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Educational Data Mining (EDM) is a research �eld that focuses on the application of data mining, machine learning, and statistical
methods to detect patterns in large collections of educational data. Di	erent machine learning techniques have been applied in this
�eld over the years, but it has been recently that Deep Learning has gained increasing attention in the educational domain. Deep
Learning is a machine learning method based on neural network architectures with multiple layers of processing units, which has
been successfully applied to a broad set of problems in the areas of image recognition and natural language processing. �is paper
surveys the research carried out in Deep Learning techniques applied to EDM, from its origins to the present day. �e main goals
of this study are to identify the EDM tasks that have bene�ted from Deep Learning and those that are pending to be explored,
to describe the main datasets used, to provide an overview of the key concepts, main architectures, and con�gurations of Deep
Learning and its applications to EDM, and to discuss current state-of-the-art and future directions on this area of research.

1. Introduction

�eresearch �eld of Educational DataMining (EDM) focuses
on the application of techniques and methods of data min-
ing in educational environments. EDM is concerned with
developing, researching, and applying machine learning,
data mining, and statistical methods to detect patterns in
large collections of educational data that would otherwise be
impossible to analyze [1].

EDM leverages e-learning platforms such as Learning
Management Systems (LMS), Intelligent Tutoring Systems
(ITS), and, in the last years, Massive Open Online Courses
(MOOC), to obtain rich and multimodal information from
student’s learning activities in educational settings. For
instance, these platforms record when the students access a
learning object, how many times they accessed it, whether
the answer provided to an exercise is correct or not, or the
amount of time spent reading a text or watching a video.

All this information can be analyzed to address di	erent
educational issues, such as generating recommendations,
developing adaptative systems, and providing automatic
grading for the students’ assignments. Di	erent machine
learning techniques have been applied over time to analyze
this data, but it has been in recent years that the use of Deep
Learning techniques has emerged in the �eld of EDM.

�e topic of Deep Learning (DL) has gained increasing
attention in the industry and research areas in the last decade,
revolutionizing the �eld of machine learning by obtaining
state-of-the-art results in perception tasks such as image and
speech recognition [2]. Major companies such as Google,
Facebook, Microso
, Amazon, and Apple are heavily invest-
ing in the development of so
ware and hardware innovations
in this �eld, trying to leverage DL potential in the production
of smart products.

DL is based onneural network architectureswithmultiple
layers of processing units that apply linear and nonlinear
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transformations to the input data. �ese architectures can
be applied to all type of data: image, audio, text, numerical,
or some combination of them. Many research �elds have
bene�ted from applying these technologies, and EDM is not
an exception.

In the last few years there has been a proliferation of
research in the EDM �eld using DL architectures. �is article
presents a review on the literature of DL techniques applied
to EDM, from its �rst appearance in 2015 to the present day.
�e primary contributions of this article are as follows:

(i) Summarize the main EDM tasks and classify the
existing works that have applied DL on each of these
tasks.

(ii) Identify the tasks that have gained major attention
and those that are still unexplored.

(iii) Describe and categorize the main public and private
datasets employed to train and test DL models in
EDM tasks.

(iv) Introduce key DL concepts and technologies, describ-
ing the techniques and con�gurations most widely
used in EDM and its speci�c tasks.

(v) Discuss future directions for research inDL applied to
EDMbased on the information gathered in this study.

�e rest of this article is organized as follows: Section 2
presents and compares previous surveys in the �eld of
EDM; Section 3 describes the process carried out to retrieve
the papers reviewed in this study, including a quantitative
analysis of the papers gathered; Section 4 describes the
main tasks in EDM, identi�es the existing literature in
each task, and describes the main datasets employed in the
�eld; Section 5 presents the key concepts of DL, the main
architectures, con�gurations, and frameworks, summarizing
the characteristics (in terms of DL technologies) of the
work done in EDM; Section 6 presents a discussion about
the information compiled during this review work; �nally,
conclusions are presented in Section 7.

2. Review of Previous Surveys

�e application of data mining techniques to educational
environments has been an active research �eld in the last
few decades, gaining much popularity in recent times thanks
to the availability of online datasets and learning systems.
Di	erent surveys have been published about EDM so far, and
this section summarizes these works and presents the key
di	erences between the current proposal and the previous
reviews in this �eld.

