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Abstract

Background: Data measuring airborne pollutants, public health and environmental factors are increasingly being
stored and merged. These big datasets offer great potential, but also challenge traditional epidemiological methods.
This has motivated the exploration of alternative methods to make predictions, find patterns and extract information.
To this end, data mining andmachine learning algorithms are increasingly being applied to air pollution epidemiology.

Methods: We conducted a systematic literature review on the application of data mining and machine learning
methods in air pollution epidemiology. We carried out our search process in PubMed, the MEDLINE database and
Google Scholar. Research articles applying data mining and machine learning methods to air pollution epidemiology
were queried and reviewed.

Results: Our search queries resulted in 400 research articles. Our fine-grained analysis employed our inclusion/exclusion
criteria to reduce the results to 47 articles, which we separate into three primary areas of interest: 1) source apportionment;
2) forecasting/prediction of air pollution/quality or exposure; and 3) generating hypotheses. Early applications had a
preference for artificial neural networks. In more recent work, decision trees, support vector machines, k-means
clustering and the APRIORI algorithm have been widely applied. Our survey shows that the majority of the research
has been conducted in Europe, China and the USA, and that data mining is becoming an increasingly common tool in
environmental health. For potential newdirections, we have identified that deep learning and geo-spacial pattern mining
are two burgeoning areas of data mining that have good potential for future applications in air pollution epidemiology.

Conclusions: We carried out a systematic review identifying the current trends, challenges and new directions to
explore in the application of data mining methods to air pollution epidemiology. This work shows that data mining is
increasingly being applied in air pollution epidemiology.
The potential to support air pollution epidemiology continues to grow with advancements in data mining related to
temporal and geo-spacial mining, and deep learning. This is further supported by new sensors and storage mediums
that enable larger, better quality data. This suggests that many more fruitful applications can be expected in the future.
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Background
The decreasing costs of remote sensors for measuring
airborne agents, along with the increasing availability of
environmental and clinical data, has led to an explosion
in the number of pollution datasets available for analysis.
These datasets often have a very large number of samples
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and tend to have a significant number of variables with
mixed degrees of dependencies. These big datasets come
with complexity that renders it difficult to rely on tra-
ditional epidemiological or environmental health models
to analyze them. As a result, new methods of analysis
are required in order to advance our understanding of
the data. Data mining and machine learning methods
from computing science present a wide array of scal-
able and reliable methods that have performed well on
similar problems in other domains. This has inspired a
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burgeoning field of research within Environmental Health
aimed at the adoption of data mining methods to ana-
lyze modern, big datasets in air pollution epidemiology
inefficient and effective ways.
Data mining is the computational process that is

often applied to analyze large datasets, discover patterns,
extract actionable knowledge and predict outcomes of
future or unknown events. Methods used in this process
come from a combination of computational disciplines
including Artificial Intelligence, Statistics, Mathematics,
Machine Learning, and Database Systems. Apart from
the core methods used to carry out the analysis, the
process of data mining can involve various preprocess-
ing steps prior to executing the mining algorithm. In
addition, a post-processing stage is typically employed
to visualize the results of the analysis (i.e. recognized
patterns or retrieved information) in an intuitive and
easy-to-communicate manner. In this review, we limit our
scope to focus on core data analysis techniques as they
have been applied to the field of air pollution epidemiol-
ogy and reported within the air pollution epidemiology
literature.
In a broad sense, there are two major paradigms of

algorithms: prediction and knowledge discovery. Within
these, there are four sub-categories: 1) Classification and
regression, 2) Clustering, 3) Association Rule Mining, and
4) Outlier/Anomaly Detection. In addition, there are some
relatively new and exciting areas of data analysis, such
as spatial data mining and graph data mining, that have
been made possible via the building blocks of data mining
methods.
According to the best of our knowledge, there are no

studies that investigate the depth and breadth of the
application of data mining methods within air pollution
epidemiology. With this in mind, we perform an inves-
tigation to identify which data mining methods have
been applied, and to which areas of air pollution epi-
demiology they have been applied to. Our goal is to
point domain researchers to preexisting data mining
applications in their areas, and related areas, as well
as advance their understanding of the potential of data
mining and inspire them to explore further research
avenues.

Methodology and paradigms of data mining
algorithms
Data mining algorithms are particularly beneficial on
complex datasets with a large number of variables and
samples. With respect to knowledge discovery, they add
insight into high-dimensional problems where traditional
statistical methods often fail. Similarly, machine learn-
ing algorithm can induce accurate predictor functions
from complex, high-dimensional datasets where statisti-
cal and mathematical methods, such as regression, can be

prone to inaccuracies and be difficult to apply due to their
underlying assumptions.

