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ABSTRACT Breast cancer plays a significant role in affecting female mortality. Researchers are actively seeking to 

develop early detection methods of breast cancer. Several technologies contributed to the reduction in mortality rate from this 

disease, but early detection contributes most to preventing disease spread, breast amputation and death. Thermography is a 

promising technology for early diagnosis where thermal cameras employed are of high resolution and sensitivity. The 

combination of Artificial Intelligence (AI) with thermal images is an effective tool to detect early stage breast cancer and is 

foreseen to provide impressive predictability levels. This paper reviews systematically the related works employing 

thermography with AI highlighting their contributions and drawbacks and proposing open issues for research. Several different 

types of Artificial Neural Networks (ANNs) and deep learning models were used in the literature to process thermographic 

images of breast cancer, such as Radial Basis Function Network (RBFN), K-Nearest Neighbors (KNN), Probability Neural 

Network (PNN), Support Vector Machine (SVM), ResNet50, SeResNet50, V Net, Bayes Net, Convolutional Neural Networks 

(CNN), Convolutional and DeConvolutional Neural Networks (C-DCNN), VGG-16, Hybrid (ResNet-50 and V-Net), 

ResNet101, DenseNet and InceptionV3. Previous studies were found limited to varying the numbers of thermal images used 

mostly from DMR-IR database. In addition, analysis of the literature indicate that several factors do affect the performance of 

the Neural Network used, such as Database, optimization method, Network model and extracted features. However, due to 

small sample size used, most of the studies achieved a classification accuracy of 80% to 100%. 

 

INDEX TERMS Artificial Intelligent, Breast Cancer, Thermal Camera, Deep Convolutional Neural 

Network. 
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I. INTRODUCTION 
A. HISTORY OF BREAST CANCER DETECTION 

Egyptians identified breast cancer 3,000 BC [1]. Then the 

Greeks, when a woman brought to Hippocrates, had a bloody 

discharge from the nipple and died. Hippocrates linked breast 

cancer due to menopause and called it hidden cancer because 

it did not appear on the skin. In 450 BC, Hippocrates 

diagnosed the hidden diseases of the patient by placing the 

mud on the entire body of the patient and the area that first 

dries out is the disease. It is the primitive process of thermal 

detection in the medical field [2]. Signs of breast cancer 

appear bitter in the mouth, loss of appetite, disturbed 

intelligence, dry eyes and nostrils, and loss of smell [3]. In the 

first century AD, the surgeon from the school of Alexandria 

pointed out that breast cancer is a huge swelling of harsh 

texture and uneven and grey to red. 

In 1913, radiography of breast cancer patients began in 

Germany. The study was carried out on 3,000 patients by 

surgeon Salmon [4]. In 1951 ultrasound was used as a 

research tool to detect breast tumor and identify it as benign 

or malignant. The other research supported in 1952, when 21 

cases of breast cancer were successfully identified. Through 

the results of this research, ultrasound was tested in the 

hospital as a diagnostic tool for breast cancer in 1954. In the 

1960s, improvements made to the internal structure of the 

ultrasound system and improvements in detection methods, 

including placing breasts on controlled temperature water for 

early detection of the tumor. Technological revolution after 

1980 contributed to changes in the detection of the tumor and 

the flow of blood to the tumor. In the late 20th century it was 

developed to use ultrasound to guide the needle biopsy in the 

breast area [5]. 

In 1957, Lawson used the thermal camera for the first time 

to diagnose breast cancer when he found the temperature 

difference of the tumor and the surrounding healthy area.  

When doctors and surgeons found Lausanne and Ghatmati in  

1963 when they published research that the increase in skin 

temperature associated with breast cancer was associated 

with venous convection. In 1982, the Food and Drug 

Administration (FDA) approved the use of a thermal camera 

as a diagnostic aid to detect breast cancer. In 1996, a 

comparison between thermal images and X-rays for the 

diagnosis of a patient was conducted where the disease was 

detected by the thermal images disease, while it was not 

detected by X-rays [2]. 

B.  TYPES OF BREAST CANCER IMAGING 
1) MAMMOGRAM 

Mammograms are the gold standard for breast cancer 

screening since 1960. However, there are many challenges 

affecting diagnosis using mammograms such as age, breast 

tissue density and family history [6]. Mammograms can 

detect breast cancer in early stage, reducing mortality by 25%. 

The doses of mammograms used in diagnosis affect patients 

over 70 years of age and cause rupture of weak tissue in the 

breast. They may also cause the formation of cancer in these 

vessels. Also, it is unable to detect cancer in younger women 

because of the density of breast tissue [7]. 

2) COMPUTERIZED TOMOGRAPHY (CT) 

Computerized tomography takes X-rays of the breast from 

different angles as the patient enters in a closed machine, and 

a computer collects the image of the breast. The patient is 

injected into the vein of his hand with a substance to increase 

the contrast of the image [8]. Modern image reconstruction 

techniques have reduced 70% of the radiation and reduced the 

time it takes to take pictures [9]. However, there are 

disadvantages to this technique, including that some patients 

cannot hold breathing. This is in addition to the risk of 

radiation to the patient and its effect on pregnant women.  

3) MAGNETIC RESONANCE IMAGING (MRI) 

MRI is a medical examination tool that uses radio waves and 

a field Magnetic. To show the tumor and calcifications 

clearly, the patient is injected with a substance into the 

bloodstream. MRI is often used to follow the response to 

chemotherapy for breast cancer patients before resorting to 

breast amputation[10]. Furthermore, when using MRI, the 

patient must be injected with gadolinium to show the details 

of the blood vessels in the breast. The syringe Gadolinium has 

the least effect on the sensitivity of iodine used in X-ray. 

However, the Gadolinium affects allergic patients, so a 

supervision doctor is needed.  MRI has many disadvantages 

such as its inability to detect breast cancer at an early stage 

and it is expensive too. Furthermore, women are not allowed 

to breast-feed for 48 hours. The device is also a closed space 

that causes anxiety in claustrophobic patients who are afraid 

of confined places. 

4) ULTRASOUND 

Ultrasound imaging based on echo or reflection of sound 

waves is considered safer and more effective than X-rays. 

Ultrasound was first used in 1940 by France and Germany in 

the medical field. Ultrasound can detect breast cancer 

successfully in women with dense tissue and it has no impact 

on health and is quick and comfortable [10]. However, the 

disadvantage of this technique is its inability to detect breast 

cancer at an early stage and it has a higher rate of false-

positive results [77]. 

 
5) HISTOLOGY IMAGING 

Histological images are generated using a microscope and 

they allow for the study of the microanatomy of cells, tissues, 

and organs by examining the correlation between structure 

and function. To detect cancer, breast tissue is stained with 

hematoxylin and eosin. The diagnosis of breast cancer 

histology images with hematoxylin and eosin stained, 

however, is non-trivial, labor-intensive and often leads to a 

disagreement between pathologists [15]. Furthermore, the 

process of generating the images themselves require a 

microscope that is expensive to acquire and maintain.  
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C. MOTIVATION FOR AUTOMATED DIAGNOSTIC 
SYSTEMS 

The need for automated diagnostic systems to detect breast 
cancer rose due to the high percentage of human errors in 
assessing and detecting breast cancer [52]. In addition, the 
automated diagnostic system detects breast cancer at a very 
early stage when they are too small to be detected using 
standard medical procedures. In fact, early breast cancers 
detected using automated screening and diagnosing systems 
are relatively easy to heal at this stage. Furthermore, the 
recent work in [69] indicate that the automated procedure is 
more sensitive than the manual one by a large margin, where 
the manual procedure achieved a 68% sensitivity ratio against 
a 100% ratio for the automated procedure. 

D. COMPARISON WITH EXISTING LITERATURE 

Surveys have been conducted in relation to application of 
automated systems in cancer detection such as computer 
aided diagnostic systems [66] with precursor attempts 
appearing in [68], thermography, infrared thermography and 
electrical impedance tomography [70], highly diversified 
early attempts at automated systems [71], standards and 
protocols to Infrared imaging technology for breast cancer 
detection [72], CNN based thermal imaging for breast cancer 
detection [79] and various screening tools to detect breast 
cancer [73].  
There are no emphasis on the thermal camera used, image 
acquisition procedures for mobile phones and public 
databases. This paper attempts address the gap by 
highlighting old and new emerging issues related to thermal 
imaging, the use of deep learning AI tools in aiding the 
diagnostic process, the use of private and public thermal 
image databases and the need for support for mobile phone 
technology. The fact that no existing solid solutions for the 
latter issue in the market supports our claim of lack of co 
mprehensive survey as presented in this paper. 