�e �rst EDM survey identi�ed in the literature was
developed in 2007 by Romero and Ventura [3], which was
further improved in 2010 [4] and 2013 [5]. In the later, the
authors analyzed more than 300 studies carried out before
2010, identifying eleven categories or tasks in EDM: analysis
and visualization of data, providing feedback for supporting
instructors, recommendations for students, predicting stu-
dent’s performance, student modeling detecting undesirable
student behaviors, grouping students, social network anal-
ysis, developing concept maps, constructing coursewares,

and planning and scheduling. �e survey presented methods
and techniques employed in the EDM �eld in each of these
categories.

In 2009, a new EDM survey was presented by Baker and
Yacef [6]. �is study discussed trends and shi
s in research
conducted by this community, comparing its current state
with the early years of EDM. In this case, the authors iden-
ti�ed four applications/tasks in this �eld: improving student
models, improving domainmodels, studying the pedagogical
support provided by learning so
ware, and scienti�c research
into learning and learners. �e most-cited papers in EDM
between 1995 and 2005 were listed, discussing their in�uence
on the EDM community.

Peña-Ayala proposed in 2014 a thorough survey by
applying data mining techniques to more than 240 papers
in EDM [7]. �e execution of statistical and clustering
processes identi�ed a set of educational functionalities, a
pattern of EDM approaches, and two patterns of value-
instances to depict EDM approaches based on descriptive
and predictive models. Unlike previous literature reviews,
thisworkmainly focused on computational techniques rather
than EDM applications.

More recently, two new studies have been added to this
list of surveys.�e �rst one was carried out by Bakhshinategh
et al. in 2018 [8]. �is work studied various tasks and
applications existing in the �eld of EDM and categorized
them based on their purposes. Based on the eleven categories
proposed by [4], they suggested a hierarchy of thirteen
categories grouped into �ve main tasks: Student Modeling,
Decision Support Systems, Adaptive Systems, Evaluation, and
Scienti�c Inquiry. In Section 4.1, this taxonomy of tasks is
used as the basis to classify the current studies inDL for EDM.

Finally, the most recent review devoted to EDM has
been developed by Aldowah et al. [9] in 2019. �is study
constrained the research to works applied in the context
of higher education. �e analysis presented was based
on four dimensions: computer supported learning ana-
lytics, computer supported predictive analytics, computer
supported behavioral analytics, and computer supported
visualization. Based on the results of previous studies, the
authors found that speci�c EDM techniques could o	er
the best means of solving certain learning problems, o	er-
ing student-focused strategies and tools for educational
institutions.

In these review papers there are two aspects that have not
been studied in a systematic way, and that the present work
intends to analyze: the existing datasets and the use of DL
techniques in EDM. Firstly, in order to empirically compare
di	erent approaches, it is necessary to know the underlying
datasets employed in the experiments. In this paper, a section
is devoted to review and summarize these resources (see
Section 4.2). Secondly, although previous proposals have
taken into account (shallow) neural networks approaches in
the literature, none of them is speci�cally focused on DL
techniques. In this paper, Section 5 provides an introduc-
tion to the foundations of DL (main architectures, training
process, hyperparameters, and frameworks), characterizing
these techniques in the EDM domain and relating them to
the papers reviewed.
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Figure 1: Number of papers published per year.

3. Methodology

�is section describes the methodology followed to carry
out this review and the process of gathering, analyzing
and extracting the existing works on DL applications to
EDM.

In order to perform a systematic review, the following
scientific repositories were accessed: ACM Digital Li-
brary (https://dl.acm.org/), Google Scholar (https://schol-
ar.google.es/), and IEEE Xplore (https://ieeexplore.ieee.org/).
�ese sources were queried with the following search
string: "deep learning" AND "educational data min-
ing". As a result, a large set of papers was retrieved and a
manual review process was applied to �lter out duplicates
and papers on unrelated topics. �e bibliography cited in the
papers that initially passed the �lter was also reviewed. �is
allowed expanding the number of relevant papers retrieved.
�e �nal set contained 41 papers. Figure 1 summarizes the
number of publications per year.�e �rst papers applying DL
to EDMwere published just four years ago, in 2015, and there
is clearly an increase in the number of publications over the
years until 2018.

