
A systematic review of comparative evidence of aspect-oriented programming

Muhammad Sarmad Ali a, Muhammad Ali Babar b,*, Lianping Chen a, Klaas-Jan Stol a
a Lero – The Irish Software Engineering Research Centre, University of Limerick, Castletroy, Limerick, Ireland
b IT University of Copenhagen, Rued Langgaards Vej 7, 2300, Copenhagen, Denmark

a r t i c l e i n f o

Article history:
Received 31 May 2009
Received in revised form 6 May 2010
Accepted 7 May 2010
Available online 13 May 2010

Keywords:
Evidence-based software engineering
Systematic literature review
Aspect-oriented programming

a b s t r a c t

Context: Aspect-oriented programming (AOP) promises to improve many facets of software quality by
providing better modularization and separation of concerns, which may have system wide affect. There
have been numerous claims in favor and against AOP compared with traditional programming languages
such as Objective Oriented and Structured Programming Languages. However, there has been no attempt
to systematically review and report the available evidence in the literature to support the claims made in
favor or against AOP compared with non-AOP approaches.
Objective: This research aimed to systematically identify, analyze, and report the evidence published in
the literature to support the claims made in favor or against AOP compared with non-AOP approaches.
Method: We performed a systematic literature review of empirical studies of AOP based development,
published in major software engineering journals and conference proceedings.
Results: Our search strategy identified 3307 papers, of which 22 were identified as reporting empirical
studies comparing AOP with non-AOP approaches. Based on the analysis of the data extracted from those
22 papers, our findings show that for performance, code size, modularity, and evolution related charac-
teristics, a majority of the studies reported positive effects, a few studies reported insignificant effects,
and no study reported negative effects; however, for cognition and language mechanism, negative effects
were reported.
Conclusion: AOP is likely to have positive effect on performance, code size, modularity, and evolution.
However its effect on cognition and language mechanism is less likely to be positive. Care should be taken
using AOP outside the context in which it has been validated.

! 2010 Elsevier B.V. All rights reserved.

Contents

1. Introduction . 872
1.1. Contribution of this review. 872

2. Background: aspect-oriented programming (AOP). 872
3. Research method . 873

3.1. Development of review protocol . 873
3.2. Research questions . 873
3.3. Search strategy . 873

3.3.1. Search scope . 873
3.3.2. Search method . 874
3.3.3. Search string and electronic data sources . 874

3.4. Selection criteria . 875
3.5. Quality assessment . 875
3.6. Data extraction . 875
3.7. Data synthesis and aggregation . 875

4. Overview of the reviewed studies. 876
4.1. Reported research methods . 876
4.2. Methodological quality . 876

0950-5849/$ - see front matter ! 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2010.05.003

* Corresponding author. Tel.: +353 61 213639; fax: +45 7218 5001.
E-mail addresses: sarmad.ali@lero.ie (M.S. Ali), malibaba@itu.dk (M. Ali Babar),

lianping.chen@lero.ie (L. Chen), klaas-jan.stol@lero.ie (K.-J. Stol).

Information and Software Technology 52 (2010) 871–887

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://dx.doi.org/10.1016/j.infsof.2010.05.003
mailto:sarmad.ali@lero.ie
mailto:malibaba@itu.dk
mailto:lianping.chen@lero.ie
mailto:klaas-jan.stol@lero.ie
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

4.3. Study settings . 877
4.3.1. Scope . 877
4.3.2. Studied objects . 877
4.3.3. System type . 878

4.4. Metrics . 878
4.5. Systems investigated. 878
4.6. Implementation languages . 878

5. Results and discussion . 878
5.1. Benefits and limitations of AOP . 878

5.1.1. Performance . 878
5.1.2. Code size . 879
5.1.3. Modularity . 879
5.1.4. Evolvability . 880
5.1.5. Cognition. 880
5.1.6. Language mechanism . 881
5.1.7. Summary. 881

5.2. Strength of evidence . 882
6. Limitations of the review. 883
7. Conclusion . 883

Acknowledgement . 883
Appendix A. Selected studies. 884
Appendix B . 885

References . 886

1. Introduction

It has been more than a decade since the aspect-oriented pro-
gramming (AOP) paradigm was introduced by Kiczales et al. [1].
AOP was presented as an alternative approach to Object-Oriented
Programming (OOP) for better modularization and separation of
concerns (SoC), especially for those concerns that cut across a sys-
tem’s functionality and hence, can result in redundant, scattered
and tangled code. This relatively new paradigm has attracted a
lot of interest from researchers and practitioners recently. A wide
variety of AOP languages and tools have been developed. It has
been argued that AOP and its related techniques can have a posi-
tive impact on the overall software development process and im-
prove software quality [2]. Such claims are usually based on
Dijkstra’s idea that the more the concerns are separated, the easier
it becomes to perform changes locally [3]. However, there have
also been doubts about the applicability and effectiveness of AOP
[4]. As compared to OOP, the most popular software development
paradigm today, aspect-oriented paradigm can be considered to be
in its infancy as it lacks well-defined rules to determine good de-
sign and implementation decisions [5]. There are also claims about
the limitations of AOP techniques [6]. Furthermore, it has been re-
ported that not many empirical studies have been conducted to
investigate the effectiveness of AOP, which is why there is little
empirical evidence available to support the claims made about
AOP [7].

However, there has been no effort to systematically identify,
analyze, and report the evidence reported in the literature to sup-
port the claims made in favor or against AOP. We believe that sys-
tematically carried out aggregation and synthesis of the reported
evidence can help clarify the confusions and contradictions regard-
ing AOP’s benefits and limitations. Hence, we decided to conduct a
systematic literature review (SLR) of the evidence reported about
the benefits and limitations of AOP compared with non-AOP. This
paper reports the methodological details about and findings from
our SLR.

1.1. Contribution of this review

This review provides evidence-based insights that can help
practitioners to gain a good understanding of the claimed benefits

of AOP and the kinds of evidence provided to support those claims.
We also believe that readers interested in the AOP paradigm can
use this paper as a map for finding studies relevant to their situa-
tion and then analyze the study settings to decide about their
applicability. For researchers, this SLR gives an overview of the re-
ported empirical evaluation/validation of the effectiveness of AOP
and reveals those areas that are not addressed by the reported re-
search or areas that need further research. At the same time, it also
points out the limitations of the current practice of designing and
reporting empirical studies of AOP. The information extraction
scheme we used to characterize the study context and study find-
ings can be used to guide the activities of designing and reporting
future empirical studies of AOP.

The remainder of this paper is organized as follows. Section 2
provides a short introduction to AOP. Section 3 reports the details
of our research methodology and logistics. Section 4 provides an
overview of the selected studies. Main findings from our SLR are
presented in Section 5. Section 6 reports the limitations of the re-
view. Finally, Section 7 concludes this paper.

2. Background: aspect-oriented programming (AOP)

At the heart of aspect-oriented development paradigm is the
idea of concern. Though an abstract concept, a concern at imple-
mentation level is usually considered as a particular behavior or
functionality in a program. Concerns can be very primitive, such
as adding a variable. High level concerns are coarser, such as trans-
action management. Of particular interest in AOP is a concern
whose implementation is scattered over various system modules,
or when a particular module’s implementation is tangled with dif-
ferent concerns. Scattering and tangling usually go hand in hand
and result into what is termed as crosscutting of concerns. Cross-
cutting concerns are homogeneouswhen the same or almost similar
behavior is replicated at multiple points in the implementation,
such as logging or tracing. When the behavior at multiple points
is different, the crosscutting concern is termed heterogeneous. With
other programming paradigms (e.g., object-oriented), even if a
developer chooses a system’s structure carefully, the implementa-
tion of such concerns may still end up being non-modular, i.e.,
scattered and tangled across multiple modules. The proponents

872 M.S. Ali et al. / Information and Software Technology 52 (2010) 871–887

of AOP claim that AOP provides mechanisms to modularize and
encapsulate crosscutting concerns which appear due to ‘‘dominant
decomposition”1 [8].

The core idea of AOP, separation of concerns, has been around
for many years with different names. Earlier approaches such as
adaptive programming [9], subject-oriented programming [10]
and composition filters [11] shared the same idea. However, the
model of AOP (as implemented in the AspectJ programming lan-
guage) proposed by Kiczales et al. [12] proved to be a simpler
extension to the popular OOP language Java. It is now well sup-
ported by the Eclipse project,2 and many different plugins have
been developed. The remainder of this section briefly discusses dif-
ferent features of AOP in languages such as AspectJ.

In AOP languages, crosscutting concerns are encapsulated in an
aspect, a class-like construct. This encapsulation is sometimes collo-
quially termed as aspectization. A single aspect can contribute to the
behavior of a number of methods or objects through implicit invo-
cation of additional behavior, which is composed at specific points
of interest in the execution of a program. These points of interest
are called join points. A pointcut is a language construct which de-
fines a join point in the code. The additional behavior can execute
before, after or around join point, and is defined in an advice. Pro-
grams written with aspects can be composed and compiled with
the base code. Aspect-oriented code is either transformed into the
base code language where it becomes indistinguishable for the
interpreter, or modifies the interpreter/environment to understand
aspect-oriented code. Since it is difficult to change a programming’s
runtime environment, a special program transformation process
called weaving is used. The weaving converts aspect-oriented
code into object-oriented code with the aspects integrated into
the code.

3. Research method

We conducted an SLR, which is a well-defined and rigorous
method to identify, evaluate and interpret all relevant studies
regarding a particular research question, topic area or phenome-
non of interest [13]. The goal of an SLR is to give a fair, credible
and unbiased evaluation of a research topic using a trustworthy,
rigorous and auditable method. A common reason for undertaking
an SLR is to summarize existing evidence concerning a technology
[13]. Hence, an SLR was an appropriate research method for our re-
search that aimed at identifying and evaluating the evidence
regarding the benefits and limitations of the AOP paradigm. For
our SLR, we followed the guidelines for performing SLRs as pro-
posed by Kitchenham and Charters [13]. The remainder of Section 3
discusses our approach in more detail.

3.1. Development of review protocol

Prior to conducting our systematic review, we developed a re-
view protocol. A pre-defined protocol reduces researcher bias
and increases the rigor and repeatability of the review. An SLR pro-
tocol specifies the review plan and procedures by describing the
details of various strategies for performing the systematic review.
In particular, it defines the research questions, search strategy to
identify the relevant literature, inclusion and exclusion criteria
for selecting relevant studies, and the methodology for extracting
and synthesizing information in order to address the research
questions. The protocol was developed following the process
shown in Fig. 1.

After identifying the research questions (discussed in Sec-
tion 3.2), we defined the search scope and decided on a search
strategy (discussed in Section 3.3). At this stage we designed the
search string to be used to search on various electronic sources
(see Table 1 for the list of venues that we searched). As part of this
step, we conducted a number of pilot searches to test the search
string. Defining a good search string is important to get a high re-
call rate as well as a high precision. Once the search scope and
strategy were defined, we developed a number of study selection
criteria (discussed in Section 3.4). Specifically, we defined explicit
criteria to include and exclude studies that were identified through
the search phase. The next step was to decide on the data elements
to be extracted which can provide important information in
answering the research questions. We initially designed a preli-
minary data extraction form based on our initial understanding.
To evolve and subsequently improve the data extraction form,
we performed a small pilot study on eight relevant studies that
we had identified during the pilot search phase. Pilot data extrac-
tion step helped us to finalize the data elements that need to be ex-
tracted during the data extraction phase of the review. As a final
step in designing the protocol, we decided our strategy to synthe-
size the extracted data and how to present the results of this
synthesis.