E. CONTRIBUTION AND NOVELTY 

The main contributions of this paper are summarized as 

follows. A detailed up to date narrative on breast cancer 

detection using thermography, that introduces new 

approaches using deep learning models and Artificial Neural 

Networks for feature extraction and classification, and 

highlights of thermal camera specifications used, database 

and image acquisition procedures. Furthermore, an 

introduction to research challenges, open issues and research 

directions for adopting AI with thermal imaging for early 

breast detection is presented. The novelty of this survey study 

is highlighting the introduction of new open issues such as: 

the use of mobile phone technology for patients’ breast image 

acquisition, the use of offline cloud computing, privacy 

assurance, and development of new databases. This is in 

conjunction with detailed critique study of most of the 

previous studies reported in the literature covering their 

approach, database used, type of thermal camera, features 

extracted, ANN/deep learning model, results, advantages and 

disadvantages.  

 

F. ARTICLE ORGANIZATION 

Section II presents a brief overview of thermal camera, AI 

and database acquisition procedures for breast thermal 

images. Section III presents the details of related works on 

breast cancer detection using AI based on the work found in 

the literature. Section IV discusses open issues for research 

highlighting various challenges and possible research 

directions. Finally, the conclusion is drawn in Section V. 

 

 

II. OVERVIEW 

A. THERMAL CAMERA 

Greeks used wet clay to apply on the area of the disease; if 

the particular area dries faster than other areas, it means that 

it has higher heat [11]. Later, the same idea evolved slowly 

on the use of specific measurements that indicates the 

existence of heat from 16th to 18 century. In 1800, Williams 

Herschel discovered the infrared radiation and in 1956 

infrared imaging was adopted in medicine. Hence from the 

recent past, the thermal camera was used to diagnose the 

disease and detect recovery[12].  

A thermal camera is a device used to detect infrared 

radiation from any objects having a temperature higher than 

absolute zero. The body which emits temperature more than 

absolute zero radiates electromagnetic waves. Plank equation 

shows the relationship between the wavelength, temperature 

and radiation of body surface [13]. As the range of 

wavelength for infrared radiation is unseen by human eyes, 

hence a device is required to detect this wavelength.  

One of the best ways to detect the range of wavelength is 

by using a thermal camera. Usually, Infrared radiation 

contains different wavelengths between the visible range and 

microwave spectrum. This wavelength range of infrared 

radiation is between 0.75µm to 1000µm [12]. However, the 

wavelength range of radiation of the human body is between 

8µm to 12µm (see Figure 1).  

The medical infrared thermography is utilized in breast 

abnormality detection because of its advantages such as 

radiation-free, non-invasive and painless nature. Infrared 

breast thermography is an alternative breast imaging modality 

that can detect early changes or tumors which cannot be 

detected by X-ray mammography. Breast cancer is a highly 

treatable disease, with 97% chances of survival if getting 

detected earlier [14]. Thus, early detection of breast cancer 

using infrared breast thermography may improve the survival 

rate of breast cancer patients. The temperature pattern in both  

breasts of a healthy breast thermogram are closely 

symmetrical. Hence, a small asymmetry in the temperature 

pattern of the left and right breast may signify a breast 

abnormality. There are a series of texture features that play a 

vital role in asymmetry analysis of breast thermograms. The 

use of ANN tools to classify these images as benign or 

malignant tumors is strongly motivated once features are 

selected and extracted. 
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FIGURE 1.  Samples of Breast scan collected at a 
specialized hospital clinic in Sheraz Tehran for 
tumorous (top) and healthy (bottom) images. 

B. ARTIFICIAL INTELLIGENCE 

An Artificial Neural Network (ANN) is an interconnected 

group of smaller computational units called neurons that 

attempts to mimic biological Neural Networks [15].  

Artificial Neural Networks and biological Neural Networks 

have similarities in basic things [16]. However, biological 

Neural Networks operate asynchronously while Artificial 

Neural Networks operate concurrently [17].  

In 1950, AI was born when Alan Turing presented a test to 

determine if the computer was intelligent. AI describes the 

stages of development that began in 1973 when experiments 

failed, and research funding stopped. In the late 1980s, a 

series of AI experiments were conducted using the fifth-

generation computer and failed to produce the expected 

results [18]. The 21st century has led to a paradigm shift in 

AI because of the vast amount of data. In 2006, Jeff Hinton 

published a research paper that created a spark of creativity, 

followed by a series of research in deep learning, which 

contributed to large companies such as Google, Facebook and 

Amazon to acquire and apply [19]. In 2010, the American 

Mathematical Society and the Computerized Machinery 

Association established AI to classify 17 types, including 

deep learning [18]. 

Deep Convolutional Neural Network specialized in image 

processing and consisted of two networks, the first Neural 

Network to extract features from images and the second 

Neural Network to classify the image features [20]. It is a 

solution to the problem of linear classification due to poor 

accuracy and allows the network to be more in-depth, with 

much fewer parameters [15]. The deep Convolutional Neural 

Network requires a reliable processing power resources and 

therefore the GPU processor is used to improve performance 

[21] as the color s in the picture have an impact on the 

performance of deep convolutional networks. In the context 

of deep learning, the word depth has two meanings: Depth in 

increasing the number of Layers in the Convolutional Neural 

Network and number of color s used in the analysis of the 

image [22] (see Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2. A Deep Convolutional Neural Network 

Architecture. 

C. DATABASE ACQUISITION PROCEDURE 

Most of the research work on IR-thermal images use the 

Mastology Research with Infrared Image (DMR) database 

[23]. DMR-IR database has a population of 287 patients, with 

an age between 23 and 120 years old; 186 patients are healthy 

and 48 present a malignant breast. The diagnostic has been 

prior confirmed via mammography, ultrasound and biopsies. 

The thermal images are captured with a FLIR thermal camera 

model SC620, which has a sensitivity of less than 0.04◦C and 

captures standard -40◦C to 500◦C. Each infrared image has a 

dimension of 640x480 pixels; the software creates two types 

of files: (i) a heat-map file; (ii) a matrix with 640x480 points 

e.g. 307200 thermal points. Firstly, each patient undergoes 

thermal stress for decreasing the breast surface temperature 

and then twenty-image sequences are captured per 5 minutes. 

As a thermography test may be considerably affected when 

guidelines are not followed, the DMR-IR database followed 

the Ng [24] and Satish [25] acquisition protocol, which has 

been gathered jointly with physicians to ensure the database’s 

quality. Here, it is mentioned several standards that lead to 

high quality and unbiased thermal images. Firstly, each 

patient should avoid tea, coffee, large meals, alcohol and 

smoking before the test. Secondly, the camera needs to run at 

least 15 min prior to the evaluation, having a resolution of   

100mK at 30◦C; the camera at least should have 120x120 

thermal points. Third, the recommended room’s temperature 

is between 18 and 25◦C, humidity between 40% and 75%, 

carpeted floor, avoiding any source of heat such as, personal 

computers, devices that generate heat and strong lights. 

Development of private or public breast thermal image 

databases require that the database is designed under strict 

acquisition protocols such as those discussed in [26], [23].  

 

 

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3038817, IEEE Access

 

VOLUME XX, 2017 6 

III. RELATED WORKS 

Previous studies show that researchers used many types of 

thermal cameras with different specifications to detect breast 

cancer. Besides, it shows various types of methods to analyze 

and classify images, including Artificial Neural Networks. 

However, the different types of Artificial Neural Networks 

produce different accuracy levels and sensitivity ratios. 

Researchers in [27]  used two types of an Artificial Neural 

Network to detect breast cancer, which is a Backpropagation 

Network (BPN) and RBFN.  RBFN results indicated rapid 

training, and high ranking compared to BPN. RBFN accuracy 

was 80.95%, with 100% sensitivity and 70.6% specificity in 

identifying breast cancer. The researchers in [28] compared 

the images from two thermal cameras where the first group of 

27 patients photographed with thermal camera Ti40FT and 

the second group of 23 patients with thermal camera 

Varioscan 3021-ST to monitor the change in breast 

temperature. MRI imaging used to confirm the identification 

of cancer. The Ti40FT thermal camera has a sensitivity less 

than 0.09°C and a resolution of 160x120 pixels, while the 

Varioscan 3021-ST thermal camera has a sensitivity of 0.03 

and a resolution of 360x200 pixels. Furthermore, the 

researchers [29] used different classification methods for 

comparison: Decision Tree (DT), Fuzzy Sugeno, Naïve 

Bayes Classifier, K Nearest Neighbor, Gaussian Mixture 

Model, and Probabilistic Neural Network. Only five features 

were extracted for early detection of breast cancer. The results 

showed that Decision Tree (DT) and Fuzzy Sugeno obtained 

a high accuracy of 93.30%, 86.70% sensitivity and 100% 

specificity.  

In [30], On the other hand, the researchers used the Ti20, 

which is considered the same faction of thermal cameras as 

Ti40FT, but of lower quality as the sensitivity is only 0.2 and 

a resolution of 128x96 pixels. The researchers [31] extracted 

five Higher-order Spectral features to evaluate their use in 

screening for breast cancer. Two classifications used to 

classify normal and abnormal breast thermograms which are 

Artificial Neural Network (ANN) and Support Vector 

Machine (SVM). The results showed that SVM had a 

sensitivity of 76% and a specificity 84%, and the ANN seeded 

showed higher values of sensitivity (92%) and specificity 

(88%). 