Table 1 summarizes the number of papers published in
each publication venue. Most of them have been published
in conferences (80%). �e International Conference on Edu-
cational Data Mining accumulates the maximum number of
publications (considering the last three editions), with a total
of 16. Not surprisingly, this is the congress of reference in the
EDM �eld.

Finally, Figure 2 shows a choropleth map of the world
showing the density of researchers per country involved in
the area of DL applied to EDM, based on their a�liation.
Authors are weighted by the number of contributors to the
paper. For instance, in a paper with � authors, each one will
contribute to their country with a weight of 1/�. �e map
shows that United States is the more active country in this
�eld, followed (at a great distance) by India, Canada and
China. Other countries where researchers have contributed
to this �eld are New Zealand, Singapore, Japan, Argentina,
Australia, and Serbia.

4. Educational Data Mining

�e �rst part of this section shows taxonomy of the tasks
addressed by EDM systems. �e works reviewed are brie�y
described and classi�ed using this taxonomy in order to
di	erentiate the tasks that have been faced by DL approaches
from those that are still unexplored. �e second part of the
section describes the main datasets used in the �eld, also
grouped by the task addressed.

4.1. Tasks. In the last years, di	erent surveys have focus in
di	erent aspects of EDM systems. A recent study is described
in [8]. An interesting aspect of thiswork is the development of
a novel taxonomy of tasks in EDM.�is taxonomy is used in
this section as the basis to classify the papers gathered in the
�eld ofDL applied to EDM.�e taxonomy comprises thirteen
tasks:

(i) Predicting student performance: the objective is to
estimate a value or variable describing the students’
performance or the achievement of learning out-
comes.

(ii) Detecting undesirable student behaviors: the focus
here is on detecting undesirable student behavior,
such as low motivation, erroneous actions, cheating,
or dropping out.

(iii) Pro�ling and grouping students: the purpose is to
pro�le students based on di	erent variables, such as
knowledge background, or to use this information to
group students for various purposes.

(iv) Social network analysis: the aim is to obtain a model
of students in the form of a graph, showing di	erent
possible relationships among them.

(v) Providing reports: the purpose is to �nd and highlight
the information related to course activities whichmay
be of use to educators and administrators, providing
them with feedback.

(vi) Creating alerts for stakeholders: the objective is to
predict student characteristics and detect unwanted
behavior, serving as an online tool for informing
stakeholders or creating alerts in real time.

(vii) Planning and scheduling: the aim is to help stakehold-
ers in the task of planning and scheduling.

(viii) Creating courseware: the purpose is to help educators
to automatically create and development coursemate-
rials using students’ usage information.

(ix) Developing concept maps: the objective is to develop
concept maps of various aspects to help educators
de�ne the process of education.

(x) Generating recommendation: the objective is tomake
recommendations to any stakeholders, although the
main focus is usually on helping students.

(xi) Adaptive systems: this task is related to the use of
intelligent systems in computer based learning, where
the system has to adapt to the user’s behavior.

https://ieeexplore.ieee.org/


4 Complexity

Table 1: Number of papers over publication venue.

Type Publication venue Number

Conference

International Conference on Educational Data Mining (2016, 2017, 2018) 16

�ird ACMConference on Learning @ Scale (2016, 2017) 5

Arti�cial Intelligence in Education 2

IEEE International Conference on Data Mining Workshop (ICDMW 2015) 1

International Symposium on Educational Technology (ISET) 1

Seventh International Learning Analytics and Knowledge Conference 1

Annual Conference on Neural Information Processing Systems (NIPS) 1

Conference on Empirical Methods in Natural Language Processing (2016) 1

26th Conference on User Modeling, Adaptation and Personalization 1

2nd International Conference on Crowd Science and Engineering 1

Neural Information Processing Systems, Workshop on Machine Learning
for Education

1

2nd International Conference on Innovation in Arti�cial Intelligence 1

20th ACM International Conference on Multimodal Interaction 1

Journal

CoRR 4

International Journal of Applied Engineering Research 1

Journal of Educational Data Mining 1

Journal of Engineering and Applied Sciences 1

Journal of Educational Computing Research 1

Canada

United States
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Argentina
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China

India
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Australia

New
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Authors
99

1

Figure 2: Choropleth map showing the density of researchers per country in the papers reviewed based on their a�liation.