Considerations for applying data mining
In order to implement a successful data mining solu-
tion, the user must analyze and formalize their objective.
The problem objective guides the user to the appropri-
ate paradigm of learning algorithm. If the objective is to
identify hidden groups in data or identify associations
between key variables in the data, the users are interested
in knowledge discovery and will want to select a clustering
or association mining algorithm. Alternatively, the objec-
tive might be to induce a predictive model that can classify
samples as belonging to a particular category, such as poor
air quality, or a real-valued outcome, such as the air quality
index.
A large and growing number of algorithms belong to

the prediction paradigm and the knowledge discovery
paradigm. How to choose between the methods within
each paradigm is a topic in its own right. To assist practi-
tioners that are new to the application of machine learn-
ing algorithms, Domingos discusses the some of the key
considerations in [1].
When making this decision, the user should consider

the complexity of the problem and the amount of data
available. A simple, linear classifier, for example, will be
ineffective on a complex non-linear classification prob-
lem. A large volume of data will facilitate the use of
advanced learning algorithms, such as deep artificial neu-
ral networks [2], however, it also forces users to consider
questions related to storage, memory and training time.
In general, it is widely understood that there is no sil-

ver bullet when it comes to learning algorithms. From
an application perspective, a good practice is to select a
small, diverse set of algorithms from the paradigm of rel-
evant methods, test them individually and select the one
that best meets the performance objectives. Alternatively,
grouping a diverse set of models to form an ensemble
of predictors has been demonstrated to be an effective
solution in theory and practice [3]. Within the surveyed
literature, for example, [4] applied an ensemble formed
of neural networks, support vector machines, Gaussian
processes, decision trees and random forests.
Once a set of potential algorithms has been selected,

the models that are induced by each algorithm over the
available dataset must be evaluated in order to select
the one model, or ensemble, that is most likely to pre-
form the best on the prediction task in the future. This
is an area of research that is presented in Error Estima-
tion for Pattern Recognition [5] and Evaluating Learning
Algorithms [6].
The paradigms of learning that have most widely been

applied in air pollution epidemiology can be categorized
as prediction-based or knowledge discovery methods.
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Value prediction
Value prediction is a common and widely applicable area
of data mining in which the objective is to take in a set
of variables related to an instance drawn from an under-
lying sample population and predict the corresponding
value. Depending on the nature of the application, the
user will choose either a data mining algorithm that
makes categorical predictions (a classifier) or numeric
predictions (similar to regression.) Typical classification
algorithms include decision trees, Bayesian classifiers,
support vector machines and multilayer perceptrons.
Artificial neural networks, support vector regression and
regression trees are typical data mining methods for per-
forming numeric predictions. The standard approach to
select the most appropriate method for a given prob-
lem, such as a classification problem, is to perform
repeated trials with multiple classifier algorithms and
select the approach that performs the best on the learning
problem.
More formally, prediction algorithms are typically

induced through a process of supervised learning. The
objective is, thus, to make predictions y about instances
x of the target problem. For this, a parametrized func-
tion F : x → y is induced. The prediction problem can
be one of discrete value prediction, such as classifying
breast cancer, or continuous value prediction, much like
regression.
In order to perform supervised learning, a dataset X

of examples, such as patient information, and corre-
sponding values (or labels) Y, are compiled and used
for model induction. Each row of X is a feature vector
x = (x1, x2, ..., xn). The features xi are equivalent to the
data variables in a statistical context. The label set, Y ∈
{y1, y2, ...yn}, specifies the value that each corresponding
instance xi takes. In discrete prediction tasks, the class
labels are typically mutually exclusive but do not neces-
sarily have to be [7]. For continuous values prediction, the
value space typically involves real numbers, Y ∈ R, but
can also apply to integers, Y ∈ I .
Decision trees, Bayesian methods, support vector

machines and artificial neural networks are the most
common supervised learning algorithms. We provide a
brief overview and direct the reader to [8] for a detailed
description of these algorithms.
Decision trees are simple, but an often effective form

of learning classifiers, regressors, and rules. The induc-
tion process applies a divide-and-conquer strategy which
partitions the data space based on the feature values.
Decision trees are often preferred over the more sophis-
ticated models that we discuss below in fields such as
medicine because the decisions leading to their predic-
tions can be understood by humans. A very simple exam-
ple of the interoperability comes from a hypothetical flu
classifier which makes predictions {FEVER = TRUE ∧

HEADACHE = TRUE ∧ COUGH = TRUE → FLU =
TRUE}.
The standard tree induction algorithms are CART, ID3

and C4.5 [9–11]. Decision trees are induced in a top-
down manner by recursively selecting a feature that best
divides the training instances according to their labels. A
notion of purity known as information that is measured
in units of bits is commonly used to measure purity in the
determination of the best feature fi at the current level li.
Branches from level li to level li−1 are then created; one
branch is made for each potential value of fi. The train-
ing set is partitioned based on the branches from li to li−1
and the process is repeated for each node in level li−1.
The recursive process stops when the leaves only contain
instances from a single class. It should be noted, however,
that a form of pruning must be applied to the tree to avoid
overfitting.
Artificial neural networks are a powerful form of learn-

ing algorithm with a long tradition in pattern recogni-
tion and machine learning. Their foundation comes from
mathematical attempts at replicating information pro-
cessing in biological systems [12]. In modern applications,
however, they deviate significantly from the roots of their
biological inspiration.
With modern memory and processing power, there is a

great potential for complex artificial neural network archi-
tectures such as convolutional networks and recurrent
network that have seen recent success in deep learning [2].
The standard architecture, however, is a feedforward net-
work known as a multilayer perceptron. The name refers
to the fact that the network is a directed graph that is typ-
ically composed of three or more layers. The nodes in the
first layer are connected to the nodes in the second layer
and so on. The first layer is the input layer. This is where
the feature vector x enters the network. It is passed suc-
cessively through the layers of the network until it reaches
the final layer, the output layer. The layers between the
input and the output layers are known as hidden layers.
Each hidden layer is composed of a user-specified number
of hidden units (the nodes in the directed graph).
For each unit i of each hidden layer l, the value of the