The researcher in [32] used the Varioscan 3021-ST model, 

took images of 40 patients and classified them as follows. 

Normal patients are 26 patient while patients with breast 

cancer are 14. A total of 20 extracted features from 

thermograms, based on Gray Level Co-occurrence Matrices, 

were used to evaluate the effectiveness of textural 

information possessed by mass regions. The ability of feature 

set in differentiating abnormal from normal tissue is 

investigated using a Support Vector Machine classifier, Naive 

Bayes classifier and K-Nearest Neighbor classifier. To 

evaluate the classification performance, five-fold cross-

validation method and Receiver operating characteristic 

analysis was performed. The verification results show that the 

proposed algorithm gives the best classification results using 

K-Nearest Neighbor classifier and an accuracy of 92.5 %.  

The researchers in [33] used the ICI7320P thermal camera 

on 36 patients and 22 patients, respectively. The work 

separated the patients into two groups. The first group 

contains 24 patients while the second group has 12 patients. 

The breast region was segmented from the thermogram 

images. Bispectral invariant features were obtained from 

Radon projections of these images. The features are then used 

to train a Support Vector Machine classifier to classify unseen 

test images into normal, benign and malignant classes. The 

SVM classifier classifies the normal and benign breast 

conditions with an accuracy of 83.3%, the normal and 

malignant breast conditions with the accuracy of 77.27% and 

benign and malignant conditions with the accuracy of 

61.36%. The sensitivity is found to be 90.91% for normal and 

benign breast conditions, 81.82% for normal and malignant 

breast condition and 59.10% for benign and malignant 

conditions while the specificity is found to be 77.27%, 

72.73% and 63.64% respectively. When the data set was 

expanded to contain 36 cases in each class, accuracy rates 

improved as follows. Normal – Benign: 91.6 %, Normal – 

malignant: 90.3%, Benign – Malignant: 80.6% .  

In [34], Wahab et al. used the 7640 P high-resolution 

thermal camera for breast cancer patients. A series of 

screenings have been performed on carcinogenic induced rats 

and thermal images acquired were then analyzed for risk 

monitoring. The visual analysis has shown that the presence 

of hotspot and asymmetrical temperature profile could be an 

indicator of a high-risk patient while temperature 

measurement on both induced and control groups shows a 

significant difference in the standard deviation of the surface 

temperature with a smaller deviation of 0.31±0.08 observed 

in the control group while the bigger deviation of 2.23±0.78 

observed in the induced group. 

On the other hand, the FLIR S45 thermal camera has become 

widely used since 2014. In [35], the work evaluated the 

feasibility of using interval data in the symbolic data analysis 

framework to model breast abnormalities (malignant, benign 

and cyst) to detect breast cancer. A three-stage feature 

extraction approach was proposed. In the first stage, four 

intervals of variables are obtained by the minimum and 

maximum temperature values from the morphological and 

thermal matrices. In the second one, operators based on 

dissimilarities for intervals are considered and then 

continuous features are obtained. In the last one, these 

continuous features are transformed by Fisher’s criterion, 

giving the input data to the classification process. This three-

stage approach is applied to a Brazilian’s thermography 

breast database generated using the FLIR S45 thermal camera 

and it is compared with statistical feature extraction and a 

texture feature extraction approach widely used in thermal 

imaging studies. Different classifiers are considered to detect 

breast cancer, achieving 16% of   misclassification rate, 
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85.7% of sensitivity and 86.5% of specificity to the malignant 

class. 

In [36], automatic detection of the regions of interest is 

proposed and compared with segmentations performed 

manually. The work presented a methodology for the 

automatic segmentation of lateral breast thermal images. For 

the evaluation of the results, different groups of ground truth 

are generated, which are available on the internet, to allow the 

verification of the results' correctness. Finally, the obtained 

results by the proposed methodology for the 328 FLIR S45 

generated thermal images used in this work are demonstrated. 

The results showed average values of accuracy. 

The researchers in [37] measured the breast surface 

temperature using the special thermal camera like FLIR SC 

45. Their work focused on statistical and texture features 

individually giving satisfying results, these results can be 

improved through a combination of above features. The 

proposed work included advanced pre-processing stage and 

combined feature matrix. The pre-processing phase consists 

of filtering, edge detection and morphological operations. 

Texture and statistical features were extracted and combined 

feature set was used for classification. K-nearest neighbour 

and Support vector machine classifiers were used to classify 

thermal images as normal or abnormal images. DMR 

database which consists of breast thermal images is used to 

evaluate performance parameters such as sensitivity, 

specificity and accuracy.  

The researcher [38] has built a set of networks to classify 

thermal images of breast cancer patients, which are Artificial 

Neural Networks (ANN), Decision Trees, Bayesian 

classifiers, Haralick and Zernike attributes, Extreme Learning 

Machines (ELM) and Multi-layer Perceptron (MLP). The 

results showed that Extreme Learning Machines (ELM) and 

Perceptron Multilayer (MLP) had the highest accuracies, as 

the sensitivity 78%, specificity 88%, and accuracy 83%.  

In [39], the researchers, however, calculated the Initial 

Feature point Image (IFI) for each segmented breast 

thermogram by applying a Discrete Wavelet Transform 

(DWT). Then 15 types of features were extracted before 

being inserted into the Artificial Neural Network. Then, it is 

feedforward to the Multilayer Perceptron network (MLP). 

The achieved accuracy was 90.48%, while the sensitivity and 

specificity were 87.6% and 89.73%, respectively.    

Thermal image analysis was carried out in [40] after 

converting them to grey images. A new local texture feature 

extraction technique, called block variance (BV), was used to 

extract the features in the grey images and to compare the 

right breast features to the left breast ones. Then feed-forward 

Neural Network (FANN) was used to classify them like a 

malignant or benign tumor. Results obtained showed an 

accuracy rate of 90%.  

The work in [41] proposed a hybrid methodology for 

analyzing Dynamic Infrared Thermography to indicate 

patients with risk of breast cancer, using unsupervised and 

supervised machine learning techniques. The Dynamic 

Infrared Thermography quantitatively measures temperature 

changes on the examined surface, after thermal stress. In the 

Dynamic Infrared Thermography execution, a sequence of 

breast thermograms is generated. This sequence is processed 

and analyzed by several techniques. First, the region of the 

breasts is segmented and the thermograms of the sequence are 

registered. Then, temperature time series are built and the k-

means algorithm is applied to these series using various 

values of k. Clustering formed by k-means algorithm, for 

each k value, is evaluated using clustering validation indices, 

generating values treated as features in the classification 

model construction step. A data mining tool was used to solve 

the combined algorithm selection and hyperparameter 

optimization (CASH) problem in classification tasks. Besides 

the classification algorithm recommended by the data mining 

tool, classifiers based on Bayesian networks, Neural 

Networks, decision rules and decision tree were executed on 

the data set used for evaluation. Test results showed among 

39 tested classification algorithms, K-Star and Bayes Net 

presented 100% classification accuracy. Furthermore, among 

the Bayes Net, Multi-Layer Perceptron, Decision Table and 

Random Forest classification algorithms, an average 

accuracy of 95.38% was obtained. 

The work in [56] emphasized on investigating statistical 

texture features to analyze breast asymmetry and signify 

abnormality. These features can adequately differentiate the 

healthy breast thermograms from pathological breast 

thermograms. The analysis was performed on 30 healthy and 

30 abnormal breast thermograms of existing DMR (Database 

for Mastology Research) Database. The analysis and 

experimental results show that among the first-order 

statistical features, the mean difference, skewness, entropy 

and standard deviation are the most efficient features that 

contribute most towards the asymmetry detection.  

In [42], researcher modeled the changes on temperatures in 

normal and abnormal breasts using a representation learning 

technique called learning-to-rank and texture analysis 

methods with multilayer perceptron (MLP) classifier. 