(xii) Evaluation: the goal is to provide an automatic evalu-
ation tool to help educators.

(xiii) Scienti�c inquiry: mostly targeted on researchers as
the end users, but developed or tested theories can
be used a
erwards in other applications with di	erent
stakeholders.

All the works analyzed in this review fall into four of
these thirteen categories: predicting student performance,

detecting undesirable student behavior, generation recom-
mendations, and evaluation. �e other nine categories
remain empty. Table 2 summarizes these four tasks in EDM
(�rst column), the references to the works in the �eld (second
column), the datasets employed (third column), and the types
of datasets (fourth column). �is last column speci�es if
the dataset has been created speci�cally for the experiments
carried out (“Speci�c”) or if it is a general dataset used in
other works (“General”). �e following subsections present
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Table 2: Summary of EDM tasks, approaches, datasets, and types of datasets. “Speci�c” means that the dataset has been created for a speci�c
study, and “General” means that it has been used in di	erent publications.

Task Reference Dataset Type

Predicting student
performance, achievement
of learning outcomes or
characteristics

Lin and Chi, 2017 [11] ITS Pyrenees Speci�c

Zhang et al., 2017 [49] ASSISment and OLI datasets General

Kim et al., 2018 [26] Udacity Speci�c

Lalwani and Agrawal, 2017
[14]

Funtoot dataset Speci�c

Okubo et al., 2017 [24] Information Science Course dataset Speci�c

Guo et al., 2015 [23] High schools dataset Speci�c

Sharada et al., 2018 [22] ASSIStment 2018 General

Wang et al., 2017 [12] Code course dataset Speci�c

Tang et al., 2016 [21] Kaggle Automated Essay Scoring General

Bendangnuksung and P.,
2018 [20]

Kaggle Students’ Academic Performance dataset General

Mao et al., 2018 [15] ITS Pyrenees and ITS Cordillera Speci�c

Wilson et al., 2016 [50] ASSISTment 2009-2010, KDD Cup 2010 and ITS Knewton General

Wilson et al., 2016 [16]
ASSISTment 2009-2010 dataset, KDD Cup 2010 dataset and ITS
Knewton

General

Khajah et al., 2016 [17]
Assistment 2009-2010 dataset, virtual student dataset, and data
from Spanish and Engineering courses

General and
Speci�c

Xiong et al., 2016 [18] ASSISTments 2009-2010 dataset General

Wang et al., 2017 [53] KDD Cup 2015 dataset General

Kim et al., 2018 [27] Udacity Speci�c

Montero et al., 2018 [13]
ASSISTment 2009-2010 dataset, KDD Cup 2010 dataset and ITS
Woot Math

General and
speci�c

Piech et al., 2015 [10] Virtual student dataset and Assistments 2009-2010 dataset General

Singh et al. 2018 [54] Kaggle Automated Essay Scoring General

Alam et al., 2018 [25] Kaggle Students’ Academic Performance dataset Speci�c

Yeung and Yeung, 2018 [19]
ASSISTment 2009, ASSISTment 2015, ASSISTment Challenge,
Statics2011, Simulated-5

Speci�c

Detecting undesirable
student behaviors

Aung et al., 2018 [36] YouTube videos of school classrooms Speci�c

Sharma et al., 2016 [34] StyleX dataset (multimedia) Speci�c

Teruel and Alemany, 2018
[29]

ASSISTment 2009-2010 dataset and KDD Cup 2015 General

Fei and Yeung, 2015 [28] - -

Whitehill et al., 2017 [31] HarvardX MOOCs General

Wang et al., 2017 [30] Code course dataset Speci�c

Min et al., 2016 [33] Game-based virtual learning environment Crystal Island Speci�c

Tato et al., 2017 [37] French corpus Speci�c

Yang et al., 2018 [35] Videos collected in unconstrained environments Speci�c

Xing and Du, 2018 [32] Canvas project management MOOC Speci�c

Generating
recommendations

Wong, 2018 [39] Student transcript records Speci�c

Abhinav et al., 2018 [38] Learner’s pro�le data Speci�c

Evaluation

Akram et al., 2018 [44]
problem-solving dataset from game-based learning
environment