unit h(l)
i is calculated as the values of the units connected

to h(l)
i from the layer below as:

h(l)
j = �d

i=1xiωji + bl, (1)

where i is the number of units in the previous layer, j
is the specifies the unit in the current layer, ωji is the
parametrized weights connecting layer l−1 to the current
layer, l, for unit j, and bl is the bias applied to the current
layer.
An activation function is applied to hidden value h(l)

j .
The choice of a non-linear activation, such as sigmoid,
enables the model to learn a non-linear representation of
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the data. However, regularized linear units have recently
been found to be useful in the hidden layers [13].
Multilayer perceptrons are typically trained via back-

propagation with gradient descent. This involves updating
the weights of the network over multiple iterations of the
training set. This is a non-convex optimization process,
and thus, training may get stuck in local minima. In prac-
tice, however, the models have been found to be very
effective.
Support vector machines (SVM) are a powerful method

for solving classification and regression problems based
on the calculation of the maximum margin hyperplane
[14, 15]. For non-linear SVM, the data is mapped to a
higher dimensional space via a user-specified kernel, such
as a polynomial kernel or a radial basis function. Themax-
imal margin hyperplane is implicitly found in this higher
dimensional space, the result of which can be a non-linear
decision boundary in the original space. A key property
of SVM is that model induction is a convex optimization
problem. As a result, any local minima is also a global
minima.
The maximum margin classifier is of the form y(x) =

wTθ(x) + b, where x is a query instance, w is the maxi-
mum margin hyperplane, θ is a kernel function, and b is
an offset.
The maximum margin hyperplane is solved via:

arg max
w,b

{
1

||w|| max
[
yn

(
wTθ(xn) + b

)]}
, (2)

where xn and yn are the training instances and labels.
Directly solving this optimization problem is very com-
plex, however, it can be converted to a simpler, but equiv-
alent problem using the Lagrangian dual which is solvable
via quadratic programming. Finally, for kernels satisfying
the property k(xi, xj) = θ(xi)·θ(xj) the kernel trick is used
to avoid performing the computations in the kernel-space.

Knowledge discovery
Clustering algorithms are a form of knowledge discov-
ery performed via unsupervised learning. They group the
instances of a dataset X into k clusters based on an algo-
rithm specific notion of similarity. The process is termed
unsupervised because the algorithms do not use a label set
for learning. As a result, the process is one of knowledge
discovery that infers the groupings from the data.
Similar to classification and regression, a wide variety

of clustering algorithms have been developed. Selecting
the right algorithm is domain dependent. Nonetheless,
the k-means algorithm remains one of the most promi-
nent clustering techniques. It is often preferred for its
simplicity and theoretical foundation.
K-means employs an iterative process of updating the

cluster centres that repeats until convergence. The k in
k-means refers to the user-specified number of clusters.

Initially, the k centres are set at random. Subsequently,
each instance in X is assigned to the cluster of its nearest
centre. The k centres are then updated to be at the cen-
tre of their assigned group. Convergence occurs when the
centres stop moving.
In spite of its popularity, k-means has some well-

known weaknesses, such as susceptibility to outliers. The
Density-based clustering algorithm DBSCAN is an alter-
native method designed to account for noisy instances
and outliers. In addition, one can manufacture scenarios
in which k-means will fail to define good clusters under
certain conditions.
Hierarchical clustering is a form of distance-based clus-

tering that creates hierarchies of clusters. The clusters are
either built agglomeratively or divisively. The former com-
mences by assuming each instance of X belongs to its own
cluster and builds up the hierarchy by successively merg-
ing clusters. Alternatively, the divisive approach starts
with all instances in one big cluster and recursively splits
the clusters into smaller clusters down the tree. This form
of clustering is very effective for visualizing the groupings
and different levels of granularity.
Association rules are similar to the rules extracted from

decision trees and produced by rule-based classifiers. The
key difference is that in association rulemining, the notion
of class categories is not utilized in the rule induction
process.
In association rule mining, a dataset X is given in which

the rows are instances and the columns are the feature,
F ∈ {f1, f2, ..., fn}, that quantify the instances. In medi-
cal domains, the features could be has_cough ∈ {yes, no},
fever_level ∈ {none, low,medium, high}, has_headache ∈
{yes, no}, etc.
Through association rule mining we aim to generate a

set of interesting rules from X of the form A → B, where
A ⊂ F and B ⊆ F . In contrast, rule-based classifiers learn
rules of the form A → B, where A ⊂ F and B ∈ Y ; here, Y
is the set of possible class labels.
Given the definition of an association rule, any unique

combination of the features, F, can appear on the left side
and the right side of the implication. As a result, an enor-
mous number of rules can be generated. Many of these,
perhaps the majority, would be uninteresting according
to any reasonable assessment. Thus, the rules must be
filtered or pruned, as to only keep the valuable rules.
Individually assessing each rule in a brute-force manner
is prohibitive, and thus, more efficient methods of rule
induction have been developed.
The APRIORI algorithm is the most common technique