Dynamic thermal image database DMR-IR was used in the 

study with four experiments to evaluate the performance of 

the network. These experiments are the concatenation of the 

texture features extracted from each thermogram (without 

using the LTR method), the forward representation generated 

by the LTR method to classify the cases, the backward 

representation generated by the LTR method to classify the 

cases and the fourth experiment performed concatenate the 

forward and backward representations of each sequence of 

thermograms. Furthermore, six texture analysis methods 

were used, which are: Histogram of oriented gradients (HOG) 

method with 4 blocks and 4 cells (HOG4 × 4) HOG2 × 2 (2 

blocks, 2 cells), Lacunarity analysis of vascular networks 

(LVN), Gabor filters (GF), Local binary pattern (LBP), Local 

directional number pattern (LDN) and Gray level co- 
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occurrence matrix (GLCM). The proposed method generates 

a compact representation for the infrared images of each 

sequence, which is then exploited to differentiate between 

normal and cancerous cases. Results produced a competitive 

area under the curve (AUC = 0.989) of the receiver operating 

characteristic (ROC) curve. In [43], researchers analyzed 

infrared thermography of breast, considering distinct 

protocols, to classify patients images as healthy or non-

healthy due to anomalies such as cancer. Belongs to DMR” 

or belongs to the Database for Mastology Research 

(DMR)This dataset comprises static and dynamic protocols, 

with respect to their heat transfer. In static acquisitions, the 

body of the patient must achieve thermal balance in a 

controlled environment, while dynamic protocols are used to 

inspect the skin temperature recovery caused by thermal 

stress after cooling the patient by an electric fan. For the 

acquisition of thermograms, a FLIR SC-620 Thermal Camera 

was used. Each patient image has a spatial resolution of 

640x480 pixels and grayscale or colored images that 

represents their heat temperature. Convolutional Neural 

Networks classifier was used obtaining 98% of accuracy for 

static protocol and 95% for dynamic protocol, while 

interestingly the accuracy in grayscale 95% and 92%, 

respectively. 

In [14], normal and abnormal thermograms are 

differentiated by extracting and fusing texture features from 

frontal and lateral views. Multi-view thermograms are pre-

processed using anisotropic diffusion. The Region of Interest 

from axilla to lower breast boundary is extracted through 

level-set segmentation without re-initialization. Texture 

features such as grey-level co-occurrence matrix, grey-level 

run-length matrix, grey-level size zone matrix and 

neighborhood grey tone difference matrix that quantitatively 

describe local or regional texture properties are extracted for 

32-normal and 31-abnormal subjects chosen from DMR 

database. Using t-test, the reduced feature set is determined 

for frontal, right-lateral and left-lateral thermograms 

independently from the extracted texture features. Significant 

features are obtained by performing kernel principal 

component analysis on the reduced feature set. Feature fusion 

is performed on obtained significant features from frontal and 

lateral views to obtain a composite feature vector that is fed 

to least square-support vector machine employing optimised 

hyper-parameters to classify subjects as normal and 

abnormal. Experimental results indicate that fusion of texture 

features from frontal and lateral thermograms achieved 96% 

accuracy, 100% sensitivity and 92% specificity.  

In [44], a study of the influence of data preprocessing, data 

augmentation and database size versus a proposed set of CNN 

models were performed. Furthermore, a CNN 

hyperparameters fine-tuning optimization algorithm using a 

Tree Parzen Estimator was used. Results indicated that 

among the 57 patients database, the CNN models obtained a 

higher accuracy (92%) and F1-score (92%) that outperforms 

several state-of-the-art architectures such as ResNet50, 

SeResNet50 and Inception. The results demonstrated also that 

a CNN model that implements data-augmentation techniques 

reach identical performance metrics in comparison with a 

CNN that uses a database up to 50% bigger.  

On the other hand, the researcher [45] selected the 

discriminative features for improving the classification 

accuracy of the infrared thermography based breast 

abnormality detection systems. Mann-Whitney-Wilcoxon 

statistical test was used to select the best discriminative 

features from a feature set of 24 features, extracted from each 

breast thermogram of DBT-TUJU and DMR databases. Three 

sets of features: FStat, STex and SSigFS generated from these 

24 extracted features are then fed into six most widely used 

classifiers for comparing the efficiency of each feature set in 

breast abnormality detection. The experimental results show 

that among all three feature sets, statistically significant 

feature set (SSigFS) provides more accuracy in 

discriminating the abnormal breast thermograms from the 

normal.  

Similarly in [46], various CNN architectures were explored 

for semantic segmentation starting from naive patch-based 

classifiers to more sophisticated ones including several 

variations of the encoder-decoder architecture for detecting 

the hotspots in the thermal image. The work showed that 

encoder-decoder architectures perform better when compared 

to patch-based classifiers in terms of accuracy, dice index, 

Jaccard index and inference time even with small thermal 

image datasets. For the first time, the thermal camera was 

used in the mobile phone to detect breast cancer by the 

researcher [47]. The model used is a FLIR with sensitivity 0.1 

and resolution 80×60 pixels. Thermal images of 125 healthy 

images and 250 images of breast cancer taken. The method 

used extracted ROIs after background extraction, which was 

then compared to various features estimated from the left and 

right breasts using Shannon entropy and classified using 

logistic regression. The number of subjects in this experiment 

was low, to allow for precise diagnosis and to select 

individual features. Many misdiagnosed images occurred due 

to other factors, such as the subjects’ menstrual period and 

other diseases, which result in additional heat. 

Another portable S60 thermal camera with a mobile phone 

was used in [48] to acquire images from 78 patients, 38 

images of them for patients with breast cancer. The FLIR 

thermal imaging camera, with the best of four (BoF) features 

and the support vector machine (SVM) learning classifier, 

was used. The 4-dimension Feature Vector (FV) is computed 

using the segmented image, grey Level co-occurrence matrix 

(GLCM) and run-length matrix (RLM) calculation. To ensure 

hardware optimization, the proposed multiplexed GLCM, 

RLM and SVM implementation realizes an area reduction of 

30% compared to the conventional with minimal overhead in 

the system speed requirement. The Linear SVM is utilized to 

decide between malignant and benign based on the FV. The 
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system is implemented on FPGA and experimentally verified 

using the patients from the DMR database. The breast cancer 

screening processor achieved the sensitivity and specificity of 

79.06% and 88.57%, respectively.  

Recently, few studies attempted the use of mobile phones to 

create breast cancer early detection systems. The researcher 

[49] used temperature and texture features to design a breast 

cancer detection system based on a smartphone with an 

infrared camera, achieving the accuracy of 99.21 % with the 

k-Nearest Neighbor classifier. The infrared images with 

680×480 resolution were converted to grayscale images and 

their resolution reduced to 160×120, consistent with the 

infrared camera of the FLIR Lepton  3. The sample size 

classified was 1520 total patient, 760 normal patients and 760 

patients with breast cancer.  

A segmentation method based on a combination of the 

curvature function and the gradient vector flow, and for 

classification was used in [50], with a Convolutional Neural 

Network. Every breast is characterized by its shape, color , 

and texture, as well as left or right breast. Images of 35 normal 

and 28 images of cancer were analyzed. The CNN classifier 

results were compared to other classification techniques; tree 

random forest (TRF), multilayer perceptron (MLP), and 

Bayes network (BN). CNN presents better results than TRF, 

MLP, and BN, with an accuracy of 100%. Other methods 

(tree random forest (TRF), multilayer perceptron (MLP), and 

Bayes network (BN) accuracy were between 80 to 88%. 

In [51], the Convolutional-Deconvolutional CNN (C-

DCNN) was used to segment breast areas from 165 thermal 

breast images collected in house by imaging 11 breast cancer 

patients using the N2 Imager infrared camera. To train the C-

DCNN, the inputs are 132 gray-value thermal images and the 

corresponding manually-cropped binary masks designating 

the breast areas. Cross-validation and comparison with the 

ground-truth images show that the C-DCNN is a promising 

method to segment breast areas. However, sensitivity and 

accuracy were not reported. The results demonstrate the 

capability of C-DCNN to learn the essential features of breast 

regions and delineate them in thermal images. 

The study conducted by [52] used the new database in [48] 

to classify them using transfer learning with seven different 

deep learning pre-trained architectures: AlexNet, 

GoogLeNet, ResNet-50, ResNet-101, Inception V3, VGG-16 

and VGG-19. Images were resized to a fixed size of 224×224 

or 227×227 pixels, while the dataset was randomly split into 

70% for training and 30% for validation. The number of 

epochs (5) and learning rate (1×10-4) were kept constant for 

all deep Neural Networks. VGG-16 Convolutional Neural 

Network outperformed with a sensitivity of 100%, specificity 

of 82.35% and balanced accuracy of 91.18% . 

  A big challenge in automated breast thermography is 

robust accurate segmentation of breast region against image 

capture errors like distance from an imaging device, view, 

position, etc. In [53], a cascaded CNN architecture to perform 

accurate segmentation robust to subject views and capture 

errors, is introduced. This approach can presumably detect 

breasts region independent of the image capture and view 

angle, enabling automated image and video analysis. The 

algorithm is compared with a multi-view heuristics-based 

segmentation method resulting in a dice index of 0.92 when 

compared with expert segmentation on a test set comprising 

of 900 images collected from 150 subjects at five different 

view angles. The classification model was hybridized by 

combining ResNet-50 and V-Net to analyze the thermal 

images. The accuracy achieved was 100% against more 

computational power.  

The researchers in [54] introduced a comparison of deep 

Convolutional Neural Networks. It shows that the accuracy 

of inception V4 reached 80% compared to other deep 

Convolutional Neural Networks. Figures 1 & 2 in [55] show 

a comparison of 14 different deep learning models. They 

show that the Inception V4 achieves the highest 80% top1-

crop accuracy for a small amount of operations, needed for a 

single forward pass, and moderate size of network 

parameters. 