3.2. Research questions

There have been many conflicting claims regarding the benefits
of AOP. Thus, our main goal is to summarize evidence related to
those claims. Hence our first research question is:

RQ-1: What empirical evidence has been presented in the re-
search literature regarding the benefits and limitations of aspect-
oriented programming in comparison to non-aspect-oriented
programming approaches?

It has been reported several times that the results of a system-
atic literature review can only be as good as the evidences available
[14]. The overall strength of a body of evidence is usually referred
to as strength of evidence [15]. An analysis of the strength of evi-
dence is very important for readers of an SLR to know how much
confidence they can place in the conclusions and recommenda-
tions arising from such reviews. Hence, the second research ques-
tion explored in this SLR is:

RQ-2: What has been the strength of evidence in support of the
stated findings?

3.3. Search strategy

For a systematic review, a well-planned search strategy is very
important so that every relevant piece of work can be expected to
appear in the search results (high recall [15]) without being clut-
tered by irrelevant studies (high precision [15]) [16].

We describe our search strategy from the following dimensions:
search scope (both time and space), search method (i.e., automatic
search or manual search), search strings, and electronic data
sources used. By electronic data sources, we mean both index en-
gines (e.g., web of science and EI Compendex) and publishers’ sites
(e.g., ScienceDirect and IEEEXplore).

3.3.1. Search scope
We limited our literature search over two dimensions: publica-

tion period (time) and publication venues (space). In terms of pub-
lication period, we limited our search to papers published over the
period of July 1997 and July 2008. We chose the start date as July
1997 because the first paper on AOP (i.e., Kiczales et al. [1]) ap-
peared in ECOOP’97. The end time is July 2008, because we per-
formed our search at this time. Hence, any paper published after
July 2008 is not included. In terms of publication venues, we

1 A good definition of ”dominant decomposition” can be found on this site: http://
www.aosd.net/wiki/index.php.

2 http://www.eclipse.org/aspectj/.

M.S. Ali et al. / Information and Software Technology 52 (2010) 871–887 873

http://www.aosd.net/wiki/index.php
http://www.aosd.net/wiki/index.php
http://www.eclipse.org/aspectj/

selected 15 venues (six conferences and nine journals). These ven-
ues were enlisted in first column of Table 1. AOSD, TAOSD, ECOOP,
and OOPSLA were selected because they are well-known venues
where AOP researchers are likely to publish their research results.
ICSE, ASE, FSE, IEEE Software, IET Software, TSE, TOSEM, JSS, IST,
SPE, and SQJ were selected because they are known for publishing
high quality software engineering papers in general.

3.3.2. Search method
We used two search methods, automatic search and manual

search. Automatic search refers to the search performed by execut-
ing search strings on search engines of electronic data sources.

Manual search refers to a search performed by manually browsing
journals or conference proceedings. We tried to use manual search
whenever the effort required was affordable because manual
search can avoid missing relevant literature compared to auto-
matic search. However, for some journals, the number of papers
published in them can be over several thousands; and manually
browsing all the papers of such a journal is too time-consuming.
Thus we used automatic search for those journals that were ex-
pected to contain several thousands of papers. The column ‘‘search
method” of Table 1 shows which search method was used for each
venue. All conference venues were searched manually; and all
journals (except TAOSD) were searched by automatic search.

3.3.3. Search string and electronic data sources
For the automatic searches, we used the following search string:

ððaspectANDorientedÞORaspect
orientedOR ððcrosscutORcrosscuttingORcross# cuttingÞ
ANDconcernÞORpointcutORjoinpointOR ‘joinpoint’ORaspectjÞ

This search string was constructed after performing a number of
pilot searches (see Fig. 1). Different electronic data sources provide
different features (e.g., different field codes and syntax of search
strings). When executing the search string on each electronic data
source, we constructed a semantically equivalent search string for
each electronic data source. Although the exact search strings exe-
cuted on those electronic data sources are different, all of them are
semantically equivalent to the above search string. The electronic
data source used for each venue is shown in the ‘‘electronic data
sources” column of Table 1. It can be seen that the electronic data
sources we used do not include index engines, such as Web of Sci-
ence, EI Compendex, and Google Scholar. This is because we se-
lected the electronic data source provided by the publisher if
multiple electronic data sources were available for a venue.

Table 1 also shows the count of the studies in each step of the
study selection process (see Fig. 2). For automatic search, the num-
ber in the column ‘‘Papers retrieved” indicates the number of pa-
pers returned by the electronic data source after running the
search. For manual searches, the number indicates the number of
papers browsed (i.e., the number of papers in each venue). The col-
umn ‘‘Papers full-text Read” indicates the number of papers left for
each venue after primary study selection on the basis of title and
abstract. We read the full texts of all these papers. The column
‘‘Papers selected” indicates the number of papers finally selected
from each venue. All these papers were critically analyzed.

Identification of
research questions

Define search scope
and strategy

Define inclusion/
exclusion criteria

Perform pilot
searches

Define data synthesis
and presentation

strate

Design data
extraction form

Perform pilot data
extraction

Fig. 1. Development process for the review protocol.

Table 1
Overview of search results and study selection.

Venues Papers
retrieved

Papers full-
text Read

Papers
selected

Search
method

Electronic
data sources

AOSD 125 39 6 Manual NA
TAOSD 32 12 2 Manual NA
ECOOP 265 6 3 Manual NA
OOPSLA 334 10 2 Manual NA
ICSE 568 19 3 Manual NA
ASE 543 4 0 Manual NA
FSE 335 6 1 Manual NA
IEEE Software 124 5 0 Automatic IEEEXplore
IET Software 335 7 2 Automatic IEEEXplore
TSE 195 9 1 Automatic IEEEXplore
TOSEM 148 4 0 Manual IEEEXplore
JSS 33 0 0 Automatic ScienceDirect
IST 154 5 0 Automatic ScienceDirect
SPE 25 5 1 Automatic Wiley

InterSc.
SQJ 91 2 1 Automatic Springer

3307 133 22

AOSD – International Conf. on Aspect-Oriented Software Development.
TAOSD – Transactions on Aspect-Oriented Software Development.
ECOOP – European Conference on Object-Oriented Programming.
OOPSLA – Int. Conf. on Object Oriented Prog., Systems, Lang., & App.
ICSE – International Conference on Software Engineering.
ASE – International Conference on Automated Software Engineering.
FSE – International Symposium on Foundations of Software Engineering.
TSE – IEEE Transactions on Software Engineering.
TOSEM – ACM Transactions on Software Engineering Methodology.
JSS – Journal of Systems and Software.
IST – Information and Software Technology.
SPE – Software – Practice and Experience.
SQJ – Software Quality Journal.

874 M.S. Ali et al. / Information and Software Technology 52 (2010) 871–887

Fig. 2 below shows the process for selecting papers, divided into
three stages. The first stage was the literature search (both manual
and automatic) identified 3307 papers. In the second stage, we ex-
cluded irrelevant papers based on their title and/or abstract. This
step resulted in a set of 133 papers. In stage three, we read the full
text of these papers in order to select relevant studies based on our
selection criteria. This is discussed in further detail in Section 3.4.

3.4. Selection criteria

From the papers published in the venues enlisted in Table 1, we
identified 133 papers reporting empirical evidence on AOP.
However, we included only those papers that reported empirical
studies which compared AOP-based solutions with non-aspect-
oriented solutions. The following are the exclusion criteria:

$ Editorials, position papers, keynotes, reviews, tutorial summa-
ries and panel discussions.

$ Papers reporting lessons learned, expert judgments or anecdotal
reports, and observations.

$ Papers that compare different AOP techniques or models (rather
than AOP versus non-AOP techniques).

$ Studies that provide empirical evidence of the claimed benefits
of a specific AOP model, framework, or technique but do not
provide a comparison with any non-AO counterpart.

One of the included papers [E] was reported in more than one
venue. We selected the one with a more thorough account of the
empirical work. We kept the record of paper citations and inclu-
sion/exclusion decisions using a citation management software
and a spreadsheet application.

3.5. Quality assessment

We performed the quality assessment checks on the selected
studies during this step. Table 2 lists the set of questions against
which each of the selected studies was assessed for the quality of
the used method and the quality of the reporting. The quality
assessment instrument was adopted from the instrument used
by Dybå and Dingsøyr [17]. This instrument was informed by those
proposed for the Critical Appraisal Skills Programme (CASP) (in
particular, those for assessing the quality of qualitative research

[18]) and by principles of good practice for conducting empirical
research in software engineering [19]. As confirmed by the authors
(via personal communication), the instrument has general applica-
bility to assess the quality of empirical studies in software engi-
neering [20]. Hence, we adopted this instrument in our study.
However, instead of using a dichotomous scale during the assess-
ment, as used by Dybå and Dingsøyr [17], we decided to use a three
point scale to answer each question, either as ‘Yes, ‘To Some Extent’
or ‘No’. By using a three point scale, we did not neglect the state-
ments where authors provided only limited information to answer
the assessment questions. Answers to every quality assessment
question were assigned numerical values (i.e., Yes = 1, No = 0, and
To Some Extent = 0.5). A quality assessment score for a study was
given by summing up the scores for all the questions for a study.
This overall score was considered as the study’s quality assessment
score. Results of the quality assessments are provided in Table 10
(Appendix B). We discuss the results of the quality evaluation in
Section 4.2.

3.6. Data extraction

The selected primary studies were read in depth in order to ex-
tract the data needed to answer the research questions. Three
researchers read the selected papers in parallel. Data were ex-
tracted based on a detailed set of questions. Some of the fields of
our data extraction form included: study ID, targeted domain,
study aim, crosscutting concerns aspectized, studied characteris-
tics, metrics used, study findings, assessment approach, type/size
of the system, AOP/non-AOP languages used, research method
used, and type of subjects. We kept a record of the extracted infor-
mation in a spreadsheet for subsequent analysis. We noted the
lines and/or paragraphs of the paper where the information was
located. This approach helped us to quickly locate and validate
the extracted information, and resolve disagreements. This helped
to increase our confidence that the extraction process was consis-
tent and minimally biased.

3.7. Data synthesis and aggregation

During an SLR, the extracted data should be synthesized in a
manner suitable for answering the questions that an SLR seeks to
answer [13]. For the reported SLR, we decided to perform descrip-
tive synthesis of the extracted data and to present the results in

Search for papers from
relevant journals and

conference proceedings

Read the full text of the
studies and critically

appraise empirical work

Exclude irrelevant studies
reading the title and/or

abstracts

Stage 1

Stage 2

N=3,307

N=133

N=22

Stage 3

Fig. 2. Paper selection process.

Table 2
Quality assessment checks (adopted from [17]).

No. Question

Q1 Is there a rationale for why the study was undertaken?
Q2 Is there an adequate description of the context (e.g. industry,

laboratory setting, products used, etc.) in which the research was
carried out?

Q3 Is there a justification and description for the research design?
Q4 Has the researcher explained how the study sample (participants or

cases) were identified and selected, and what was the justification for
such selection?

Q5 Is it clear how the data was collected (e.g. through interviews, forms,
observation, tools, etc.)?

Q6 Does the study provide description and justification of the data
analysis approaches?

Q7 Has ‘sufficient’ data been presented to support the findings?
Q8 Is there a clear statement of the findings?
Q9 Did the researcher critically examine their own role, potential bias and

influence during the formulation of research questions, sample
recruitment, data collection, and analysis and selection of data for
presentation?