of association mining [16]. The key to their strategy is the
employment of an iterative process that builds up frequent
item sets and association rules from their simplest form
(one-item sets) to the complex (two-item sets, three-item
sets, ..., n-item sets). An example of a one-item set and
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a two-item set from our medical domain is has_cough =
yes, and has_cough = yes ∧ fever_level = none. The
items are deemed to be frequent if they have more than
a user-specified number of necessary occurrences s in the
dataset.
The algorithm gains its efficiency from the realization

that if a one-item set, such as has_cough = yes, is not fre-
quent in the dataset, then no two-item set including the
one-item set, such as has_cough = yes ∧ fever_level =
none, can be frequent. Therefore, the algorithm can ignore
all higher-order rules involving has_cough = yes. In gen-
eral, the algorithm commences by finding all frequent
one-itemsets and then finds candidate two-items sets
from the frequent one-item sets. The two-itemsets that
are frequent are kept, and the process repeats until some
point, k, is reached where no k-itemsets are frequent.
In the last stage, all of the frequent itemsets are used to

form association rules. The frequent item setA1∧A2∧A3,
for example, generates A1 → A2 ∧A3, A1 ∧A2 → A3, etc.
A similar bottom-up methodology is applied here to effi-
ciently generate rules that meet the minimum frequency
requirement.

Methods
We have undertaken this survey in a systematic man-
ner guided by the work of Kitchenham in [17] and the
PRISMA standards [18]. Accordingly, the strategy for
conducting this survey is detailed in the following sub-
sections. In addition, we have taken motivation for the
organization of this survey from a related survey on
dengue disease surveillance [19].

Research questions
The primary research questions considered in this survey
are:

R1 To what degree has data mining been applied in air
pollution epidemiology?

R2 Are there any hotbeds of this research area?
R3 Towhich sub-fields of air pollution epidemiology has

data mining been applied?
R4 Which data mining methods have been applied?
R5 What are the limitations of the current work?
R6 What potentially fruitful directions remain unex-

plored?

With respect to R1, we searched the relevant epidemi-
ological literature for research employing data mining
techniques. We did not place any bounds on the dates,
however, it is clear that the active period is relatively
small. Moreover, there is an upward trend in the fre-
quency as the benefits of datamining becomemore widely
known, and tools that lower the barriers to use are made
available.

Following from R1, R2 considered if the existing
research is uniformly spread around the countries and
institutions of the world, or if particular countries and
institutions have a more keen focus on researching this
area.
To address R3, we filtered through the identified articles

to find any reasonable sub-categorization of the epidemio-
logical work in terms of the application areas. This process
revealed three categories of epidemiological studies of air
pollution in the literature involving data mining.
In R4, we looked to see which paradigms, and which

algorithms, have been applied in the air pollution epi-
demiology literature. From this vantage point, we found
that four classes of methods have been applied.
For research question R5, we considered if, given the

objectives, the data and/or the mining algorithms applied
had any limitations. Given our backgrounds in data min-
ing, we were particularly focused on the data used, algo-
rithms applied and the processes by which the methods
were evaluated.
Finally, in R6 we considered the reasonable next steps.

Once again, our consideration here took a data mining
perspective. To this end, we were interested in identify-
ing new ways of using the existing data and cutting edge
data mining algorithms that should be tested within this
research domain.

Search process
We performed a temporally unbounded search for arti-
cles listed in the PubMed database1, the Public Library of
Science (PLOS)2 and Google Scholar3. This includes arti-
cles published up to the time of writing in October 2017.
The articles reported herein result from a three-part

search procedure. This involved: a) a query-based search
to produce a long list of potential articles designed and
conducted by CB and MSMJ, b) a fine-grained manual
evaluation of the long-listed articles by one author per-
formed by CB and MSMJ, and c) identified articles were
reviewed by the remaining authors (AOV and OZ). The
queries applied to the database and with the number of
articles returned are reported in Table 1.

Table 1 The following queries were applied to the databases

Query Results

(“data mining”) AND ((Environment AND health) OR
(exposure))

252

(“data mining”) AND (“air pollution”) 10

(“geo-spatial”) AND ( (“air pollution”)) 3

(“clustering”) AND (“air pollution”) 119

(“machine learning”) AND (“air pollution”) 16

(“association mining”) AND (“air pollution”) 0
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We excluded articles that did not go through a peer
review process in recognized biomedical publication, and
articles that did not apply one or more data mining algo-
rithms. Many environmental health articles, for example,
mention, and/or discuss, the potential for data mining but
did not applying data mining methods. Articles that dis-
cuss data mining in the future work were returned by
our queries, but are not appropriate for inclusion in our
survey.

Data extraction and synthesis
The following information was extracted from each of the
selected articles:

• The source (journal or conference) and full reference.
• A summary of the objective of the study.
• The air pollutants of interest in the study.
• The data mining method applied to achieve the

objective.
• A summary of the findings of the study.