The analysis of color  thermal images and the number of 

data used have an impact on the expected results in 

determining breast cancer. As CNN layers increases, the 

accuracy of thermal image classification increases too, but so 

does the complexity and run time. The classification of 

thermal images using CNN  is a new area of research, and this 

has been demonstrated by fairly recent studies. Studies have 

shown the ability of new models to classify thermal images 

of breast cancer with high accuracy and high speed . 

Extremely Deep Convolutional Neural Networks (DCNN) 

have shown their ability to improve performance further in 

image classification in terms of accuracy and speed too. 

However, there are many models in Deep Convolutional 

Neural Networks like Inception V1, Inception ResNet model, 

Inception V2, Inception V3 and Inception V4 [55]. As in the 

literature review, Inception V3 and InceptionResNetV2 were 

used to classify thermal images of breast cancer patients  .  

Furthermore, previous studies have shown that analysis of 

images in grayscale format is the most common approach to 

feature extraction and the most common Neural Network 

classification model is InceptionV3. For example, in [59], the 

DMR database was used for a total number of patients 67, 

with 24 breast cancer patients and 43 healthy. The RGB color 

thermal images were converted to grayscale and Inception V3 

deep Convolutional Neural Network was connected to a 

Linear Support Vector Machine to classify 1062 thermal 

images with 602 healthy images and the rest are having breast 

cancer. The Convolutional Neural Network set the learning 

rate at 0.0001, and the epochs to 15. The results showed that 

an increase in the accuracy over the number of iterations and 

where the training and the validation become stable after 

3900 training steps. The paper emphasized that infrared 

imaging coupled with an agent previously administered to a 
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patient can lead to a very accurate tumor detector. 

Furthermore, the classification of thermal images using deep 

Convolutional Neural Networks increases the quality and 

speed of classification. 

From the dynamic thermogram DMR-IR dataset, the 

researcher in [57] used the total of 216 patients and divided 

them into 175 healthy patients and 41 sick patients with 500 

healthy patients breast thermal images and another 500 sick 

patient thermal images. 80% of the database was used for 

training and 20% for validation and testing. Various models 

of the deep Convolutional Neural Network were used such as 

resnet18, resnet34, resnet50, resnet152, VGG16 and VGG19. 

The results indicated that resnet34 and resnet50 produced the 

highest validation accuracy rate of 100% for breast cancer 

detection. 

The study conducted in [58] did initial experiments on fine-

tuning the Convolutional Neural Network (CNN) models of 

ResNet101, DenseNet, MobileNetV2, and ShuffleNetV2 to 

classify healthy and sick breast cancer patients. The 

ImageNet database was used for testing and the dataset used 

to train the models are thermal breast images downloaded 

from the DMR database. In the training phase, three epochs 

were used for the training iterations 10, 20, and 30. Initially, 

the learning rate was set to 0.001, momentum to 0.9, learning 

rate factor for weight and bias each to 10, and minibatch size 

to 10. The results indicated that DenseNe and ResNet101 

deep networks achieve an accuracy of 100% in 10 epochs 

only. MobileNetV2 and ShuffleNetV2, however, needed 20 

epochs and 30 epochs of training, respectively, to achieve 

100% accuracy. During the testing phase, however, the pre-

trained model of DenseNet was able to classify all the testing 

dataset correctly. ResNet101 and MobileNetV2 have 

correctly classified static dataset while slightly missed in 

classifying dynamic dataset with 99.6% of accuracy. 

ShuffleNetV2 has a lower performance of only 98% of 

accuracy. ShuffleNetV2 used short training time, but 

MobileNetV2 with competitive elapse time demonstrated 

equal performance to ResNet101. 

The work in [60] proposed an active contour model for the 

segmentation of the Suspicious regions (SRs) in thermal 

breast images (TBIs). The proposed segmentation method 

comprises three steps. First, a novel method, called smaller-

peaks corresponding to the high-intensity-pixels and the 

centroid-knowledge of SRs (SCH-CS), is proposed to 

approximately locate the SRs, whose contours are later used 

as the initial evolving curves of the level set method (LSM). 

Second, a new energy functional, called different local 

priorities embedded (DLPE), is proposed regarding the level 

set function. DLPE is then minimized using the interleaved 

level set evolution to segment the potential SRs in a TBI more 

accurately. Finally, a new stopping criterion is incorporated 

into the proposed LSM. The proposed LSM increases the 

segmentation speed and ameliorates the segmentation 

accuracy. Feed-forward Artificial Neural Network with 42 

neurons and 0.1 learning rate was used for the classification 

of thermal images. Performance of the SR segmentation 

method was evaluated on two DMR-IR and DBT-TU-JU 

databases and the average segmentation accuracies obtained 

on these databases are 72.18% and 71.26%, respectively. 

Experiments show that investigating only the SRs instead of 

the whole breast is more effective in differentiating abnormal 

and normal breasts.” 

Researchers in [61] took an interesting approach to 

estimate the position and size of a spherical tumour in a 

human breast using the temperatures obtained on the surface 

of the breast through a breast thermogram in conjunction with 

Artificial Neural Networks. The surface temperature was 

obtained using numerical simulation of heat conduction in a 

cancerous breast by employing the Pennes bio-heat transfer 

equation using a finite element based commercial solver 

COMSOL. The surface temperatures are then trained against 

the tumour parameters by using Artificial Neural Networks 

(ANN). The Artificial Neural Network is composed of two 

hidden layers. In addition, out of 447 thermal data vectors, 

375 vectors were used for training and 72 vectors for testing. 

Random noise was added at different rates so that the thermal 

images depend on the accuracy of the infrared camera used. 

The results indicated that for the ‘measured’ data without 

noise, accuracies of 90% in position and 95% in the radius for 

the constant heat generation rate were estimated using ANN. 

Adding the noise, however, drops the accuracies to 88% and 

98%, respectively. Similar recent attempts on resolving the 

depth of emissive tissue in breast using numerical modelling 

was reported in [74 - 76]. 

Researcher in [64] highlighted the effect of menstruation 

period on the stability of temperature, which affects the result 

of the prediction. Two experiments were performed on 200 

patients, they were divided into two groups, where the first 

group included all patients, and the second group was thermal 

imaging in the recommended day of menstruation, e.g., day 

5, 12 and 21 of menstruation. The results indicated that the 

second group was more accurate than the first one because 

body temperature was predictably more stable in the second 

group. The second experiment was made using the Artificial 

Neural Network. The mean, median and modal temperatures 

of healthy breasts, and mean, median, mode, SD and 

skewness of an unhealthy individual were highly correlated. 

Hence, these values are used as the ANN training sets. Four 

Artificial Neural Networks were used according to above 

inputs, setting Momentum of 0.4 and Learning rate of 0.5. 

The learning index was the root mean-squared (rms) error, 

which determined if the network was properly tested. The 

results showed that the Artificial Neural Network (inputted 

with information on mean, median and modal temperatures 

of both breasts, age, family history, hormone replacement 

therapy, age of menarche, presence of palpable lump, 

previous surgery/biopsy, presence of nipple discharge, breast 

pain, menopause at age <50 years, and first child at age <30 

years of the patient) converges best during training and gives 

the highest accuracy when tested. 
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In [65], researchers used the thermography database from 

a Singapore Hospital, which used thermal camera model 

NEC-Avio Thermo TVS2000 MkIIST with 0.1  sensitivity. 

Accordingly, 90 patients were chosen randomly to undergo 

the thermography examination where the room temperature 

ranged from 20 to 22 . In addition, a patient wearing a loose 

robe were made to rest for 15 minutes before the experiment. 

The analysis was also conducted for 25 breast cancer patients 

and 25 healthy persons. The data was divided into three parts; 

two parts for training and one part for testing. In addition, 

features of moment1, moment3, run percentage, and gray 

level non-uniformity were selected, as they were clinically 

significant (low p-values) compared to the other features, and 

inserted into the SVM for classification. A diagnostic test was 

assessed by determining the AAUC, which can vary between 

0.5 and 1. The results indicated that the use of only four 

features gives a high accuracy of 88.10%, sensitivity of 

85.71% and specificity of 90.48%. 

However, in [67], only 50 thermal images were used, out 

of which 25 are cancer-related thermograms, and 25 are 

healthy-related thermograms. The reduced image size of the 

64 * 64-pixel size was used with Decision Tree, Discriminant, 

k-Nearest Neighbour and Fuzzy Sugeno, Naive Bayes, SVM, 

AdaBoost, and Probabilistic Neural Network classifiers. The 

results indicated that the Decision Tree classifier is able to 

identify the breast cancer with an average accuracy, 

sensitivity, specificity and area under curve of 98%, 

96.66%,100% and 0.98 respectively. In addition, results show 

that the system requires only two features for correct 

identification of normal and malignant breast thermograms. 