Q10 Do the authors discuss the credibility of their findings?
Q11 Are limitations of the study discussed explicitly?

M.S. Ali et al. / Information and Software Technology 52 (2010) 871–887 875

tabular form. Analysis of the data revealed that each study investi-
gated (either qualitatively or quantitatively) the effect of AOP on
one or more characteristic, and concluded with some appraisal or
critique of the use of the AOP in comparison with a non-AOP ap-
proach. For the purpose of our review, we consider a ‘characteristic’
as any property or feature of the software system, development
aid, or process, which is affected by the use of the AOP paradigm,
and where such an effect is supported by evidence. In cases where
the effect on a characteristic is studied indirectly while presenting
intuitive analytical remarks or expert judgment with no direct sup-
port through any empirical data (such as tabular or graphical pre-
sentation of measurements), the results are not considered in our
review.

In order to synthesize the extract data to answer RQ-1 (Sec-
tion 3.1), we model the question ‘what are the benefits and limita-
tions of AOP?’ as ‘what effect AOP has had on the studied
characteristics?’ In empirical research, effect of a treatment is sig-
nified by effect size, which is an indicator of its magnitude. Effect
size measures can be standardized or un-standardized [21]. Stan-
dardized effect size measures are independent of the scale since
these are defined in terms of variability in data. Un-standardized
measures are expressed in original scale, and are thus easier to
interpret than standardized measures. Studies in this review
mostly present effect size in terms of un-standardized measures
involving both quantitative and qualitative investigations. Com-
bining effect size results from these studies is not possible since
studies not only examine different characteristics but also employ
different metrics to study the same characteristic. The reported
data in most cases is also very limited. Hence, a Meta-analysis can-
not be performed in such situations [22]. A possible option could
be the vote counting method, which does not depend on actual ef-
fect size values and metrics. Though we are aware that the use of
vote counting as an aggregation approach has been discouraged
[23], researchers in empirical software engineering have also ar-
gued that in situations like ours, it is the only viable method
[22,24].

4. Overview of the reviewed studies

This section presents information related to the method, type
and setting of the 22 selected primary studies.3 Year-wise distribu-
tion of the studies revealed that over the past decade there has been
a rise in the number of studies reported (see Fig. 3). This depicts an
increased interest from the community in investigating the useful-
ness and usability of modularizing crosscutting concerns. A majority
of the selected studies (63.6%) were published in highly ranked soft-
ware engineering conferences such as ICSE, OOPSLA, ECOOP, and
AOSD.

4.1. Reported research methods

It is important that a suitably designed and rigorously con-
ducted empirical study follows a well-defined research methodol-
ogy to ensure the reliability and validity of the findings. An
empirical study is expected to explicitly report and justify the used
research methodology and its related logistics. Table 3 provides
information about the type of research methods reported by the
authors in the reviewed studies. It is evident that ‘case study’
and ‘experiment’ research methods are the dominant approaches
used by researchers to evaluate and compare their AO-solutions.
Out of 22 selected studies, only one study reported the use of ‘sim-
ulation’ method, while two studies utilized benchmarks to evalu-

ate the performance of aspectized code. Three studies, however,
do not state their selected research method.

4.2. Methodological quality

While assessing a study’s quality, it is usually difficult to sepa-
rate the methodological rigor used for the research reported in a
paper from the quality of reporting the research in that paper
[14]. We therefore grouped the first eight questions as assessments
checks for the quality of reporting and rigor, the results of which
are listed in Table 4. Table 5 shows the results based on the scores
for the last three questions, which are related to the evaluation
credibility.

Table 6 summarizes the overall rating of the reviewed studies. It
should be noted that our rating scale is non-linear. We refer the
reader to Table 10 (in Appendix B) for the detailed quality profile

0

1

2

3

4

5

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

N
um

be
r

of
 s

tu
di

es

Fig. 3. Year-wise distribution of studies.

Table 6
Overall quality rating of included studies.

Quality score Poor
(0–5.5)

Fair
(6–7)

Good
(7.5–8.5)

High
(9–11)

Number of studies 5 6 5 6
Percentage of papers 22.7 27.2 22.7 27.2

3 Appendix-I lists the references to these studies.

Table 3
Research methods reported.

Method Studies Number Percent

Case study [A], [B], [D], [F], [G], [J], [Q], [S], [T] 9 40.9
Experiment [C], [I], [M], [O], [P], [R], [U] 7 31.8
Benchmarking [H], [L] 2 9.09
Simulation [K] 1 4.54
Not mentioned [E], [N], [V] 3 13.6

Table 4
Rating quality of reporting and rigor of studies.

Quality score Poor (0–5) Fair (5.5–6.5) Good (7–8)

Number of studies 4 9 9
Percentage of papers 18.2 40.9 40.9

Table 5
Rating credibility of evidence of included studies.

Quality Score Poor (0–1) Fair (1.5–2) Good (2.5–3)

Number of studies 18 2 2
Percentage of papers 81.8 9.1 9.1

876 M.S. Ali et al. / Information and Software Technology 52 (2010) 871–887

of a specific study. Below, we briefly discuss the observations from
the information provided in these tables.

$ Table 4 shows that a majority of the reviewed studies are good
in terms of presentation. However, one can observe the sparse
entries (almost one-third) in the columns Q3 and Q6 in Table 10
which are related to the description and justification of research
design and data analysis. Three studies ([G, M, U]) appeared to
be the most rigorous and well documented.

$ It is clear from Table 10 that, except for two studies ([O, R]), the
majority of the studies do not explicitly discuss the issues of
bias, validity and reliability of their findings. Only four studies
([M, O, R, U]) discuss validity issues, while only half of the stud-
ies discuss the limitations of their approaches. This renders the
overall strength of the evidence reported in these studies very
low.

$ From Table 10, it should be noted that none of the studies got a
full score on the overall quality assessment criteria. Six studies
[D, G, M, O, R, U] scored 9 or higher on the overall quality rating
and are considered high quality studies. Five studies [B, H, N, P,
V] are considered poor in our quality rating. Studies with high
overall quality score are referenced in bold while those with
poor quality rating appear in italics in Tables 8, 10 and 11.

While reading the papers, we found it quite difficult to extract
the information regarding the data collection and analysis

approach as many authors did not report how the data were gath-
ered and analyzed. We also found that a majority of the reviewed
studies referred to their approach as ‘case study’ or ‘experiment’
(Table 3). However, most of the studies did not provide any justi-
fication for the adopted methodology. Hence, it may not always
be clear to a reader why a particular research method was adopted.
For both practitioners and researchers, it may be helpful to know
the motivation for the research design, in order to assess the rele-
vance and the reliability of the results. These results suggest that
there is a lack of knowledge and understanding regarding the
selection, design and conduct of an empirical study.

4.3. Study settings

An overview of the contexts and settings in which empirical
evaluations are performed can reveal the level of empirical re-
search practice in a discipline. However, it is difficult to delineate
what constitutes the context or settings of an empirical study.
We have also observed that studies provide limited information
regarding their experimental setup, and in most of the cases it
was not explicitly reported in the reviewed studies for this system-
atic review. Although we encountered studies conducted in differ-
ent settings, we found three dimensions of the study settings
common among all the studies: scope, studied objects and system
type. Below, these are discussed in more detail. Table 7 provides an
overview.

4.3.1. Scope
We found that none of the reviewed studies was conducted

within an industrial environment. Rather, all of the studies were
conducted in an academic/laboratory environment where applica-
tion of the aspect-oriented solution was assessed within a limited
scope. This situation is not surprising as it is generally not feasible
in an industrial setting to develop same application (same feature
set) with AOP and non-AOP approaches and then compare the re-
sults. However, it would be very useful to study a migration from
OO to AOP in an industrial setting.

4.3.2. Studied objects
We observed that only four studies involved human subjects

where the primary objective was to consider the cognitive impact
of the aspect-oriented development process on the developers. The

Table 7
Three dimensions of study settings.

View Settings Studies Number

Scope Industrial
study

None 0

Academic/Lab
study

All 22

Studied
objects

Humans [M], [O], [R], [U] 4
Applications Remaining reviewed studies 18

System
type

‘Toy’ system [M], [O], [R], [U] 4
Real world
application

[C], [D], [G], [I], [L], [T] 6

Sample
application

[A], [B], [D], [E], [F], [H], [J], [K], [N],
[P], [Q], [S], [V]

14

Table 8
Effect of AOP on studied characteristics – high quality studies are shown in bold, low quality studies are shown in italic.

High-level characteristics Characteristic Positive Negative Insignificant Mixed Study count

Product related (external)
Performance Performance [I], [J], [L], [P] – [C], [K] [H] 7

Memory consumption [J], [P] 2

Code size Code size [A], [L], [N] – [M], [R], [T] – 6
Redundancy [C] – – 1

Product related (internal)
Modularity Modularity [M], [S], [V] – [R] [E] 5

Design quality – – [R] – 1
Pattern composability – – [B] 1

Evolvability Changeability [C] – [U] – 2
Extensibility [C] – – 1
Sustainability [F] – – – 1
Design stability [G], [Q] – – – 2
Maintainability [M] – [U] 2
Configurability [C], [L] – – – 2

Cognition Understandability [M], [O] [U] – – 3
Development efficiency – – [R] [O] 2

Language mechanism Exception handling [A], [N] [D] – [T] 4

24 2 10 5 Total: 42

M.S. Ali et al. / Information and Software Technology 52 (2010) 871–887 877

remaining studies only discussed software applications as the
studied objects without any explicit account of the involvement
of human subjects.

4.3.3. System type
Every reviewed study utilized some software system to study

the effect of AOP. Based on the usage of the systems studied we
categorized these into three types:

– ‘Real-world applications’ that had been or were being used in a
real-world practice.

– ‘Sample applications’ that were or had largely been used in
research studies.

– ‘Toy systems’ that were mostly pedagogical applications devel-
oped or used specifically for evaluation purposes in the study.

Only six studies (27.3%) considered mature real-world applica-
tions, while a majority of the studies focused on sample applica-
tions which were mostly medium sized systems. It is also
evident from Table 7 that the studies evaluating the cognitive im-
pact of AOP versus non-AOP on developers were carried out using
‘toy systems’ for manageability and simplicity of the reported
studies.

4.4. Metrics

We also looked at the metrics used in the reviewed studies. Our
observation is that the work related to aspect-oriented metrics has
borrowed most of the ideas from OO metrics, especially the work
of Chidamber and Kemerer [25]. However, it may not be possible
to apply all existing OO metrics straightforwardly to aspect-ori-
ented software since AOP introduces new abstractions. As a result,
most of the empirical studies conducted during the first few years
after the introduction of the AOP concepts are anchored in qualita-
tive assessment. Researchers have recently introduced several AOP
metrics suites such as reported by Ceccato and Tonella [26], San-
t’Anna et al. [5] and Zhao [27]. Table 12 in Appendix B provides a
detailed summary of the metrics used in different studies and
the properties they measure quantitatively. Some of these metrics
have been adopted in many studies included in our review, espe-
cially a metric suite proposed in [5] (a collection of size, coupling,
cohesion and separation of concern metrics) has been used in al-
most one-third of the reviewed studies which include [A, B, E, G,
Q, T]. However, the use of this metric suite appears to be more fre-
quent within a group of researchers who developed the metrics
suite.