This information was extracted by CB and MSMJ and
validated by AOV and OZ. Any disagreements were han-
dled via discussion and common consensus. After the raw
details of the articles were tabulated, data synthesis was
performed. In addition, AOV extracted information about
each article related to the biomedical objectives.
Data synthesis involved analyzing the objectives, data

mining methods, and the target pollutants in order to
identify categories to effectively group the various stud-
ies. This exercise was performed by CB and reviewed by
the remaining authors. Our goal in the categorization was
to identify a hierarchy of categories that provided a sketch
of the research landscape. In addition, the purpose was
to facilitate quick and easy locating of the studies that
are related to the reader’s area of interest. The identified
categories are listed below:

• Physical Area

– Indoor
– Outdoor (Rural, Urban and General4)
– General

• Objective

– Forecasting and Prediction
– Source Apportionment
– Hypothesis Generation

• Data Mining Method

– Regression
– Classification
– Clustering
– Association Mining

Aspects of data mining in air pollution
epidemiology
Environmental setting: overview
In this section we discuss the target areas of interest
(the environmental setting). We have separated these into
indoor, outdoor and general. Indoor refers the studies
focused on indoor air pollution, such as air pollutants
measured within the home or workplace. Outdoor refers
to studies interested in outdoor air pollution, such as air
pollution measured at a specific intersection or the dis-
persion of pollutants across an area of interest. It can
be further separated into urban, metropolitan and rural.
Given that the current breadth of research is still relatively
sparse, we focus on the top level of abstraction in this arti-
cle. We note, however, that a large portion of the research
in the outdoor category has been applied to urban and/or
metropolitan settings. This is, perhaps, not surprising
given that the high population density in metropolitan
areas can lead to high impact research. Nonetheless, it
suggests rural environments as a potential direction for
future work.
The general category covers research that applies data

mining methods to study the health impacts of com-
binations of chemicals common in air pollution. These
studies were typically conducted in laboratory settings
rather than in the field (or relying on data collected from
the field). Table 2 includes a categorized list of articles in
relation to their environmental settings.

Categorized study objectives: overview
We grouped the selected articles into the following gen-
eral study objectives: forecasting and prediction, source
apportionment and hypothesis generation. A large per-
centage of the articles identified in our survey dealt with
forecasting or predicting pollution levels based on various
climatic and/or pollutant values. These studies consid-
ered: a) forecasting future pollution levels at a specific
location given some specific data for that location, b) fore-
casting current pollution levels at a specific site given
some regional data, and c) forecasting the geo-spatial
distribution of air quality or the spread of pollutants.
Closely related are the studies that were designed to pre-

dict increases in sickness or hospitalization from climatic

Table 2 Categorization of articles organized by the application
setting

Setting References n(%)

Outdoor [4, 20, 22–24, 26, 27, 30–36, 38, 39, 43–60] 87

Indoor [55, 61, 62] 8

General [63, 64] 5

The final column (n(%)) is the percentage of articles in each category
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and pollution measurements or to classify sickness in
individuals given an air quality or pollution assessment.
Studies classified into the source apportionment cat-

egory aimed to trace a given decrease in air quality or
increase in a given pollutant back to its emission source
given a set of pollutant and climatic variables.
Finally, a large number of articles performed hypothesis

generation. These studies take in the wide variety of data
available about the evolution of air pollution at a specific
location, its spread across a region or the globe, health
indicator variables, etc., and use data mining algorithms to
identify hidden associations between the variables. These
associations are used to test existing assumptions and gen-
erate new ones. Exemplary associations might indicate
that a certain chemical combination X,Y ,Z is associated
with increased volume in the emergency department at a
hospital of interest, or that climatic conditionsW ,R com-
bined with heavy seaport traffic, lead to a decrease in the
air quality index. These associations can serve to moti-
vate focused trials to study the discovered relationship in
depth.
Table 3 includes the articles in a list sorted according

to the objectives of the research. It is worth noting that a
given article may have more than one objective, and thus,
may appear multiple times in the table.

Results
Summary statistics
PRISMA results
The summary statistics recording the numbers of articles
returned from our search process, excluded, and included
are presented in the PRISMA flow chart in Fig. 1. Our
initial search returned 400 articles. In addition to these,
one article ([20]) was suggested during the review process.
After the initial screening and eligibility assessment, 47
articles were included in this survey.

Regional and temporal overview
We have found that eighteen of the studies were from
Europe and the UK, sixteen were from the USA, ten
were from China, and four were from other Asian coun-
tries. The detailed breakdown of this is provided in

Table 3 Categorization of articles organized by the study
objective

Setting References n(%)

Forecasting [4, 24, 26, 27, 30, 33–35, 38, 39,
43, 44, 47–49, 52, 54–62, 65–69]

60

Source apportionment [22–24, 45, 51] 10

Hypothesis generation [20, 22, 31, 32, 35, 36, 38, 45, 46,
48, 50, 51, 53, 64, 69]

30

The final column (n(%)) is the percentage of articles in each category

Fig. 2. The papers were published between 2000 and
October 20, 2017. Figure 3 illustrates a strong upward
trend in recent years. We believe this to be owing to better
access to data and computing power, along with a grow-
ing awareness and access to data mining tools that are
accessible to users outside of the data mining community.
These tools include theWeka data mining software, which
enables users to directly apply data mining algorithms
to their data through Java interfaces or a graphical user
interface [21].