Notably, the paper claims the first to attempt using HOG 

descriptors for the detection of breast cancer while obtaining 

the highest classification performance compared to other 

existing methods. 

In [78] researcher used DCNN to detect breast cancer. The 

analysis was performed on 521 healthy and 160 abnormal 

breast thermograms of existing DMR Database. Obtained 

color thermal images were converted to grayscale, pre-

processed, segmented, and classified using DCNN. 

Moreover, SGD optimization method and learning rate 0.01 

were used. Results indicate an increase in the accuracy ratio 

from 93.3% to 95.8%, while sensitivity and specificity levels 

were at  99.5% and 76.3%, respectively. 

IV. OPEN ISSUES  

Table 1 shows a comprehensive comparison between 

different studies of early breast detection methods together 

with camera type, sample size, and results. In the literature 

review, the researchers pointed out the use of high-tech 

computers to store and process thermal images. However, this 

technology has challenging problems, including damaged 

data, while the data is subject to lose or theft in the case of 

transfer, in addition to costly storage devices. It is clear that 

mobile phones are portable computers, so they are developed 

to keep pace with virtual reality, and the developments taken 

place in mobile cloud computing. Mobile Cloud Computing 

is a hybrid of cloud computing and mobile devices that is 

considered to have the ability to overcome these limitations.  

Mobile cloud computing provides many advantages, 

including a high processing capability and a huge storage 

capacity equipped with configurable computing resources for 

users to perform calculations. It can also update data instantly 

on the cloud and on the mobile phone by synchronization and 

provide security to protect data confidentiality and integrity. 

Besides, it is inexpensive compared to high-specs computers. 

Through mobile cloud computing, thermal images are 

processed, and the results are sent to the mobile application. 

One of the most challenges is the quality of the thermal 

image, so the most critical step in processing thermal images 

is enhancing the image. Enhancements are processes used to 

show hidden details and highlight the features in the thermal 

image so that the depth and size of the tumor may be 

distinguished from a healthy tissue. If the tumor is close to the 

surface, it is easier to discover. However, one needs to 

enhance the contrast of the thermal image to distinguish the 

tumor from healthy tissue, if the tumor location is deep. One 

of the proposed methods is to use a breast cooling device such 

as Ice Pack Gel for a specific period to improve the image 

quality and detect the tumor using a lower resolution thermal 

camera unlike expensive thermal cameras. 

The above issue is further exacerbated with the use of 

mobile phones with mounted thermal cameras. Having no 

standardized thermal image acquisition procedures for the 

mobile phone, results in low quality, offset, jerky images 

produced that are hard to process and may result in nullifying 

them. Therefore, on top of standardized image acquisition 

procedures required (to regulate issues like stability of 

thermal camera, distance from the patient's breast, room 

temperature and humidity, light intensity, acquisition angle, 

patient's pose, prior resting of patient's body, alcohol and hot 

beverage consumption, application of topical creams, hair 

shaving, etc.), further sophisticated image enhancement 

techniques are needed. Without such regulations and strictly 

followed acquisition procedure rules, in conjunction with 

image enhancement techniques, the dream of having early 

breast cancer detection from the comfort of the patient's room 

may not become a reality soon. 

Computer-based methods for clinically diagnosing thermal 

images of breast cancer patients lead to many complications 

in breast cancer care system. Some studies show inability to 

accommodate the increasing numbers of patients with breast 

cancer, which causes a significant burden on the radiologist, 

delaying diagnosis and causing long waiting for patients. 

Additionally, it causes a decrease in the quality of medical 

care with patient distress and anxiety. Moreover, sometimes 

doctors make mistakes, and computer fails to keep up with 

the update of the databases. Therefore, computation 

complexity needs to be pushed to the cloud to support 

smartphone applications development, which facilitates the 

process of self-diagnosis at home. 
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TABLE 1 

COMPARISON BETWEEN DIFFERENT METHODS OF EARLY BREAST DETECTION 

 

Study 
Camera 

type 

Patients  
AI used Features 

Type of 

image 
Acc% 

Spe

% 

Sens

% 
AUC% 

N S 

[27] 
TVS-

2000  
30 52 RBFN mean, median, standard deviation Color  80.95 70.6 100 98.8 

[29] 
TVS200

0 
25 25 

KNN One clinically significant texture (Energy, Contrast, 

Homogeneity, Entropy and Angular second moment) and 

two DWT features (Average Dv1 and Energy) 

Grayscale 
90 93.3 86.7 NG 

PNN 90 93.3 86.7 NG 

[31] 
TVS200

0 
25 25 ANN+SVM 

Mean of Magnitude and three Phases Entropy for higher-

order spectra (HOS). 
Grayscale 90 88 92 NG 

[32] 

VARIOS

CAN 

3021 ST 

26 14 KNN 

20 Textural features (Energy, Contrast, Correlation, 

Variance, Homogeneity, Sum Average, Sum Variance, 

Sum Entropy, Entropy, Difference Variance, Difference 

Entropy, Information Measure of Correlation 1, 

Information Measure of Correlation 2, Autocorrelation, 

Dissimilarity, Cluster Shade, Cluster Prominence, 

Maximum Probability, Inverse Difference Normalized, 

Inverse Difference Moment Normalized) 

Grayscale 92.5 NG NG NG 

[33] 
ICI7320

P 
24 12 SVM 

First-order statistical features (mean, variance, skewness 

and kurtosis) and texture features (ASM, Contrast, 

Correlation, Sum of squares, Inverse difference moment, 

Sum average, Sum variance, Sum entropy, Entropy, 

Difference variance, Difference entropy, Information 

Measure of Correlation 1, Information Measure of 

Correlation 2) 

Grayscale 83.3 NG NG NG 

[34] 
7640 P-

Series 
NG NG NOT USED 

Symmetrical profile, Obvious hotspot and  

Overall changes 
Color  NG NG NG NG 

[36] 
FLIR 

S45 

Total = 

180 
NOT USED NG Grayscale NG NG NG NG 

[35] 
FLIR 

S45 
Total = 50 NOT USED 

proposed three- stage feature extraction (PFE), statistical 

feature extraction (SFE) and texture feature extraction 

(TFE) 

Grayscale NG 86.5 85.7 NG 

[38] 
FLIR 

S45 
227 235 

Extreme Learning 

Machines 
Texture features and geometry of lesions features Grayscale 83 88 78 NG 

[39] 
FLIR 

SC-620 
183 123 

Artificial Neural 

Network 

Mean values of the feature point and Statistical feature 

extraction 
Grayscale 90.48 89.73 87.6 NG 

[40] 
FLIR 

SC-620 
60 40 

feed-forward 

Artificial Neural 

Network (FANN) 

16 texture features  Color 90 85 95 95.3 
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[56] 
FLIR 

SC-620 
30  30 NOT USED 

first order statistical features (the mean difference, 

skewness, entropy and standard deviation) 
Grayscale 97 NG NG NG 

[42] 
FLIR 

SC-620 
19 37 

LTR+MLP Multi-

layer Perceptron 

Texture Feature (Autocorrelation, Contrast, Correlation 

I, Correlation II, Cluster prominence, Cluster shade, 

Dissimilarity, Energy, Entropy, Homogeneity I, 

Homogeneity II, Maximum probability, Sum of squares, 

Sum average, Sum entropy, Sum variance, Difference 

variance, Difference entropy, Information measure (IM) 

of correlation I, IM of correlation II, Inverse difference 

(ID) normalized and ID moment normalized. 

Grayscale 95.8 NG 97.1 98.9 

[44] 
FLIR 

SC-620 
19 37 

ResNet50, 

SeResNet50 

Inception 

texture and statistical features Grayscale 92 94 91 92 

[46] 
FLIR 

SC-650 

Total = 

1200  
V net high-level features Grayscale 99.6 NG 99.6 NG 

[49] 
FLIR 

Lepton 3 
760 760 KNN 

four texture features (the contrast, inverse different 

moment, entropy, energy) 
Grayscale 99.21 100 98.4 NG 

[50] 
FLIR 

SC-620 
35 28 

CNN with (TRF, 

MLP, and BN) 

Texture Features (Shape: Area, Perimeter, Roundness 

and Compactness. 

First-order texture: Average, Median, Variance, Standard 

deviation and Entropy. 

Second-order texture: Contrast descriptor, Correlation, 

Energy and Local homogeneity. 

Relation context: Euclidian distance, Bhattacharyya 

distance and Difference. ) 

Color 100 100 NG 100 

[14] 
FLIR 

SC-620 
32 31 LSSVM +RBF 

Texture features such as grey-level co-occurrence 

matrix, grey-level run-length matrix, grey-level size zone 

matrix and neighbourhood grey tone difference matrix 

Grayscale 96 92 100 96 

[37] 

FLIR SC 

45 +  

FLIR 

SC-620 

NG NG KNN +SVM 

texture features (Contrast, Energy, Homogeneity and 

Correlation). 

statistical features (Mean, Standard deviation, Skewness 

and Kurtosis). 