4.5. Systems investigated

Table 11 (in Appendix B) summarizes the size and type of the
studied systems reported the reviewed studies. The types of the
studied systems include operating system, virtual machine,
embedded software, middleware, frameworks and applications,
which provides a good coverage of the typical types of software
in industry. Regarding the size of the software systems, most of
them fall into medium to large sized categories (in terms of lines
of code), which show that the systems under investigation are
not trivial and are comparable to industrial software systems.

4.6. Implementation languages

Each of the reviewed studies compares an aspect-oriented ver-
sion of a software system with its nonaspect-oriented counterpart,
which in almost all the cases was the original implementation of a
system. We term the language that is used to implement the origi-
nal non-AOP version as ‘comparison language’. Java is the most fre-

quently used comparison language; 19 out of 22 studies used Java
(see Table 11). Apart from Java, two studies used C++, while three
studies used C programming language.

AspectJ is the most frequently used language for AOP imple-
mentation. Eighteen studies (81.8%) used AspectJ; out of which
16 studies used AspectJ exclusively, while two studies, [A] and
[G], used EJFlow and CaesarJ respectively along with AspectJ.
Two studies [J, K] used AspectC++, one study [C] used AspectC,
and one study [I] used GluonJ language for programming in as-
pect-orientation. It is interesting to note that except one study
[C], which compares AOP versus non-AOP implementations in a
structured paradigm, all remaining studies (95.45%) compared
AO solutions with their OO counterparts.

5. Results and discussion

This section presents the findings our analysis of the data ex-
tracted from the reviewed papers in order to answer the research
questions. We anchor our presentation on the characteristics stud-
ied in the selected papers.

Table 8 lists 16 identified characteristics with cited references.
Since detailed presentation of each characteristic in the study con-
text is not feasible, we prefer to discuss closely related characteris-
tics in concert. Characteristics are closely related when there is
some common goal of evaluation. For example, changeability,
extensibility, sustainability, maintainability, design stability, etc.
can be considered related, since these are all facets of evolvability
in a software system and a common assessment objective is to
understand evolution under AO. Grouping related characteristics
into high-level characteristics (six grey boxes in the left-hand side
of Table 8) not only depicts the common goals of the studies, but
also to provides leverage to better understand the effect due to in-
creased sample size.

5.1. Benefits and limitations of AOP

Our assessment of the effectiveness and limitations of AOP is
collectively based on the findings of individual primary studies
regarding the effect of AOP on various characteristics. Typically,
studies present four types of conclusive statements:

$ Positive – when authors note improvement with AOP use com-
pared to non-AOP implementations.

$ Negative – when the consequences of introducing aspects are
not beneficial in the context.

$ Insignificant – when AOP solution does not yield better results
than earlier solutions, or there is no significant evidence of
improvement.

$ Mixed – when the study concludes with a mix of above three
statement types and does not provide any aggregated statement
about the effect that AOP had on the studied characteristic.

These conclusions (summarized in Table 8) provide important
information in answering our main research question (RQ-1). Be-
low, we discuss six high-level characteristics and briefly discuss
our conclusions on the effect of AOP. Our conclusions, however,
are only based on a limited number of primary evaluations found
in the reviewed studies. We maintain that since every study dis-
cusses the effect of aspect-orientation with specific goals, settings,
and limitations, it is difficult to draw precise conclusions.

5.1.1. Performance
There are mixed reports regarding the performance of aspect-

oriented solutions. We found nine studies examining performance
related characteristics. Kourai et al. [I] attempted to improve

878 M.S. Ali et al. / Information and Software Technology 52 (2010) 871–887

execution performance with aspect-oriented application-level
scheduling by separation of the scheduling code. Using a special
weaver for performance tuning of the selected application, they
note improvements in average response time as compared to the
original implementation. Lohmann et al. [J] conducted a practical
case study of an embedded weather station product line, compar-
ing C-based, OOP-based, and AOP-based implementations. They
found that the C-based and AOP-based versions are comparable
in performance and using AOP instead of OOP led to significant
reduction in memory and hardware costs. The AOP-based imple-
mentation achieved good separation of concerns (SoC). Based on
an experience of re-factoring major middleware functionalities
into aspects, Zhang et al. [L] reported around 8% performance
improvements on third party benchmarks with less overhead. Pra-
tap et al. [P] also report improvements in throughput while using
AOP to selectively enable and disable middleware functionality.
They utilized aspects to subset middleware in order to reduce code
bloat and configuration complexity. In their effort, they developed
a framework (FACET) for aspect composition where aspects encap-
sulate optional features, enabling the user to select only those fea-
tures that are necessary. They report an experiment with various
event channel configurations in the presence and absence of COR-
BA. Their results indicate that CORBA-disabled FACET configura-
tions significantly reduce the memory footprint to almost half.
Footprint reductions by individual features (enabling one feature
at a time), however, was not significant. It is important to mention
that their study does not consider the size of the Object Request
Broker (ORB) in their results. Coady and Kiczales [C] evaluated
the runtime cost of introduced aspects in a Unix-based operating
system kernel. They found that the AO implementation had negli-
gible impact on performance with minor overheads. However, Sia-
dat et al. [K] did not experience any performance improvement in
their case study of applying optimizations to a network simulator.
Harbulot and Gurd [H] considered the problem of tangling code in
high performance scientific software, and treated parallelism as a
separate concern. They conclude that the underlying design of
the application is crucial for allowing aspect-oriented re-factoring.
Hence, it can be concluded that it is still an open question whether
or not the AOP paradigm can be successfully used for high perfor-
mance scientific applications.

5.1.2. Code size
Kiczales et al. [1] mentioned that AOP can significantly affect

code size of an application by eliminating scattering and tangling
in the code. Since then it has been a general expectation that as-
pects reduce a program’s size by improving reuse and minimizing
code duplication. Many studies have focused on this aspect of as-
pect-orientation. Study of Coady and Kiczales [C] observed a reduc-
tion in redundant code. Zhang et al. [L] report around 10KLOC or
40% reduction in the size of a middleware core by factoring out ma-
jor middleware (ORBacus) functionality as aspects. They achieved
around 35% fewer methods and 17% simplification in terms of
the control flow. Cacho et al. [A] also experience reduction in lines
of code (LOC) and number of exception classes while evaluating an
AO model for exception handling implementation. Lippert and
Lopes [N] specifically studied size of exception handling code for
different aspect designs while partially reengineering a Java-based
framework. They found large reductions in the amount of excep-
tion handling code present in the application – from 11% of the to-
tal code in the OOP version to 2.9% in the AOP version. They
concluded that in the best-case scenario, exception detection and
handling code was reduced by a factor of four, by using aspects
and in the worst case LOC with aspects was of the same order of
magnitude as the original implementation.

Besides the positive remarks above, certain situations might not
yield lesser LOC in aspect-oriented implementations. Tonella and

Ceccato’s [M] observed that the code size was not significantly af-
fected when re-factoring aspectizable interfaces. They conclude
that one reason for this could be the relatively small size of code
devoted to implementation of aspectizable interface methods.
Madeyski and Szala [R] did not notice any significant effect on code
size in an experiment to assess the impact of AO on design quality
at source code level. Filho et al. [T] also did not find any major
improvements in size measures while modularizing exceptional
handling concerns in four software applications. Unlike the study
reported in [N], they observed slightly higher numbers (0–13%)
for various size metrics, although a few instances showed improve-
ments (0.5–6.5%). Having analyzed the findings reported about the
affects of using AOP on the code size of an application, we can con-
clude that aspect-oriented implementations result in lesser num-
ber of lines of code, or at worst maintain the same application
code size as non-aspect-oriented implementations. We also found
that when crosscutting concerns are homogeneous, aspectization
significantly reduce redundant code fragments.

5.1.3. Modularity
Modularity is one of the characteristics considered to be directly

affected by the idea of AOP. Though many researchers have advo-
cated the positive effect of AOP on modularity, only a few have at-
tempted to empirically validate it. Each of the reviewed studies in
some respect discusses modularity. However, only five (22.7%) of
them presented evidential data. Hannemann and Kiczales [V] con-
ducted a qualitative investigation to explore the effect of AOP tech-
niques on the implementation modularity of design patterns. They
compared Java and AspectJ implementations of the 23 Gang of Four
(GoF) patterns [28] and foundmodularity improvements (with tex-
tual localization) in 17 cases where there was some form of cross-
cutting between a pattern’s roles and its structure. Their
assessment was based on modularity related properties: locality,
reusability, composition transparency, (un)pluggability. However,
they did not provide any justification for their choice of properties.
Tonella and Ceccato [M] report improvements in modularity after
migrating aspectizable interfaces to aspects. In their experiment
such migration resulted in an increased cohesion of operations in
each class, and a significant decrease in coupling with the inter-
faces. Lobato et al. [S] proposed an aspect-oriented architecture
(ArchM) for code mobility, and studied its usability and usefulness
while comparing with a non-AO architecture. Their assessment re-
vealed that an aspect-oriented architectural solution promoted
better modularity as it reduced overall architectural coupling by
making inter-component relationships uni-directional. In another
experiment, Madeyski and Szala [R] gathered various statistics to
measure the effect of AOP on systems’ modularity. Their study con-
cludes that the effect was not confirmed, and points out the need
for more detailed evaluation. Garcia et al. [E] conducted a quanti-
tative replication of the same study reported in [V] based on cou-
pling, cohesion and separation of concern metrics. Although their
results show that most aspect-oriented implementations provided
better separation of concern, in some cases it resulted in higher
coupling and more complex operations. No general conclusion
was drawn in their study, rather they discussed the situations
when aspect introduction provides benefits and when it does
not. We found that none of the reviewed studies reported any neg-
ative effect of AOP on modularity under a specific situation.

Madeyski and Szala [R] studied design quality of AOP versus
OOP implementations in terms of modularity and size measures.
They studied design quality at the source code level, and referred
it as ‘code quality’ in their work. For the same project developed
during the study, they gathered different statistics to measure
which implementation, Java or AspectJ, was better with respect
to modularity and size. They applied various statistical tests to
analyze the data, and pointed out that the impact of AOP on design

M.S. Ali et al. / Information and Software Technology 52 (2010) 871–887 879

quality metrics (e.g. package level, and class/aspect level) was not
significant. They conclude that varying software development
skills to effectively make use of the features and limitations of As-
pectJ might have rendered AOP’s effect on design quality insignif-
icant. Their study, however, highlights the need for further
assessment of this characteristic.

The study performed by Cacho et al. [B] considered the problem
of applying design patterns in real-world software where pattern
roles are composed for required quality behavior. They argue that
composing multiple patterns affects various concerns and pattern
roles crosscut several business classes. In order to investigate
how well AOP can improve separation of pattern roles and the con-
sequences of aspectizing pattern compositions, they assessed 62
pair-wise compositions in three different systems. They noticed
that aspectization results depend on the patterns involved, compo-
sition intricacies, and the application requirements. They found
that there are situations in which aspectization is not straightfor-
ward and developers need to select among available design op-
tions. However, they did not draw a general conclusion. Hence, it
can be concluded that this work needs to be extended in future re-
search by using other AO languages and metrics.

5.1.4. Evolvability
Real-world software needs to evolve continually in order to

cope with imperfections and changes in user requirements and
operational environment. The nature of change actions can be cor-
rective, adaptive and perfective (sometimes also preventive) [29].
Good software should thus be flexible enough to absorb required
changes with minimum effort. Developing software where individ-
ual concerns are well modularized significantly aids in achieving
desirable characteristics like stability, maintainability, changeabil-
ity, and extensibility. Programming in aspect-oriented languages
has been suggested a way to realize these characteristics. We
found 11 studies in eight papers investigating the ability of as-
pect-oriented software to accommodate change.