Study objectives
The summary statistics for the study objectives are as
follows: sixty percent of the study objectives were to fore-
cast or predict epidemiological values/outcomes, such as
the AQI or increases in emergency room visits. Thirty
percent performed hypothesis generation. This included
objectives, such as learning from the data, in which com-
binations of variables are associated with increases in
hospitalization, and understanding which combination of
meteorological variables are associated with a degrada-
tion in air quality due to emissions from neighbouring
cities. Finally, ten percent of the studies focused on source
apportionment.

Datamining paradigm
We identified that classification, regression, clustering
and association mining algorithms have been applied.
Classification and regression relate to prediction and fore-
casting objective, whereas clustering and association min-
ing generally apply to hypothesis generation and source
apportionment.
Table 4 includes the articles in a list sorted according

to the objectives of the research. Data mining methods
for performing numeric predictions, such as regression
and classification, were most widely applied. This area
encompassed 59% of the research. Clustering algorithms
were applied in 26% of the work, and 15% of the articles
employed association mining.

Detailed analysis
Source apportionment
Table 5 summarizes source apportionment studies
employing data mining techniques. These studies explore
the impact of chemical emissions and other airborne
agents in conjunction with climatological factors [22–24].
They focus on apportioning particular airborne pollutants
to potential sources, such as industrial sites, regions and
major intersections. These studies have mainly focused on
outdoor and urban air pollution as it is the most widely
known issue. In particular, principal component analy-
sis (PCA) has been applied to identify correlations and
the importance of particular meteorological parameters,
traffic, fuel fired equipment and industries in causing air
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Fig. 1 PRISMA flow diagram. Overview of the PRISMA results from our search process

pollution [23–25]. Alternative approaches have utilized
clustering-based solutions with correlation analysis to
accomplish the task of source apportionment [22, 23].
Strengths: The work presented in [23] proposes to per-

form enhanced source apportionment and classification.
The authors claim that the key to achieving this is in

the use of clustering algorithms developed for data min-
ing. The advantage of these is that they are intended
for rich, high-dimensional datasets that may include out-
liers. These factors can be problematic for conventional
methods of source apportionment, such as principle com-
ponent analysis and positive matrix factorization.

Fig. 2 Publications Per Country. The number of publications per country identified a predominance in the filed by European countries, the USA and
China
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Fig. 3 Publications Per Year. Number of articles per year between January 2000 and October 2017. We identified an apparent tendency of an
increased number of publications on data mining and epidemiology in recent years

Once again, we have identified that the clarity with
which the authors present the problem, and then jux-
tapose the limitation of conventional methods with the
potential of data mining approaches, to be a very strong
point in this paper. In addition, we appreciate that the
authors have gone beyond simply applying standard clus-
tering algorithms, and rather, employed their domain
knowledge in order to refine the method in order to
develop a superior clustering algorithm for the domain.
The authors describe their algorithm, how to set the
threshold parameter and the data pre-processing in detail.
Crucially, this makes the proposed solution easily imple-
mentable by others.

Forecasting and prediction
Tables 5 and 6 summarizes 18 studies which applied
machine learning techniques. We observed that investi-
gators are primarily interested in predicting a) the dis-
tribution of ambient pollutant concentrations or related
measures such as the air quality index (AQI), b) human
exposure or c) risk of a health outcome.
According to the above points, the first category con-

sists of 15 studies which either focus on predicting the
distribution of particular air pollutants or predicting the

Table 4 Categorization of articles organized by the data mining
approach

Setting References n(%)

Prediction [4, 20, 24, 24, 26, 27, 30, 31, 33, 34,
47, 49, 50, 52, 54, 59–62, 65–68]

59

Clustering [22, 23, 43–46, 51, 55, 58, 69] 26

Association Mining [32, 35, 36, 48, 53, 63] 15

The final column (n(%)) is the percentage of articles in each category

quality of air in general. Twenty-seven percent of the
above 15 studies (i.e. 4) focus on predicting or forecast-
ing the air quality or air pollution in general. Sixty-six
percent of the studies (i.e. 10) are interested in well-
known specific air pollutants such as nitrogen oxides
(NOx), particulate matter (PM), sulfur dioxide (SO2), car-
bon monoxide (CO), ozone (O3) and Volatile Organic
Compounds VOCs. An interesting, and potentially fruit-
ful, data source utilized by some of the studies that focus
on air quality prediction comes from social media posts;
social media offers a very rich source of information,
which is not typically utilized in scientific analyses of this
type [26, 27].
Fifty percent of the studies focusing on specific air pol-

lutants use artificial neural networks. Other well-known
data mining techniques used include decision trees and
support vector machines. In addition, some studies have
used ensemble models which are composed of multi-
ple models. The final outcome is determined based on
the consensus of the outcome of each model, or some
other method of arbitration. Ensemble models have been
demonstrated to outperform the base classifiers from
which they are composed in a variety of settings. They
can be applied to both discrete and continuous value
prediction [28, 29].
The second category, namely human exposure, consists

of 4 studies. These studies focus on identifying regions
or exposures, predicting the activities of humans to help
understand the exposure better and quantifying the expo-
sure levels.
Interestingly, some of the studies also focus on build-