Grayscale NG NG NG NG 

[41] 
FLIR 

SC-620 
40 40 

Bayes Net 
Feature selection methods: 

Best First, Greedy Stepwise, Ranker, Correlation-based 

Feature Selection (CFS) Subset Eval, Pearson 

Correlation Eval, Gain Ratio Eval, Info Gain Eval, 1-R 

Eval, Principal Components Eval, RELIEF Eval, 

Symmetrical Uncertainty Eval. 

Grayscale 

100 100 NG 100 

Bayes Net, multi-

layer perceptron, 

decision table and 

random forest 

classification 

algorithms 

95.38 95.37 NG 95 

[43] 
FLIR 

SC-620 
95 42 CNN automatic feature selection  Grayscale 

95 by 

dynami

c  

NG NG NG 
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95 42 CNN Color 
98 by 

static  
NG NG NG 

[47] 

FLIR 

One 
125 125 ANN 

Twelve color features were used for classification 

including mean, variance, skewness, and kurtosis 

Twenty features, including energy, entropy, contrast, 

homogeneity and correlation of horizontal, vertical, 

diagonal, and anti-diagonal directions 

Grayscale 

Color 

NG 50 98.6 NG 

FLIR 

A320 
125 125 ANN NG 50 98.6 NG 

[48] CAT S60 
Total = 

7800 

LSVM and 

 CNN 
Best of five (BoF) features selected from texture features Grayscale 90.5 91.8 90.06 NG 

[51] 
N2 

Imager 
0 11 C-DCNN automatic feature extraction  Grayscale NG NG NG NG 

[52] 
FLIR 

SC-620 
141 32 VGG-16 NG NG 91.18 82.35 100 84.52 

[45] 

FLIR 

T650sc 
24 46 

SVM_RBF  

 

Three set of features: FStat, STex and SSigFS 
Color 

84.29 87.50 82.60 NG 

FLIR 

SC-620 
45 35  85.00 80.00 90.00 NG 

FLIR 

T650sc 
24 46 

ANN 

84.29 75.00 89.13 NG 

FLIR 

SC-620 
45 35  87.50 93.33 80.00 NG 

[53] NG 
Total = 

1260 

Hybrid (ResNet-

50 and V-Net) 
high-level features  Grayscale 100 NG NG NG 

[58] 
FLIR 

SC-620 

static 

ResNet101  

 

DenseNet 
NG 

NG 100 NG NG NG 

2595 698  

dynamic  
NG 100 NG NG NG 

255 33  

[57] 
FLIR 

SC-620 
500 500 

resnet34  
NG 

Color  100 NG NG NG 

resnet50 Color  100 NG NG NG 

[59] 
FLIR 

SC-620 
43 24 

Inceptionv

3 + LSVM 
NG Grayscale NG NG NG NG 

[60] 

DMR-IR 

and  

DBT-

TU-JU 

35 30 

FANN Haralick features and Hu‘s moment invariants Grayscale 88.5 89 87 93.9 
46 44 

[61] NG NG NG ANN NG Color  95% NG NG NG 

[62] 

Thermov

ision 680 

Medical 

Total =19 ANN 
mean, standard deviation, median, maximum, minimum, 

skewness, kurtosis, entropy, area and heat content 
Grayscale NG NG NG NG 
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[63] 
FLIR 

SC-620 
48 46 ANN 

mean, variance, standard deviation (SD), skewness, 

kurtosis, entropy, range and median 
Grayscale 85 83 87 

NG 

[64] NG 76 131 ANN 
mean, median, modal, SD and skewness temperature of 

both breasts 
NG NG NG NG NG 

[65] 

Thermo 

TVS200

0 

MkIIST 

25 25 SVM 
moment1, moment3, run percentage, and gray level non-

uniformity 
Grayscale 88.10 90.48 85.71 88.1 

[67] 

Thermo 

TVS200

0 

MkIIST  

25 25 
Decision 

Tree 
HOG  Grayscale 98 100 96.66 98 

[78] 
FLIR 

SC-620 
521 160 DCNN NG Grayscale 95.8 76.3 99.5 NG 
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TABLE 2 

ADVANTAGES AND DISADVANTAGES DIFFERENT METHODS OF EARLY BREAST DETECTION 

 

Study Advantages Disadvantages Study Advantages Disadvantages 

[27] 

RBF networks are fast, robust and 

more tolereant than traditional 

Neural Networks.  Sensitivity ratio 

and AUC are high. Color thermal 

images used.  

Other Neural Networks can achieve  

better classification results networks. 

Sample size is small. Few features are 

used. 

 

[41] 

High resolution  thermal camera 

used. Large number of features 

used. Accuracy  ratio and AUC are 

high. 

Sensitivity  not given. Sample 

size is small.  

 

[29] 

KNN has simple implementation. 

Robust with regard to the search 

space. 

 

Sample size is small. Few features 

used. The sensitivity  is low. Model is   

sensitive to noisy or irrelevant 

attributes, which can result in less 

meaningful distance numbers.  

[43] 

High resolution  thermal camera 

used. High classification accuracy.  

Automated extraction feature used.   

Sensitivity  not given. Sample 

size is small.  

 

PNN is robust with regard to the 

search space. 

 

Requires large memory space. 

Thermal camera has low resolution.  

Sample size is small. Few features 

used. Sensitivity  is low.  

[47] 

Large number of features used. 

Sensitivity ratio is high. 

 

 

Thermal camera has low 

resolution.  Sample size is 

small. Accurecy  not given.  

[31] 

Model has high accuracy. Sample size is small. Few features 

used. Sensitivity  is low.  [48] 

Sample size is large. Accuracy  

ratio and Sensitivity are high. 

Thermal camera has low 

resolution.  AUC  not given. 

Few features are used. 

[32] 

Simple implementation.  Robust 

with regard to the search space. 

Large number of features used.   

 

Thermal camera has low resolution.  

Sample size is small. Few features 

used. Sensitivity  not given.  Model is 

sensitive to noisy or irrelevant 

attributes, which can result in less 

meaningful distance numbers. Model 

is non parametric. 

[51] 

Automated extraction feature used. Sensitivity, sample size, 

accuracy, AUC are   not given.  

Sample size is small Thermal 

camera has low resolution.  

 

[33] 

Large number of features used. 

Classification  accuracy is high. 

Low generalization error. 

Thermal camera has low resolution.  

Sample size is small. Few features 

used. Sensitivity  not given. Accuracy 

is low.  

[52] 

High resolution  thermal camera 

used. High classification accuracy.  

Sensitivity ratio is high. 

Sample size is small. Features 

not given. 

[34] 

Not relevant.  Thermal camera has low resolution.  

Sample size is small. Sensitivity  not 

given. Accurecy  not given.  No AI 

model used.  

[45] 

High resolution  thermal camera 

used. RBF networks are fast, robust 

and more tolereant than traditional 

Neural Networks. High accuracy. 

Color thermal images used. 

Thermal camera has low 

resolution.  Sample size is 

small. Few features are used. 

[36] 

Not relevant. Thermal camera has low resolution.  

Sample size is small. Sensitivity  not 

given. Accurecy  not given.  

[53] 

Sample size is large. Automated 

extraction feature used. 

Sensitivity  not given. Model 

is  time consuming. Thermal 

camera not given.  
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No AI model used. 

[35] 

Not relevant. Thermal camera has low resolution.  

Sample size is small. Sensitivity  not 

given. Accurecy  not given.  

No AI model used. 

[58] 

High resolution  thermal camera 

used. Sample size is large. High 

accuracy.  

Sensitivity  not given. Model 

is  time consuming.  Features 

are not given. 

[38] 

Short trining time.  Thermal camera has low resolution.  

Sample size is small. Sensitivity is 

low. Accuracy is low  
[57] 

High resolution  thermal camera 

used. Sample size is large. High 

accuracy. Color thermal images 

used. 

Sensitivity  not given. Model is  

time consuming. Features are 

not given. 

[39] 

High resolution  thermal camera 

used. High classification accuracy.  

Sample size is small. Sensitivity is 

low. Model is  time consuming.   

 

[59] 

High resolution thermal camera 

used. 

Sample size is small. 

Sensitivity, accuracy, AUC 

are   not given.   

[40] 

High resolution thermal camera 

used. High accuracy. Large number 

of features used. 

Sample size is small. Sensitivity is 

low. Model is  time consuming.  [60] 

High resolution thermal camera 

used. Accuracy  ratio and 

Sensitivity are high. 

Sample size is small. Few 

features are used. 

[56] 

High resolution thermal camera 

used. High accuracy. 

No AI model used. Sample size is 

small. Sensitivity  not given. 
[61] 

Color thermal images used. 

Classification  accuracy is high. 

Sensitivity  not given. 

Features are not given. 