Coady and Kiczales [C] conducted a longitudinal case study.
They tracked the evolution of the FreeBSD operating system across
three different versions. They introduced several aspects into ver-
sion 2 code, and then rolled them forward into their subsequent re-
leases in the next two versions. They focused on the evolution of
specific crosscutting concerns in isolation. They found that in the
AO implementation of each concern, changes to the concern itself
were better localized due to textual locality, configuration changes
mapped directly to modifications to pointcuts and/or makefile op-
tions, and aspectization solutions provided extensibility due to im-
proved modularization. Gibbs et al. [F] have presented the results
from a longitudinal study aimed at testing the sustainability of as-
pects under large scale evolution. During the study of restructuring
the memory management subsystem (MMTk) of a virtual machine
(RVM), they investigated whether the introduction of aspects had
positive, negative or neutral impact in different situations. Positive
impact of each aspect resulted from localization of the implemen-
tation of the crosscutting concerns, while negative impact resulted
from weak representation of invariants, which led to new code
being unintentionally encompassed by the introduced aspects.
However, they reported that aspects in their study did no harm
in terms of a coarse-grained assessment of change tasks and half
of them did better than the original implementation. They con-
cluded that aspects keep pace with changes and provide a means
of better sustaining separation of concerns in system infrastructure
software.

Two studies present empirical work to assess design stability
(resistance to potential ripple effects under modifications [30]) of
aspect-oriented implementations. Greenwood et al. [G] conducted
a quantitative case study comparing OOP and AOP implementa-
tions. They implemented nine changes and assessed the overall

maintenance effects on fundamental modularity properties and
change impact analysis. Design stability was found to be stable,
particularly when the change targeted crosscutting concern. Such
changes tended to be more simple to apply and less intrusive.
Figueiredo et al. [Q] reported similar observations from their study
focusing on the evolution scenarios of two heterogeneous product
lines. According to them, AO implementations for Software Product
Lines (SPLs) tended to have a more stable design particularly when
the required changes targeted optional and alternative features.
Both studies conclude that aspectual decompositions are superior
when considering the Open–Closed principle [31]. However, they
did mention that AO mechanisms do not cope well when introduc-
ing new mandatory features, or changing a mandatory feature to
an alternative one. Aspectual decomposition appeared to narrow
down the boundaries of concern interaction.

Zhang and Jacobson [L] applied the principle of horizontal
decomposition to the original monolithic implementation of ORB-
cus middleware (an implementation of CORBA specification [32])
and re-factored major middleware functionalities into aspects. To
them, such modularization and isolation from the core architecture
enabled better customization and configuration of the middleware.
It resulted in around 17% simplification in terms of control flow
and 22% reduction in coupling.

Bartsch and Harrison [U] conducted an exploratory study with
11 software professionals to study the effect of AOP on maintain-
ability. They defined maintainability as understandability and
modifiability and used corresponding metrics to measure the ef-
fect. Although the results of their experiment suggested that the
object-oriented system under investigation may be more main-
tainable than the AO system, they could not find any statistically
significant evidence for the effects of aspect-orientation. Tonella
and Ceccato [M], however, report that overall maintenance time
in case of AOP is likely to decrease. Although their study revealed
lesser overall maintenance time in case of AOP (as compared to
OOP), the maintenance task chosen in their study might have im-
pacted the results. There is thus a clear need for more empirical
evidence about the potential impact of AOP on this issue.

It is also important to note that only one study examining the
process of change found an insignificant effect. Thus, the evidence
suggests that AOP provides better support for evolution and main-
tenance than non-aspectized solutions.

5.1.5. Cognition
AOP offers new language constructs and mechanisms. It is thus

important to explore how the new paradigm affects the cognitive
dimensions of software development. We found two relevant char-
acteristics investigated in four primary studies. One of these is
understandability, which is considered as the degree to which the
purpose of a system or component is clear to the evaluator/devel-
oper. Second is the development efficiency measured in terms of the
time and effort spent to program AO code.

Walker et al. [O] conducted one of the first experiments to
understand how the separation of concerns provided by AOP af-
fects a programmer’s ability to accomplish different kinds of tasks.
They found that programmers might be better able to understand
aspect-oriented programs when the effect of the aspect code has a
well-defined scope. Although they considered the time taken for
understanding and coding a few implementation tasks by the par-
ticipants, they did not provide any conclusive statement on the ef-
fect of AOP on development efficiency. In another experiment,
Bartsch and Harrison [U] asked 11 software professionals to imple-
ment three changes in both OOP and AOP versions of an online
shopping system. They noticed that understanding and applying
changes to AOP code took more time than the same activity for
OOP code. It is clear that both studies have reported contradictory
results. However, the experimental format in both the studies did

880 M.S. Ali et al. / Information and Software Technology 52 (2010) 871–887

not take into account a detailed investigation of how the system
structure and programmers’ experience might have impacted on
their understanding of AOP code compared with OOP code. In
another experiment, Tonella and Ceccato [M] observed that as-
pect-oriented re-factoring of aspectizable interfaces resulted in a
significantly lower understanding time as compared to OOP while
performing maintenance tasks. They conclude that re-factoring
into aspectizable interfaces improves code understanding as it
separates the implementation from primary class responsibility.

Madeyski and Szala [R] considered the hypothesis that well-
separated concerns are easier to maintain and develop, and hence
the development time using AOP should be less than for a non-AOP
implementation. They conducted an empirical study with three
students to evaluate software development efficiency and design
quality. The participants were asked to develop OO and AO imple-
mentations of a web-based manuscript submission and review sys-
tem following Extreme Programming (XP) practices. Based on the
analysis of the data gathered using pre-defined metrics (e.g. num-
ber of acceptance tests passed, total development time, active and
passive programming time), they found that AOP had no significant
effect on development efficiency as all the developers took almost
the same amount of active time to finish the project. One of the sig-
nificant limitations of this study was the very small sample size.
The authors themselves recommend the use of a larger sample size
to reach conclusive findings.

Due to the contradictory results, AOP’s effectiveness for im-
proved understandability is questionable. We did not find any evi-
dence that AOP has been successful in any setting in significantly
improving development efficiency. The effect of AOP on cognition
has been studied in three papers and the results are not
encouraging.

5.1.6. Language mechanism
With new language constructs, AOP offers new ways to imple-

ment traditional mechanisms. Exception handling is an important
mechanism which has been investigated empirically by AOP re-
search community. We identified four studies addressing this issue
(see Table 8).

Lippert and Lopes [N] applied aspect constructs to modularize
the exception handling code in a Java-based OO framework
(JWAM). They observed that AOP offers better support for different
configurations of exceptional behavior since the contract aspects
could be (un)plugged at compile time. Filho et al. [T] performed a
similar study but they report on the contrary that the reuse of
exception handlers, is not straightforward as advocated by Lippert
and Lopes; rather, it depends on a set of factors such as the type of
exceptions, handler behavior and contextual information. They
suggest that when exception handling is non-uniform, strongly
context dependent and complex, the use of aspects cannot bring
any benefits. Coelho et al. [D] conducted a detailed quantitative
study on the effect of AOP on exception control flows. They evalu-
ated how exception handling aspects interact with aspects imple-
menting other concerns. Based on a comparison of OO versus AO
versions of three applications, they discuss the results on the num-
ber of undetected exceptions, exceptions caught by subsumption
and specialized handlers. They conclude that AO mechanisms neg-
atively affect the robustness of exception aware software systems.
Cacho et al. [A] recently presented an AO model for exception han-
dling implementation (EJFlow) to address some of the limitations.
Results of their quantitative comparisons among Java and AspectJ
implementations indicate that AO implementation reduces the
amount of code necessary to define exception interface, the effort
to manage exception flows, and improves separation between nor-
mal and error-handling code.

Although two of the mentioned studies favor aspect-orienta-
tion, our analysis reveals that existing AO languages do not provide

sufficient benefit over object-orientation in managing exception
handling behavior. Effective joinpoint models are yet to be devised
for robust exception handling mechanisms.

5.1.7. Summary
This section provides a summary of the reported evidence

(Table 8) on the effect of AOP on studied characteristics in relation
to the assessed study quality (Appendix B – Table 10). It is evident
that some of the reviewed studies have evaluated multiple charac-
teristics. When one study evaluates multiple characteristics, we
term evaluation of each characteristic as an instance. Our SLR iden-
tified 42 instances in the 22 reviewed studies. Table 8 shows that
overall AOP provides improvement over non-AOP-based solutions
in 24 instances. There were only 2 instances where AOP was not
found to be an appropriate approach in the studied context. How-
ever, it was not possible to assess the extent of a positive or nega-
tive effect as no common measures were used by different studies
reviewed in this SLR; nor was the reported data uniformly quanti-
tative or qualitative. We found 10 reports in which AOP did not
provide much improvement or where the effect was insignificant.
In five cases we were unable to categorize the effect.

In Table 8, references to studies which scored ‘high’ (nine or
more, see Table 6) in the overall quality assessment appear in bold,
and references which scored less than 6 (‘poor’ quality) are itali-
cized. It can be noted that high quality studies report a range of ef-
fects – positive, negative, insignificant and mixed – whereas
studies rated poor in quality assessment only report either positive
or mixed effects. Also, except for 1 instance, all studies reporting
negative or insignificant effects are ‘good’ or ‘high’ quality studies.
It should also be noted that 4 of the 5 high quality studies were
based on toy applications rather than real systems suggesting lim-
itations to the extent that their results can be generalized. This is
an important observation since it bears implications on how the
overall effect on characteristics is interpreted.

We categorized 16 individual characteristics into six related
high-level characteristics: performance, code size, modularity,
evolvability, cognition, and language mechanism. Performance re-
lated characteristics show improvements in AOP-based solutions.
There were six positive reports (66.7%) out of 9 instances, and none
of the studies found any significantly negative impact. We did not
find any report where effect of AOP on performance related charac-
teristics was negative. We therefore conclude that AOP can en-
hance a system’s performance where the context is similar as
described in [I, J, L, P]. None of the instances were associated with
high quality studies. Hence, there is a need for some high quality
studies on real applications to confirm these effects.

This SLR found that code size related characteristics are studied
in seven instances. There were four studies, which reported signif-
icant reduction in code size and redundancy. According to three
studies, code size change was either insignificant or it slightly in-
creased. However, studies reporting positive effect ´were rated
low in quality assessment as compared with studies reporting an
insignificant effect. However, the high quality studies were per-
formed on ‘‘toy” systems, so the negligible results may be
restricted to small systems. Thus we conclude that in larger sys-
tems where concern scattering and tangling is expected to be
widespread, introducing aspects is likely to significantly reduce
number of lines of code.

Modularity related characteristics were studied in seven in-
stances. Three studies reported improvement in modularity, one
of which [M] is a high quality study. One high quality study [R],
however, found the effect on modularity and design quality to be
insignificant. In two studies the effect was largely dependent on
the problem context and the authors could not draw overall con-
clusions based on their findings. Our conclusion is that although

M.S. Ali et al. / Information and Software Technology 52 (2010) 871–887 881

AOP can result in modularized structure of a system but the con-
text in which AOP is used should be carefully assessed.