ing better infrastructure to collect data, or on ways to
improve the quality of the collected data. This invest-
ment can be interpreted as a level of confidence in the
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application of data mining, and its potential to help shape
future research and understanding. The interest in more
fundamental problems like data collection and the accu-
racy of the collected data, in addition to a single focus on
building amodel based on the available data is very impor-
tant. Work based on primary questions as such these will
ensure high-quality datasets are available in the future,
and thus, that better data mining and machine learning
models will be possible.
Strengths: The authors in [30] propose a hybrid system

that incorporates a variety of machine learning methods
to produce more accurate forecasts and evaluations of air
pollution. The authors note that data driven approaches
are often more accurate and less complex than model-
based approaches, such as chemical transport models, for
predicting air quality. Data mining and machine learning-
based approaches are data driven methods that are recog-
nized as being powerful forecasting tools. This motivates
them as a good choice for the authors. Although we do not
see this as being as strong as the previous motivations for
applying data mining and machine learning, it is certainly
a sufficient reason to consider machine learning.

Hypothesis generation
We observed that many studies (i.e. above 60% of the stud-
ies that we have considered) have predominantly applied
association rule mining—a primary class of data min-
ing techniques—to generate new hypotheses regarding
potential connections between air pollution and adverse
health conditions.
From the identified articles, we observed that respi-

ratory disease is an adverse health outcome of interest
in these studies. Many studies focusing on respiratory
disease are interested in finding out any potential connec-
tion between the disease and particulate matter or other
airborne pollutants such as SO2 and NOx.
Our results demonstrated that there is a growing inter-

est in generating new hypotheses explaining the con-
nection between a combination of air pollutants and a
particular adverse health impact. In [31], for exampled,
the authors used the Bayesian Kernel Machine Regression
(BKMR) method, which was recently introduced by epi-
demiologists. This illustrates the benefit of applying data
mining methods to modern epidemiological datasets.
Strengths: The authors in [20] are interested in generat-

ing hypotheses about the joint effect of multiple airborne
chemicals on pediatric asthma. Their work demonstrates
that classification and regression trees can be used to
overcome the challenge presented by multiple chemical
interactions when identifying complex joint effects.
We have identified this as a noteworthy paper because

the authors are studying a problem that is difficult to
solve using conventional epidemiological methods. The
paper is strengthened by the fact that the authors clearly

justify the ML/DM solution to the problem. In addition,
the authors explain why they selected the specific ML
algorithm. Finally, this work is an excellent example of
howML/DM algorithms can be augmented and combined
with knowledge and practices from the target domain in
order to make an accurate and appropriate joint method-
ology. In particular, the authors demonstrate a refinement
to the standard CART algorithm to control for confound-
ing variables. This is important to note because in some
applications, data mining practitioners can lose sight of
useful, and often necessary, domain knowledge, which
hampers the final results. Table 7 summarizes 15 stud-
ies which applied data mining techniques to generate new
hypotheses to better understand the relationship between
air pollution and health.

Discussion
Challenges and limitations
Wehave identified a few reoccurring challenges in the sur-
veyed papers. A major theme revolves around data. Many
articles, for example, report results from data collected
over a short period of time, and from one, or only a few,
locations [32, 33]. As a result, the findings cannot neces-
sarily be generalized to new locations. This is particularly
the case for prediction models trained on local data.
Most real-world data requires preprocessing to com-

bine data sources, remove noise and properly structure
the data. The necessities of this may be challenging for
domain practitioners. Moreover, certain decisions that
must be made during preprocessing can have an impact
on the effectiveness of the trained model. Decision trees
and association mining algorithms, for example, take
categorical variable inputs, whilst continuous variables
are common in epidemiology and atmospheric science.
Thus, variables, such as temperature, must be converted
to discrete categories (low, medium, high) for exam-
ple [33]. In many cases, the ideal split points may be
unclear. In general, the current literature does not focus
on how to best preprocess air pollution epidemiological
datasets.
Given the volume of social media data, and the fact that

the vast majority of it is irrelevant to the data mining
objective, it often has to be filtered. In [27], for example,
keyword filtering is applied to gather relevant micro-blogs
from SinaWeibo. How exactly to filter, or process the data,
is an open question. A potential new direction here is to
apply feature selection or feature extraction [2].
As noted by [34], it is important to recognize the limits

of your data. Issues, such as granularity and represen-
tativeness, can limit what can be discovered from the
data. Likewise, when generating association rules to pre-
dict outcomes, such as hospitalization or an increase in
respiratory disease from weather and pollution data, the
training data may not account for all relevant factors. In
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[35], it is noted that their data does not account for the
accumulative nature of health outcomes.
Other challenges in applying data mining methods

include the selection of user-specified parameters for the
algorithms. Choosing the ideal number of clusters, for
example, is important for performance of clustering algo-
rithms [22]. In addition, metrics must be used that are
appropriate for the target domain. In some cases, suitable
evaluation metrics may not exist within the data mining
literature, in which case newmetrics may be required [36].
Finally, in many cases practitioners prefer data mining

models that produce predictions in a manner that can be
easily analyzed and understood [32, 36]. This limits the
choice of algorithms to rule learners and decision trees,
and thus, many of the strongest algorithms are omitted.
Perhaps, research focused on making the predictions of
artificial neural networks and support vector machines
more interpretable could be helpful for the health sciences
community [37].
From an application perspective, we found the dis-

cussion of data mining related choices to be limited.
Whilst the majority of the articles surveyed contain suf-
ficient details about the algorithms implemented, readers
could benefit from a similar level of detail in regards
to other key design and implementation decisions. With
few exceptions, such as [38], most of the surveyed arti-
cles report results for a single data mining algorithm.
Readers would benefit from understanding how and why
the specific choice of algorithm was made. As we noted
in the overview section on Paradigms of Data Mining
Algorithms, it is standard within the data mining com-
munity to run trials using a diverse set of algorithms.
We often missed a discussion of details regarding which
other algorithms were considered, and how they were
evaluated. Finally, details regarding how the software was
implemented and which data mining packages were used
would be valuable to other readers from the air pollution
epidemiology community.