Thermal camera not given.  

Features are not given. 

[42] 

High resolution thermal camera 

used. Large number of features 

used. 

Sample size is small. Model is  time 

consuming.   [65] 

Accuracy  ratio and AUC are high. Sample size is small. Few 

features are used. 

[44] 

High resolution thermal camera 

used. Sensitivity ratio and Accuracy 

are high. 

Sample size is small. Model is  time 

consuming and high cost 

computition.  

[67] Accuracy  ratio and AUC are high. 

Sample size is small. Few 

features are used. 

[46] 

High resolution thermal camera 

used. Sensitivity ratio and Accuracy 

are high. 

Model is  time consuming with high 

computational cost. 
[64] Not relevant 

Sensitivity  not given. Sample 

size is small. Accurecy  not 

given. Thermal camera not 

given. 

[49] 

KNN has simple implementation. 

Robust with regard to the search 

space. 

 

Thermal camera has low resolution.  

Sample size is small. Few features 

used. Model is sensitive to noisy or 

irrelevant attributes, which can result 

in less meaningful distance numbers. 

[63] 

High resolution thermal camera 

used. 

Sample size is small. Few 

features are used. 

[50] 

High resolution thermal camera 

used. Classification  accuracy is 

high. Large number of features 

used.   

Sensitivity  not given. Thermal 

camera has low resolution. Sample 

size is small. Model is sensitive to 

noisy or irrelevant attributes, which 

can result in less meaningful distance 

numbers 

[62] 

Large number of features used. Thermal camera has low 

resolution. Sensitivity  not 

given. Sample size is small. 

Accurecy  not given. Few 

features are used. 
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[14] 

High resolution thermal camera 

used. RBF networks are fast, robust 

and more tolereant than traditional 

Neural Networks.   Sensitivity ratio 

and AUC are high. Color thermal 

images used.  

Sample size is small. Few features are 

used. Thermal camera has low 

resolution.   

 
[53] 

Sample size is Large . Automated 

extraction feature used.  

Sensitivity  not given. Model 

is  time consuming.  Thermal 

camera not given. 

[37] 

High resolution thermal camera 

used. Robust with regard to the 

search space. 

Sensitivity, sample size, accuracy, 

AUC are   not given.  

 
[78] 

High resolution thermal camera 

used. Sensitivity ratio and Accuracy 

are high. 

Sample size is small. AUC is   

not given.   Features are not 

given. Model is  time 

consuming. 
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It is evident from previous studies that researchers made a 

great effort in using different models of ANN and recently 

deep learning for early detection of breast cancer. Table 1 and 

2  present the details of the reported studies from the open 

literature such as: type of thermal cameras used, database, 

acquisition procedure (if any), sample size (e.g., number of 

patients, healthy individuals, and breast images used), deep 

learning model, types of extracted features, type of images 

used, performance evaluation metrics, and advantages and 

disadvantages. However, previous studies were limited to 

varying the numbers of thermal images used mostly from 

DMR-IR database. In addition, it included various types of 

thermal cameras used on several breast-cancer patients and 

healthy individuals. Several different types of Artificial 

Neural Networks (ANNs) and deep learning models were 

compared in table 1 to process thermographic images of 

breast cancer, such as RBFN, K-Nearest Neighbors (KNN), 

Probability Neural Network (PNN), Support Vector Machine 

(SVM), ResNet50, SeResNet50, V Net, Bayes Net, 

Convolutional Neural Networks (CNN), Convolutional and 

DeConvolutional Neural Networks (C-DCNN), VGG-16, 

Hybrid (ResNet-50 and V-Net), ResNet101, DenseNet and 

InceptionV3. ANNs extract different number of sets of 

features while deep learning models utilize automatic feature 

extraction for thermal image classification. A parameter 

evaluation is usually used to verify the performance of these 

Neural Networks. The analysis of the literature indicate that 

several factors do affect the performance of the Neural 

Network used, such as Database, optimization method, 

Neural Network model and the extracted features. However, 

most of the ANNs and deep learning models studied achieve 

a classification accuracy of 80% to 100%. 

  Through this evaluation in Table 1, it is clear that the 

percentage of accuracy in detecting breast cancer depends on 

several factors, such as preprocessing of thermal images used 

in training and testing, type of deep learning model used, 

number  and type features extracted, the nature of image used 

(e.g., colored or greyscaled), while the most crucial factor for 

determining the accuracy is the sample size. In most of the 

reported previous studies, the sample size is small leading to 

over-claimed accuracy levels reported (e.g., a 100%). 

Furthermore, the objective should not be a 100% accurate 

detection system for the early breast cancer. Rather, the 

system should be designed as an assistant for the diagnosing 

physician to mitigate or flag a human error (e.g., final 

diagnostic decision should be made by the doctor rather than 

the system). In addition, it is necessary to find performance 

evaluation values to verify the efficiency of models used such 

as: sensitivity, AUC, and specificity. These metrics were not 

always reported in the previous studies. Moreover, some of 

the deep learning models used, such as V net and VGG16, 

were time consuming and require larger memory size and 

computational power to process, compared to, for example, 

Inception V3. 

As we have noted previously, thermal cameras can monitor 

thermal changes in blood vessels. Therefore, the future work 

in the detection of breast cancer is related to four major issues: 

lower resolution thermal cameras suitable for mobile phone, 

error-tolerant robust image acquisition procedures for 

accurate breast region segmentation, classification Neural 

Network used (e.g., CNN vs deep CNN), and more 

comprehensive database. 

There are three main factors in choosing a thermal camera: 

sensitivity, quality and price. All factors influence the choice 

of the thermal camera by researchers, so the thermal camera 

model SC620 is the most used during the past ten years. Its 

advantages are as follows: Sensitivity is less than 0.04, the 

quality is 640 × 480, and the price is high. Many models of 

thermal cameras characterized by high sensitivity and 

resolution can be used to detect breast cancer in an early 

stage. Examples of such thermal camera model is the 

FLIRX8500sc, that is characterized by the resolution of 1280 

x 1024 and the sensitivity ratio 0.02℃, and it can be used in 

future work. The acquired images are 14-bit which contain a 

lot of information. 

On the other hand, there are many models of a small 

thermal camera that can be connected to mobile phones or 

computer directly with excellent sensitivity and resolution. 

Thermal cameras are still newly produced and have a 

promising future. From the above studies, the ability to detect 

breast cancer using thermal cameras accurately is higher with 

better sensitivity and higher quality images. However, the 

camera cost remains prohibitive. Furthermore, some of these 

camera models are obsolete now. 

In Neural Networks, future work is needed to detect breast 

cancer by using Recurrent Neural Network method. 

Recurrent Neural Network method has many models, such as 

Gated Recurrent Unit (GRU, Bi-directional RNN (B-RNN) 

and Neural Turing Machines (NTM), which are used to detect 

breast cancer in an early stage. 

On the other hand, works on Deep Convolutional Neural 

Networks is intensifying. Future works should concentrate on 

the use of high sophisticated Deep Convolutional Neural 

Networks; such as inception Resnet models. This newly 

established network resembles a vast area for research and 

quality verification in the early detection of breast cancer.  

In conclusion, the data are still outdated and have not been 

updated. Besides, the images are captured with thermal 

cameras of lower quality than those currently available ones. 

Breast Thermal images in the database are available from 

limited countries only. Therefore, future work needs to find 

the data of thermal images of the breasts using thermal 

cameras, which are characterized by superior quality and 

sensitivity. Also, thermal images are taken from a range of 

states so that they include data for different breast sizes and 

shapes. With the advancements in deep learning models and 

the mobile technology, authors believe that rising 

sophisticated AI tools will serve as an excellent physician 
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assistant in making accurate and early diagnostic decisions, 

saving lives, rather than replacing him. 

V. CONCLUSION 

This paper has provided a systematic review of research 

works dealing with AI models in conjunction with 

thermography for early breast cancer detection. Four major 

issues were highlighted from the study, namely: the small 

sample size used in the experiments, the heavy dependence 

on the DMR-IR database, image enhancement techniques 

applied and the limited number of advanced deep learning 

models. The review study highlighted the validity and 

potential of using theromography for early breast cancer 

detection by capturing the differences in thermal distribution 

across the breast tissue. Image enhancement techniques could 

be used to further locate the ROI in a 3D volume. 

Furthermore, the study indicated that ANN and deep learning 

models could achieve an acceptable level of detection 

accuracy but they can be improved.  

Open issues highlighted the need for mobile cloud 

computing and elaborated on the challenges faced for such a 

paradigm shift in diagnosis from a computer-based tool to a 

smartApp. It is interesting to highlight that the research area 

is open for tremendous development efforts with the great 

advances made by deep learning models and might hold the 

key to huge commercial potential. However, standards and 

procedures for image acquisition from portable devices, 

camera specs,  and awareness that fact that these tools are to 

aid physicians rather than to replace them, is of paramount 

importance.   
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