably improved the model performance mainly by detect-
ing the irregular components and forecasting the extreme values. Traditional ML methods failed to capture the peak values
efficiently, which can be significantly improved with hybrid models. From Table 11, it is seen that error indices (i.e., RMSE

Figure 6 | a) to e) Radar chart showing the performance skill of ML-based model with and without SSA pre-processing for rainfall forecasting.
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Figure 7 | Radar chart showing the performance skill of ML-based model with and without pre-processing (wavelet analysis and ensemble
empirical mode decomposition) for rainfall forecasting.
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and MAE) reduce with the application of pre-processing techniques, which may be attributed to the removal of fluctuations in

rainfall series.

4. SUMMARY OF THE REVIEW AND THE WAY FORWARD

4.1. Important observations and recommendations from this review

This review paper deals with the PRISMA method of an SR and critical analysis of 110 selected papers from various data-

bases, constituting 1,200 papers without duplication for short-term rainfall forecasting techniques. The study evaluated
statistical procedures, physically based numerical weather forecasting models, and ML techniques for the said purpose.
The GNSS-derived PWV was found to be capable of analyzing the real-time profile of water vapor content. The method per-

forms well in mountainous regions as it is less affected by altitude and is found to be suitable for nowcasting in tropical
regions. The relationship between rainfall, PWV, derivatives of PWV, and other meteorological parameters such as tempera-
ture, pressure, relative humidity, and solar radiation is well appraised in the study. It is noted that the threshold PWV value is
sensitive to both the season and the location. It is concluded that when GNSS-derived PWV is combined with a suitable ML

algorithm, the rainfall nowcast accuracy increases.
The discussed NWP models, ACCESS-VT, ACCESS-A, WRF, and GFS, show that rainfall is underestimated in high

elevation areas and overestimated in low elevation areas. It is noted that uncertainty in the forecast increases with the

lead time as a longer lead time enhances the internal variabilities in the model. It is concluded that rainfall forecast by
the NWP model depends on location, model resolution, season, topography, and forecast lead time. It is also inferred that
optimum resolution and lead time can significantly improve forecast accuracy.

The importance of ML techniques in short-term rainfall forecast with and without pre-processing is studied in the present
study. A significant improvement in rainfall forecasting is observed with pre-processing techniques. Out of the three pre-pro-
cessing techniques, the WT and SSA performed better than the EEMD by detecting irregularities, noise, and extreme rainfall

values. The pre-processing enhanced the forecast quality by independent modeling of each subseries.

4.2. Future recommendations and development needed

The threshold PWV value is season and location-specific. Additional studies are required for the tropical, subtropical, and
temperate regions to strengthen the observed results. Efforts need to be made to generalize threshold PWV by drawing its

relationship with seasonal variation, location, and easily observed meteorological parameters. The review highlights the
need to explore the optimum data length for rainfall forecast in the temperate, tropical, and subtropical regions. Different
ML algorithms can be assimilated with GNSS-derived PWV techniques to improve the nowcasting skill. This review high-
lights the need to perform more sensitivity studies to understand the influence of different parameters like topography,

resolution, and lead time on the forecast skill of NWP models. This review focused only on a few specific NWP models,
which needs to be extended further to evaluate their efficiency for short-term rainfall forecast. While considering the ML tech-
niques, only three pre-processing techniques were reviewed. Based on the desired output, other pre-processing techniques

must be explored. This review did not explicitly consider the influence of ground information, radar, and satellite data affect-
ing rainfall forecasting. Further research is needed to reduce the static noise in the radar data, which affects the forecast
efficiency.

The past few decades have witnessed the frequent occurrence of high-intensity, short duration extreme rainfall events
including cloud bursts, which cannot be forecasted with sufficient accuracy. This calls for continuous review and updating
of existing short-term rainfall forecasting/nowcasting techniques. Apart from this, the development of new techniques

needs to focus on efficiently considering the non-stationarity in rainfall time series. A location-based high-resolution nowcast-
ing model is recommended specifically for urban catchments. The densely populated urban areas will have high temperatures,
creating local heat differences resulting in localized rainfall events. Therefore, it is important to quantify the impact of urban-
ization on rainfall nowcast skill. Due to the complex atmospheric process, there is great difficulty in real-time forecasting.

Recently, Ravuri et al. (2021) developed an observation-driven approach using deep generative models (DGMs) for skillful
nowcast. The potential of DGMs for accurate rainfall nowcasting should be explored in detail. Its performance in terms of
lead time, incorporating uncertainty at multiple spatio-temporal scales, and forecasting high-intensity rainfall events

should be studied in detail. Similarly, efforts are needed to improve the capability of NWP models by considering the non-
linearities and randomness in rainfall events. For this purpose, the possibility of coupling NWP with the stochastic model
(De Luca & Capparelli 2022) can be further evaluated and demonstrated. The rainfall forecast/nowcast with an adequate
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lead time serves as a mandatory input to the hydrologic models used for urban flood forecasting. Such an integrated module,

along with a suitable decision support system, is the need of the hour for effective urban flood management.
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