Future directions
Deep learning
Traditional artificial neural networks have proven to be
accurate predictors for classification and regression prob-
lems. Within this survey, we have found them to be
used for predicting global ground level PM2.5 [4], pre-
dicting air pollution indicators and modeling personal
exposure [39]. In recent years, however, deep learning
has elevated the potential for learning with artificial
neural networks to new heights. Thus, deep learning
methods may also be very fruitful within air pollution
epidemiology.
Deep learning is based on standard artificial neural

network algorithms but utilizes much larger and deeper
networks trained on big datasets. The training process

in conjunction with the depth of the networks enables
the learning of data abstractions at the different depths.
This is found to disentangle complex features. Deep learn-
ing methods have been highly effective in areas such as
image classification, speech recognition, and other com-
plex problems [2].

Model selection
Model selection and evaluation are very important
aspects of applying machine learning algorithms to real-
world applications. However, they often receive less atten-
tion than the machine learning algorithms themselves. It
is important to consider the breadth of techniques when
developing applications in data mining in order to select
the right approach for the domain.
For a givenmachine learning algorithm, model selection

refers to the choosing of a parameterized version of the
model based on the training data. The key is to select a
model that will perform well on unseen data in the future.
Once a parametrized model has been selected, the evalu-
ation process provides an estimate of how the model will
perform during future application. Some common evalua-
tionmetrics are accuracy, rootmean square error (RMSE),
f-measure and the area under the ROC curve (AUC).

Cross-validation
In the surveyed literature, various forms of cross valida-
tion have been applied [24, 26, 38]. In addition to these,
various other methods can be applied, each of which
has strengths and weaknesses. It is important to select a
method that is appropriate for your target domain. Eval-
uation metrics estimate performance in different ways,
and thus, it is important to choose one that is consistent
with the target domain. The details of model selection and
evaluation are thoroughly discussed in [6].

Associationmining
Our results demonstrated that much of the research that
applied hypothesis generation utilize association mining.
These studies typically relied on frequency to identify the
associations. It is worth pointing out some alternatives,
particularly for scientific domains. Statistical significance
test-based methods, for example, have been developed to
offer a better assessment of the quality of the associa-
tion [40, 41]. These could be of great benefit to future
applications in air pollution epidemiology.

Class imbalance
In a related context, [38] noted the potential impact of
class imbalance, or skewed class distributions, on the
performance ofmachine learning algorithms. Class imbal-
ance is said to occur when one class is significantly less
likely, or less frequent, in the training set, than the other
class. A detailed discussion of the impacts and potential
solutions to class imbalance is undertaken in [42]. Given
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that we are often interested in less frequent, or even rare,
events in air pollution epidemiology, methods developed
for imbalanced learning may have great potential here.

Conclusion
Recent progress in technology and corresponding
decreases in the price of computing power has made if
possible to measure and store a wide variety of environ-
mental health variables and form them into big datasets.
Moreover, social media and other on-line resources pro-
vide an entirely new perspective from which to conduct
environmental health analyses. These big datasets come
with complexities that render it difficult to rely on tradi-
tional epidemiological or environmental health models
to analyze them. To this end, data mining methods offer
great potential to advance our understanding of the
causes and impacts of air pollution.
From our survey, we have found a strong increase in the

number of articles reporting to apply data mining meth-
ods to air pollution epidemiology. We attribute this to
the increasing availability of large datasets and computing
power, along with the growing awareness of the poten-
tial benefits of data mining. In spite of this trend and the
potential benefit within the field, to the best of our knowl-
edge, a survey of the existing state-of-the-art has not been
performed.
To fill this void, we undertook a study to explore the

extent to which data mining has been applied to air
pollution epidemiology. This survey is intended for prac-
titioners and researchers alike. We aim to point domain
researchers to existing data mining applications within
their respective areas, and related areas, as well as advance
their understanding of the potential of data mining and
inspire them to explore further research avenues.
Our survey illustrates that a wide variety of data mining

algorithms have been applied to various sub-fields of air
pollution epidemiology. Machine learning algorithms, for
example, have been applied both as classifiers and regres-
sors in forecasting and prediction problems. Clustering
algorithms, such as K-Means and hierarchical clustering
have been applied to knowledge discovery and source
appropriation. In addition, a great number of studies have
applied association mining for hypothesis generation.

Endnotes
1 see https://www.ncbi.nlm.nih.gov/pubmed
2 https://www.plos.org
3 https://scholar.google.ca
4General refers to the study of air pollutants not specific

to a certain setting.
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