Evolvability related characteristics are the most studied charac-
teristics found in this review. There are eight positive reports, six of
which are of ‘good’ or ‘high’ quality; there are no reports of a neg-
ative effect of AOP. Although only one study [U] finds insignificant
improvement, it is a high quality study. Improvements have been
reported in various facets of evolvability which include changeabil-
ity, extensibility, sustainability, design stability, maintainability
and configurability. We believe that AOP has the potential to devel-
op evolvable and maintainable software.

An often raised suspicion regarding AOP is its effect on cognitive
process in software development [4]. It should be noted that all four
studies examining this characteristic are rated high quality in our
quality assessment. All of these studies used human subjects (see
Table 7). However, the experimental setup and the objects of study
appeared to be too small to observe a statistically significant differ-
ence. We did not find any large scale study. Kiczales et al. [1] have
mentioned that ‘‘it is extremely difficult to quantify the benefits of
using AOP without a large experimental study, involving multiple
programmers using both AOP and traditional techniques to develop
and maintain different applications”. Our observations gained
through this SLR corroborate their remarks. Overall the effect of
AOPon cognitive is not encouraging but is an area thatwouldbenefit
from some high quality studies in the context of real applications.

Exception handling was the only language mechanism studied
comparatively. The only instance arising from a high quality study
showed a significant negative impact in the context of a real appli-
cation. Two instances of lesser quality showed a positive effect and
one instance of lesser quality showed mixed effects. These results
are unexpected given that exception handling was one area where
AOP was expected to have a significant impact. Here, we conclude
that AOP does not behave better than its non-AOP counterparts. In
our opinion, this is certainly the area which needs further research.

Table 8 shows that, except for two (development efficiency and
exception handling), all of the studied characteristics are attributes
of the software product. Product attributes can be internal or exter-
nal [33]. External product attributes are characteristics that a user
of a software system experiences during execution. Performance
and memory consumption are external attributes. The remaining
characteristics are internal product attributes. These are the char-
acteristics which are only visible to a developer during the devel-
opment or maintenance process. Among 24 improvement
reports, 16 are related to internal product attributes, while six
are related to external attributes. It is also obvious that, except
for ‘code size’ and ‘memory consumption’, all product attributes
are quality attributes mentioned in different quality models. This
strongly implies that the research community regards AOP as a
technology that ought to improve product quality. The readers
should note that we have only reported on quality characteristics
studied in the literature. Product quality models usually include
many other characteristics such as reusability, verifiability, secu-
rity, reliability, and a number of their related characteristics. It
would be useful to investigate the impact of AOP on these quality
characteristics.

An implementation paradigm can affect some of the process re-
lated characteristics as well. Currently, aspect-orientation is not
just an implementation concept but spans all other phases of the
development, is now known as aspect-oriented software develop-
ment (AOSD). From implementation perspective, we need to know
whether or not task allocation in AOP is different from non-AOP
and the potential consequences. For example, can AOP help in
ensuring that the application complies with the application spe-
cific standards, conventions and policy regulations in the domain?
These and a number of other potential process related questions
make understanding AOP’s effectiveness an open area for research.

5.2. Strength of evidence

We have already mentioned in Section 3.2 that it is very impor-
tant for a reader of an SLR to know how much confidence he/she
can have in the conclusions and recommendations arising from
that SLR. Hence, this was the second research question of this
SLR to address which we analyzed the overall strength of the body
of evidence based on the reviewed studies. There are several sys-
tems exist for grading the strength of evidence [34]. We used the
definitions from the Grading of Recommendations Assessment,
Development and Evaluation (GRADE) working group, because
the GRADE definitions addressed the weakness of most evidence
hierarchy-based grading systems [13]. The GRADE definitions were
also used by other software engineering researchers for grading the
strength of evidence [14,17].

GRADE defines four grades of strength of evidences: high, mod-
erate, low, and very low (see Table 9). The strength of evidences is
determined by the combination of four elements: study design,
study quality, consistency, and directness. We will discuss the
strength of evidences in the context of our study along the line
of these four elements.

With respect to study design, the majority of the primary stud-
ies were observational. Only seven (31.8%) primary studies are
experiments (see Section 4.1). Thus, according to GRADE [34],
our initial categorization of the total evidence in this review from
the perspective of study design is low.

Regarding study quality, approaches of data analysis were not,
in general, explained well; issues of bias, validity, and limitations
were poorly addressed. Only three studies partially examined the
possibility of bias introduced by researchers. In only four studies,
the credibility of the study findings was discussed. As many as
11 out of 22 studies (50%) did not discuss the limitations explicitly
(see Table 10). Based on these findings, we conclude that there are
serious limitations in the quality of the studies.

Regarding consistency, which refers to the similarity of esti-
mates of effects across studies [34], we found that the estimates
of effects from different studies represent significant inconsistency.
There are inconsistent results regarding effects on code size, mod-
ularity, changeability, understandability, maintainability, perfor-
mance, and exception handling. These inconsistencies might be
caused by insufficient control of various influencing factors and
confounding factors. Because the confounding factors were not de-
scribed in the report, we could not trace the cause of these incon-
sistencies. The results regarding effects on design stability,
configurability, design quality, extensibility, sustainability, and
memory consumption are consistent. However, each of these prop-
erties has been investigated by no more than two studies. Based on
these findings, we conclude that in general the results lack
consistency.

Directness refers to the extent to which the people, interven-
tions, and outcome measures are similar to those of interest [34].
In the context of our study, people refer to subjects (e.g., students
or software professionals) of the study; interventions refer to AOP

Table 9
Definitions used for grading the strength of evidence (adopted from [34]).

Grade Definitions

High Further research is very unlikely to change our confidence in the
estimate of effect

Moderate Further research is likely to have an important impact on our
confidence in the estimate of effect and may change the estimate

Low Further research is very likely to have an important impact on our
confidence in the estimate of effect and is likely to change the
estimate

Very low Any estimate of effect is very uncertain

882 M.S. Ali et al. / Information and Software Technology 52 (2010) 871–887

approaches and non-AOP approaches, which are often embodied
by the programming languages used (e.g., AspectJ, AspectC, Aspect
C++ for AOP approaches, and Java, C, C++ for non-AOP approaches);
outcome measures refer to the measures used to measure the
properties (see Table 12 for details of these measures). With re-
spect to people, only four studies (i.e., [M], [O], [R], and [U]) used
human subjects. The subjects in [U] were software professionals.
The subjects in [R] were graduate students; however, they were
all experienced programmers. The subjects in [M] were a mixture
of academics and programmers. The subjects in [O] were academ-
ics (i.e., graduate students and professors). In general, the charac-
teristics of the subjects were close to (in the case of students) or
representative (e.g., in the case of software professionals) software
professionals. With respect to interventions, 18 out of 22 studies
used AspectJ, which is the major AOP language available to practi-
tioners. With respect to outcome measures, the measures used by
the reviewed studies were also used in the real industrial settings.
In addition, we also analyzed the settings (industrial or lab) where
the studies were conducted and the systems investigated (as the
objects of the studies) by these studies. None of the studies was
conducted in an industrial setting (i.e., all in academic or lab set-
tings). Most of the systems investigated are not trivial and are
comparable to the software systems that the industrial practitio-
ners deal with day-to-day (see Table 11). On the basis of these find-
ings, our initial categorization of the total evidence in this review
based on directness is between low to moderate.

Combining the four elements for grading the strength of evi-
dence, we consider the strength of evidence in the current body
of evidence regarding the benefits and limitations of AOP ap-
proaches compared to non-AOP approaches is low. Hence, any esti-
mate of effect that is based on the body of evidence from current
research cannot be considered very certain. Further research is def-
initely required to gain a reliable estimate of effects of AOP.

6. Limitations of the review

The findings from this SLR could have suffered from following
limitations (i.e., validity threats), which should be taken into ac-
count while interpreting or using the reported findings:

– Accuracy and consistency during the review process is based on
a common understanding among the reviewers. Misunder-
standings can result in biased results. One of the main limita-
tions of the review can be the possibility of bias in the
selection of studies. To help ensure that the selection process
was as unbiased as possible, we developed detailed guidelines
in the review protocol prior to the start of the review. During
the paper screening phase, we documented the reasons for its
inclusion/exclusion. Then we also rechecked the papers based
on the inclusion/exclusion criteria.

– We found that many papers lacked sufficient details about the
design and context of the reported studies. The findings were
usually reported in a manner, which made it difficult to deter-
mine the effect a study examined. Sometimes we had to infer
certain pieces of information during the data extraction process.
There is therefore a possibility that the data extraction process
might have introduced some inaccuracy in the extracted data.
To minimize this possibility, we decided to report such informa-
tion based on the data presented in the reviewed studies For
example, we have reported the research methods used for the
reviewed studies as whatever authors of those studies claimed
without any assessment of the research method against the
available guidelines such as [22,35,36]. Additionally, we held
frequent discussions among the researchers involved in this
review in order to clarify any ambiguity during the review pro-

cess. This practice served as a way to recheck our results, ensure
that there was consistency among individual researchers, and
help resolve any disagreements. However, we were not able
to recheck every piece of extracted information due to the lim-
ited time and resources. We selectively ran cross-checks during
the different phases of this study.

– An account of evidence from the practice community could
have been beneficial to compare findings with the research/aca-
demic community. However, following a detailed study selec-
tion and quality assessment criteria, we were left primarily
with academic studies. We had to exclude studies that lacked
scientific rigor. In our experience, research work reported by
industry practitioners often falls into this category.

7. Conclusion

Several studies have been conducted to investigate the effects of
AOP compared with non-AOP on characteristics of software devel-
opment process and the developed software since 1997, when the
term AOP was coined. To the best of our knowledge, there has been
no effort to systematically identify, analyze, and synthesize the
findings of the reported empirical studies. This paper presents
the methodological details and results of our systematic review
of the empirical studies reporting the benefits and limitations of
AOP compared with non-AOP.

We identified 3307 papers from searching the literature, of
which only 22 were finally found to be the relevant primary stud-
ies reporting comparative empirical evidence. We identified a
number of reported benefits and limitations of aspect-oriented
software development from the perspective of the effect of AOP
on certain characteristics. We observed that most of the reviewed
studies have reported either positive or no significant effect of AOP
compared with non-AOP approaches. The effect of AOP on perfor-
mance, code size, modularity and evolvability related characteris-
tics appear to be promising in the context similar to the
reviewed studies. A few studies reported negative effect on certain
characteristics. According to the findings, language mechanism,
specifically exception handling is less likely to improve under cur-
rent AOP models. AOP also appears to have performed poorly on
cognitive dimension of software development during the reviewed
studies. In many study instances, we noticed diverse findings. This
highlights the perception of controversy regarding the applicability
of aspect-oriented paradigm. There is a need to increase the num-
ber, quality and diversity of empirical studies on AOP. We have also
observed that overall reporting and (or) conduct of the primary
empirical studies lack methodological rigor in the sense that
researchers rarely discuss the validity and limitations of their stud-
ies. It was also observed that a majority of the studies do not
explicitly state the hypothesis which is being evaluated either
qualitatively or quantitatively. We believe that there is a general
lack of appreciation and understanding of designing, conduct,
and reporting high quality empirical studies.

The findings of this SLR also enabled us to conclude that there is
a significant potential for empirical software engineering research-
ers to systematically investigate the effect of AOP on various per-
spectives of software development. We found only a few of the
product related characteristics which were examined. There are
many other characteristics where comparative evidence can help
in understanding not only the true potential of the approach, but
also in pinpointing areas where improvement in technology should
be sought.

Acknowledgement

This work was supported, in part, by Science Foundation Ireland
Grant 03/CE2/I303_1 to Lero and by IRCSET Grant no. RS/2008/134

M.S. Ali et al. / Information and Software Technology 52 (2010) 871–887 883

to M. Ali Babar and Klaas-Jan Stol. We thanks Hesham Shokry,
Aman-Ul-Haq, and Deva Kumar for helping us in the initial
searches for the literature used in this research. We are also thank-
ful to the IST area editor, Barbara Kitchenham, and anonymous
reviewers for providing useful comments to improve the paper.

Appendix A. Selected studies

[A] N. Cacho, F.C. Filho, A. Garcia, E. Figueiredo, EJFlow: Taming
exceptional control flows in aspect-oriented programming, in: Pro-
ceedings of the 7th International Conference on Aspect-Oriented
Software Development (AOSD’07), ACM, 2008, pp. 72–83.

[B] N. Cacho, C. Sant’Anna, E. Figueiredo, A. Garcia, T. Batista, C.
Lucena, Composing design patterns: a scalability study of aspect-
oriented programming, in: Proceedings of the 5th International
Conference on Aspect-Oriented Software Development (AOSD’06),
ACM, 2006, pp. 109–121.

[C] Y. Coady, G. Kiczales, Back to the future: a retroactive study
of aspect evolution in operating system code, in: Proceedings of the
2nd International Conference on Aspect-Oriented Software Devel-
opment, ACM, 2003, pp. 50–59.

[D] R. Coelho, A. Rashid, A. Garcia, F. Ferrari, N. Cacho, U. Kules-
za, A. von Staa, C. Lucena, Assessing the impact of aspects on excep-
tion flows: an exploratory study, in: Proceedings of the 22nd
European Conference on Object-Oriented Programming
(ECOOP’08), Springer, 2008, pp. 207–234.

[E] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C. Lucena,
A.v. Staa, Modularizing design patterns with aspects: a quantitative
study, in: Proceedings of the 4th International Conference on As-
pect-Oriented Software Development (AOSD’05), ACM, 2005, pp.
3–14.

[F] C. Gibbs, C.R. Liu, Y. Coady, Sustainable system infrastructure
and big bang evolution: can aspects keep pace?, in: Proceedings of
19th European Conference on Object-Oriented Programming
(ECOOP’05), Springer, 2005, pp. 241–261.

[G] P. Greenwood, T. Bartolomei, E. Figueiredo, M. Dosea, A. Gar-
cia, N. Cacho, C. Sant’Anna, S. Soares, P. Borba, U. Kulesza, A. Rashid,
On the impact of aspectual decompositions on design stability: an

empirical study, in: Proceedings of 21st European Conference on
Object-Oriented Programming (ECOOP’07), Springer, 2007, pp.
176–200.

[H] B. Harbulot, J.R. Gurd, Using AspectJ to separate concerns in
parallel scientific Java code, in: Proceedings of the 3rd International
Conference on Aspect-Oriented Software Development (AOSD’04),
ACM, 2004, pp. 122–131.

[I] K. Kourai, H. Hibino, S. Chiba, Aspect-oriented application-le-
vel scheduling for J2EE servers, in: Proceedings of the 6th Interna-
tional Conference on Aspect-Oriented Software Development
(AOSD’07), ACM, 2007, pp. 1–13.

[J] D. Lohmann, O. Spinczyk, W. Schröder-Preikschat, Lean and
efficient system software product lines: where aspects beat ob-
jects, Transactions on Aspect-Oriented Software Development II,
(2006), 227–255.

[K] J. Siadat, R.J. Walker, C. Kiddle, Optimization aspects in net-
work simulation, in: Proceedings of the 5th International Confer-
ence on Aspect-Oriented Software Development (AOSD’06), ACM,
2006, pp. 122–133.

[L] C. Zhang, H.-A. Jacobsen, Resolving feature convolution in
middleware systems, in: Proceedings of the 19th Conference on
Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA’04), ACM, 2004, pp. 188–205.

[M] P. Tonella, M. Ceccato, Re-factoring the aspectizable inter-
faces: an empirical assessment, IEEE Transactions on Software
Engineering, 31 (2005), 819–832.

[N] M. Lippert, C.V. Lopes, A study on exception detection and
handling using aspect-oriented programming, in: Proceedings of
the 22nd International Conference on Software Engineering
(ICSE’00), ACM, 2000, pp. 418–427.

[O] R.J. Walker, E.L.A. Baniassad, G.C. Murphy, An initial assess-
ment of aspect-oriented programming, in: Proceedings of the 21st
International Conference on Software Engineering (ICSE’99), IEEE
Computer Society Press, 1999, pp. 120–130.

[P] R.M. Pratap, F. Hunleth, R.K. Cytron, Building fully customi-
sable middleware using an aspect-oriented approach, IEE Proceed-
ings-Software, 151 (2004), 199–216.

[Q] E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro, U. Kules-
za, A. Garcia, S. Soares, F. Ferrari, S. Khan, F.C. Filho, F. Dantas,

Table 10
Quality assessment scores.

Study Quality of reporting and rigor Sum
(1–8)

Credibility of evidence Sum
(9–11)

Total

Rationale Description
of context

Design Sampling Data
collection

Analysis Sufficient
data

Clarity of
findings

Author
bias

Validity Limitations

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

[A] 1 0.5 0.5 1 1 0 1 1 6 0 0 0 0 6
[B] 1 0.5 0 1 0.5 0.5 0.5 1 5 0 0 0 0 5
[C] 1 1 0 1 1 0.5 1 1 6.5 0 0 1 1 7.5
[D] 1 1 1 1 1 0.5 1 1 7.5 0.5 0 1 1.5 9
[E] 1 0.5 1 1 1 0 1 1 6.5 0 0 1 1 7.5
[F] 1 0.5 0 1 1 0 0.5 1 5 0 0 1 1 6
[G] 1 1 1 1 1 1 1 1 8 0 0 1 1 9
[H] 1 1 0.5 1 1 0 0.5 0.5 5.5 0 0 0 0 5.5
[I] 1 1 0 1 0.5 0.5 1 1 6 0 0 0 0 6
[J] 1 1 0.5 1 1 0.5 1 1 7 0 0 0.5 0.5 7.5
[K] 1 0.5 0.5 1 1 0.5 0.5 1 6 0 0 0 0 6
[L] 1 0.5 0.5 1 0.5 0.5 1 1 6 0 0 0 0 6
[M] 1 1 1 1 1 1 1 1 8 0 1 0 1 9
[N] 1 0.5 0 0.5 1 0 0.5 1 4.5 0 0 0 0 4.5
[O] 1 1 1 0.5 1 1 1 1 7.5 0.5 1 1 2.5 10
[P] 1 0.5 0 1 1 0 0.5 1 5 0 0 0 0 5
[Q] 1 1 0.5 1 1 0.5 1 1 7 0 0 1 1 8
[R] 1 1 1 1 0.5 1 1 1 7.5 0.5 1 1 2.5 10
[S] 1 1 0 1 1 0 1 1 6 0 0 0 0 6
[T] 1 1 0.5 1 1 0.5 1 1 7 0 0 1 1 8
[U] 1 1 1 1 1 1 1 1 8 0 1 0.5 1.5 9.5
[V] 1 0.5 0.5 1 1 0 0.5 1 5.5 0 0 0 0 5.5

884 M.S. Ali et al. / Information and Software Technology 52 (2010) 871–887

Evolving software product lines with aspects: an empirical study
on design stability, in: Proceedings of the 30th International Con-
ference on Software Engineering (ICSE’08), ACM, 2008, pp. 261–
270.

[R] L. Madeyski, L. Szala, Impact of aspect-oriented program-
ming on software development efficiency and design quality: an
empirical study, IET Software, 1 (2007), 180–187.

[S] C. Lobato, A. Garcia, A. Romanovsky, C. Lucena, An aspect-
oriented software architecture for code mobility, Software: Prac-
tice and Experience, 38 (2008), 1365–1392.

[T] F.C. Filho, N. Cacho, E. Figueiredo, R. Maranh, A. Garcia, C.M.F.
Rubira, Exceptions and aspects: the devil is in the details, in: Pro-
ceedings of the 14th ACM SIGSOFT International Symposium on

Foundations of Software Engineering (FSE’06), ACM, 2006, pp.
152–162.

[U] M. Bartsch, R. Harrison, An exploratory study of the effect of
aspect-oriented programming on maintainability, Software Quality
Journal, 16 (2008), 23–44.

[V] J. Hannemann, G. Kiczales, Design pattern implementation
in Java and AspectJ, in: Proceedings of the 17th International Con-
ference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’02), ACM, 2002, pp. 161–173.

Appendix B

See Tables 10–12.

Table 11
Studied systems.

Study System Type Size (typically LOC of non-AOP code, unless specified) AOP Lang./
system

Comparison
Lang.

[A] MobileMedia Application Almost 4000 LOC AspectJ,
EJFlow

Java

[B] OpenORB compliant middleware Middleware ‘‘Medium-sized”, LOC not mentioned AspectJ Java
Measurement tool Application ‘‘Medium-sized”, LOC not mentioned AspectJ Java
Agent-based application Application ‘‘Medium-sized”, LOC not mentioned AspectJ Java

[C] FreeBSD Operating
system

v2: 212,000, v3: 357,000, v4: 474,000 LOC AspectC C

[D] Health watcher Web-based IS v1: 6080, v9: 8825 LOC AspectJ Java
Mobile photo Application v4: 2540, v6: 1571 LOC AspectJ Java
JHotDraw Framework 21,027 LOC AspectJ Java

[E] 23 GoF design patterns – Not specified AspectJ Java

[F] Memory manager toolkit (MMTk)
within Jikes RVM

Virtual
machine

Not mentioned AspectJ Java

[G] Health watcher Web-based IS More than 4000 LOC in both Java and AspectJ AspectJ,
CaesarJ

Java

[H] Java grande forum benchmark suite Benchmarks Raytracer 3177 LOC; LUFact 1049 LOC; Crypt: unknown AspectJ Java

[I] Kasendas, a river monitoring system Application 9238 LOC Java, 1736 LOC JSP, GluonJ Java

[J] An embedded software product line for
weather stations

Embedded
software

1392–5008 bytes of object code AspectC++ C++

[K] IP-TN network simulator Simulator 27 KLOC at core AspectC++ C++

[L] ORBacus Middleware 23 KLOC at core; 13 KLOC after aspectization AspectJ Java

[M] JHotDraw Framework 39,214 LOC AspectJ Java
FreeTTS Application 31,099 LOC AspectJ Java
JGraph Framework 18,373 LOC AspectJ Java
All classes below java in the package
hierarchy of JDK

Library 382,533 LOC AspectJ Java

[N] JWAM Framework 44,000 LOC AspectJ Java

[O] Digital library system (2 versions) Application Not specified AspectJ Java,
Emerald

[P] FACET, an implementation of CORBA
event channel

Middleware Class file 55,250–342,226 bytes without CORBA feature; 166,921–
475,100 bytes with CORBA feature

AspectJ Java

[Q] MobileMedia Software
product line

More than 3000 LOC AspectJ Java

BestLap Software
product line

Almost 10,000 LOC AspectJ Java

[R] Web-based manuscript submission
system (3 versions)

Application OO version 1: 4378; OO version 2: 4680; AO version: 3895 AspectJ Java

[S] Expert committee Application 10,000 LOC AspectJ Java
MobiGrid Framework 699 LOC AspectJ Java

[T] Telestrada Application 3350 LOC AspectJ Java
Pet store Application 17,500 LOC AspectJ Java
CVS core plug-in Component 20,000 LOC AspectJ Java
Health watcher Web-based IS 6630 LOC AspectJ Java

[U] Online shopping system Application 460 NCLOC in Java; 490 NCLOC in AspectJ AspectJ Java

[V] 23 GoF design patterns – Not specified AspectJ Java

M.S. Ali et al. / Information and Software Technology 52 (2010) 871–887 885

References

[1] G.Kiczales, J. Lamping,A.Mendhekar, C.Maeda, C.V. Lopes, J.-M. Loingtier, J. Irwin,
Aspect-oriented programming, in: Proceedings of the 11th European Conference
on Object-Oriented Programming (ECOOP’97), Springer, 1997, pp. 220–242.

[2] R. Laddad, Aspect-oriented programming will improve quality, IEEE Software
20 (2003) 90–91.

[3] E.W. Dijkstra, On the role of scientific thought, in: Selected Writings on
Computing: A Personal Perspective, Springer-Verlag, 1982, pp. 60–66.

[4] A. Colyer, R. Harrop, R. Johnson, A. Vasseur, D. Beuche, C. Beust, Point/
counterpoint, IEEE Software 23 (2006) 72–75.

[5] C. Sant’Anna, A. Garcia, C. Chavez, C. Lucena, A. von Staa, On the reuse and
maintenance of aspect-oriented software: an assessment framework, in:
Proceedings of the 17th Brazilian Symposium on Software Engineering, 2003,
pp. 19–34.

Table 12
Measured properties and metrics used.

Property Metric Studies

Size Lines of code (LOC) [A], [B], [E], [G], [L], [N], [P], [Q], [T]
Non-commented lines of code (NCLOC) [R], [M]
Number of modules (NOM) [R]
Number of attributes (NOA) [A], [B], [E], [G], [T]
Weighted op. in modules/components [A], [B], [E], [G], [R], [T]
Number of class operations (OP) [M]
Vocabulary size (VS) [A], [G], [Q], [T]

Coupling Coupling btw. Comp./modules (CBM) [A], [B], [E], [G], [Q], [R], [T]
Depth of inheritance tree (DIT) [A], [B], [E], [G], [Q], [T]
Efferent coupling (EC) [L]

Cohesion Lack of cohesion in operations (LCOO) [A], [B], [E], [G], [Q], [R], [T]

Separation of concerns Concern diffusion over comp. (CDC) [A], [B], [E], [G], [Q], [T]
Concern diffusion over operations (CDO) [A], [B], [E], [G], [Q], [T]
Concern diffusion over LOC (CDLOC) [A], [B], [E], [G], [Q], [T]

Change impact Number of added/changed/removed comp. [G], [Q]
Number of added/changed/removed op. [G], [Q]
Number of added/changed/removed pointcuts [G], [Q]
Number of added/changed/removed LOC [G], [Q]

Ease of change Time to complete the change [O]
Time spent on coding [O]
Time spent on analysis [O]
Lines of code written [O]

Ease of debugging Time required to correct each fault [O]
Number of file switches [O]
Number of instances of semantic analysis [O]
Number of builds per fault [O]

Performance Round-trip message invocation cost [L]
Data sending cost (min., avg., max.) [L]
Number of running threads per unit time [I], [L]
Cost of forking a process [C]
Time to switch b/w user and kernel mode [C]
Number of event per unit time [P]
Avg. real/profiled interval btw. join points [I]
Time for thread suspension [I]

Modularity Response for module (RFM) [R]
Distance from main sequence (Dn) [R]
Operation cohesion [M]
Attribute cohesion [M]
Interface coupling [M]

Memory consumption Memory footprint (in bytes) [J], [P]

Maintainability Maintenance time [M]

Understandability Understanding time [M]

Exception handling Number of ‘catch’ stat. per type of exception [N]
Number of exception paths [D]
Number of uncaught exceptions [D]
Number of exceptions caught by subsumptions [D]
Number of specialized handlers [D]

Architectural SoC Concern diffusion over arch. components [S]
Concern diffusion over arch. interfaces [S]
Concern diffusion over arch. operations [S]

Code coverage Line coverage (percentage) [R]
Branch coverage [R]
Method coverage [R]

Architectural coupling Architectural fan-in [S]
Architectural fan-out [S]

Interface complexity Number of interfaces [S]
Number of operations [S]

Software development efficiency Number of acceptance tests passed [R]
Development time [R]
Active programming time, Passive time [R]

886 M.S. Ali et al. / Information and Software Technology 52 (2010) 871–887

[6] F. Steimann, The paradoxical success of aspect-oriented programming, in:
Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’06), ACM, 2006,
pp. 481–497.

[7] G.C. Murphy, R.J. Walker, E.L.A. Baniassad, M.P. Robillard, A. Lai, M.A. Kersten,
Does aspect-oriented programming work?, Communications of the ACM 44
(2001) 75–77.

[8] P. Tarr, H. Ossher, W. Harrison, J. Stanley M. Sutton, N degrees of separation:
multi-dimensional separation of concerns, in: International Conference on
Software Engineering (ICSE ‘99), ACM, 1999, pp. 107–119.

[9] K. Lieberherr, Adaptive Object-Oriented Software: The Demeter Method with
Propagation Patterns, PWS Publishing Company, Boston, USA, 1995.

[10] W. Harrison, H. Ossher, Subject-oriented programming: a critique of pure
objects, in: Proceedings of 8th International Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’93), ACM, 1993,
pp. 411–428.

[11] L.M.J. Bergmans, M. Aks!it, J. Bosch, Composition filters: extended
expressiveness for OOPLs, in: Proceedings of OOPSLA Workshop on Object-
Oriented Programming Languages: the Next Generation, 1992.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W.G. Griswold, An
overview of Aspectj, in: Proceedings of the 15th European Conference on
Object-Oriented Programming (ECOOP’01), Springer, 2001, pp. 327–353.

[13] B. Kitchenham, S. Charters, Guidelines for Performing Systematic Literature
Reviews in Software Engineering, Software Engineering Group, School of
Computer Science and Mathematics, Keele University, EBSE Technical Report
Version 2.3, July 2007.

[14] T. Dybå, T. Dingsøyr, Strength of Evidence in Systematic Reviews in Software
Engineering, in: Proceedings of the 2nd ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM’08), ACM, 2008, pp.
178–187.

[15] D.L. Olson, D. Delen, Advanced Data Mining Techniques, Springer, 2008.
[16] O. Dieste, A.G. Padua, Developing search strategies for detecting relevant

experiments for systematic reviews, in: Proceedings of the 1st International
Symposium on Empirical Software Engineering and Measurement (ESEM ‘07),
IEEE Computer Society, 2007, pp. 215–224.

[17] T. Dybå, T. Dingsøyr, Empirical studies of agile software development: a
systematic review, Information and Software Technology 50 (2008) 833–859.

[18] T. Greenhalgh, How to Read a Paper, BMJ Publishing Group, London, 2001.
[19] B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones, D.C. Hoaglin, K.E.

Emam, J. Rosenberg, Preliminary guidelines for empirical research in software
engineering, IEEE Transactions on Software Engineering 28 (2002) 721–734.

[20] T. Dybå, T. Dingsøyr, G.K. Hanssen, Applying systematic reviews to diverse
study types: an experience report, in: Proceedings of the 1st International

Symposium on Empirical Software Engineering and Measurement (ESEM’07),
IEEE Computer Society, 2007, pp. 225–234.

[21] V.B. Kampenes, T. Dybå, J.E. Hannay, D.I.K. Sjøberg, A Systematic review of
effect size in software engineering experiments, Information and Software
Technology 49 (2007) 1073–1086.

[22] L.M. Pickarda, B.A. Kitchenham, P.W. Jones, Combining empirical results in
software engineering, Information and Software Technology 40 (1998) 811–
821.

[23] M. Ciolkowski, Aggregation of empirical evidence, in: V.R. Basili, D. Rombach,
K. Schneider, B. Kitchenham, D. Pfahl, R.W. Selby (Eds.), Empirical Software
Engineering Issues: Critical Assessment and Future Directions, Springer, 2007,
p. 20.

[24] J. Miller, Applying meta-analytical procedures to software engineering
experiments, Journal of Systems and Software 54 (2000) 29–39.

[25] S.R. Chidamber, C.F. Kemerer, A metrics suite for object oriented design, IEEE
Transactions on Software Engineering 20 (1994) 476–493.

[26] M. Ceccato, P. Tonella, Measuring the effects of software aspectization, in:
Electronic Proceedings of the 1st Workshop on Aspect Reverse Engineering
(WARE), 2004.

[27] J. Zhao, Measuring coupling in aspect-oriented systems, in: Proceedings of the
10th International Software Metrics Symposium (METRICS’04), 2004.

[28] E. Gamma, R. Helm, R. Johnson, J.M. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1994.

[29] L. Hatton, How accurately do engineers predict software maintenance tasks?,
IEEE Computer 40 (2007) 64–69.

[30] S.S. Yau, J.S. Collofello, Design stability measures for software maintenance,
IEEE Transactions on Software Engineering 11 (1985) 849–856.

[31] B. Meyer, Object-Oriented Software Construction, Prentice Hall, 1988.
[32] OMG, The Common Object Request Broker: Architecture and Specification,

Object Management Group, Framingham, MA, USA, 1999.
[33] S. McConnell, Code Complete, Microsoft Press, 2004.
[34] D. Atkins, D. Best, P.A. Briss, M. Eccles, Y. Falck-Ytter, S. Flottorp, G.H. Guyatt,

R.T. Harbour, M.C. Haugh, D. Henry, S. Hill, R. Jaeschke, G. Leng, A. Liberati, N.
Magrini, J. Mason, P. Middleton, J. Mrukowicz, D. O’Connell, A.D. Oxman, B.
Phillips, H.J. Schünemann, T.T.-T. Edejer, H. Varonen, G.E. Vist, J.W. Williams, S.
Zaza, Grading quality of evidence and strength of recommendations, BMJ
(British Medical Journal) 328 (2004) 1490.

[35] P. Runeson, M. Höst, Guidelines for conducting and reporting case study
research in software engineering, Empirical Software Engineering 14 (2009)
131–164.

[36] Andreas Jedlitschka, Dietmar Pfahl, Reporting guidelines for controlled
experiments in software engineering, in: Proceedings of the International
Symposium on Empirical Software Engineering, 2005, pp. 95–104.

M.S. Ali et al. / Information and Software Technology 52 (2010) 871–887 887

	A systematic review of comparative evidence of aspect-oriented programming
	Introduction
	Contribution of this review

	Background: aspect-oriented programming (AOP)
	Research method
	Development of review protocol
	Research questions
	Search strategy
	Search scope
	Search method
	Search string and electronic data sources

	Selection criteria
	Quality assessment
	Data extraction
	Data synthesis and aggregation

	Overview of the reviewed studies
	Reported research methods
	Methodological quality
	Study settings
	Scope
	Studied objects
	System type

	Metrics
	Systems investigated
	Implementation languages

	Results and discussion
	Benefits and limitations of AOP
	Performance
	Code size
	Modularity
	Evolvability
	Cognition
	Language mechanism
	Summary

	Strength of evidence

	Limitations of the review
	Conclusion
	Acknowledgement
	Selected studies
	Appendix B
	References