Speci�c

Zhang et al., 2016 [42] Short answers from ITS Cordillera Speci�c

Taghipour and Ng, 2016
[41]

Kaggle Automated Essay Scoring General

Zhao et al., 2017 [40] ASSISTment 2009-2010 and Kaggle Automated Essay Scoring General

Alvarado et al., 2018 [43] Short-answer question dataset from biology course Speci�c

Choi et al., 2017 [45] PODS dataset Speci�c

Sales et al., 2018 [46] 2015 ASSISTments Skill Builder Data General
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each task and the works related in more detail. �e details
about the DL implementation on each paper are described in
Section 5.

4.1.1. Predicting Student Performance. One of the challenges
that has gained more attention in this area is knowledge
tracing. In this subtask the goal is to predict student’s future
performance based on their past activity. Piech et al. [10]
were the �rst to introduce DL techniques to address this
task, largely outperforming previous approaches based on
traditional machine learning techniques. �ese remarkable
achievement leads to other researchers to question the valid-
ity of the results. A series of works were published a
erwards
thatwere for [11–13] or against [14–19] the claims in this paper.
�e studies that disagree with Piech et al. tried to replicate the
results of the experiments and compare themwith traditional
machine learning techniques in a more fair scenario, arguing
that the di	erences between DL and previous models were
not so evident. Also in the task of knowledge tracing, but away
from the controversy initiated by Piech et al., the work in [20]
proposed also a DL classi�er to predict whether students will
fail or pass an assignment.

�e work by [21] leveraged a DL model to explore two
di	erent contexts within the educational domain: writing
samples from students and clickstream activity within a
MOOC. �e use of a single model and architecture high-
lighted the �exibility and broad applicability of DL to large,
sequential student data.

�e work by [22] applied DL to a dataset obtained from
a web based mathematics tutor to model student knowledge
retention, i.e., the ability of the students to retain the acquired
knowledge. �e proposal signi�cantly outperformed the
baselinemethod proposed.�is approach was later employed
to personalize retention tests.

In [23], the authors presented a DL classi�er for predict-
ing students’ performance, which took advantage of a rela-
tively large real world students’ dataset of unlabeled data. �e
system automatically learnedmultiple levels of representation
and the experimental results showed the e	ectiveness of the
method. In this line, [24] proposed a method for predicting
�nal grades of students applying DL to the log data stored in
an educational system. �e log data represented the learning
activities of students who used the LMS, the e-portfolio
system, and the e-book system. �e results showed that
DL outperformed the traditional machine learning baseline
proposed. Reference [25] proposed amodel to categorize stu-
dents into high, medium and low, to determine their learning
capabilities and help them to improve their study techniques.
A DL model was implemented to provide predictions based
on the top features identi�ed. Finally, [26, 27] recast the stu-
dent performance prediction problem as a sequential event
prediction problem and proposed a DL algorithm, called
GritNet.�e results showed that their proposal outperformed
the baseline chosen, obtaining substantially gain in the few
weeks when accurate predictions are most challenging.

4.1.2. Detecting Undesirable Student Behaviors. �e works
focused in the task of detecting undesirable students’ behav-
ior have faced three di	erent subtasks: predicting dropping

out in MOOC platforms, addressing the problem of students
engagement in their learning, and evaluating social functions.

In the subtask of dropout prediction in MOOCs, [28]
treated this task from a sequence labeling perspective,
applying temporal models to solve the problem. Using DL
techniques, they obtained signi�cantly better performance
than traditional machine learning methods for all three
de�nitions of dropout: participation in the �nal week, last
week of engagement, and participation in the next week.
References [29, 30] de�ned dropout as a binary classi�cation
problem. Reference [30] combined di	erent DL architectures
in a bottom-up manner, selecting three attributes from the
dataset as an input. �e results showed that the proposed
model could achieve comparable performance to approaches
relying on feature engineering performed by experts. Refer-
ence [29] optimized a joint embedding function to represent
both students and course elements into a single shared
space. �e results indicated that coembeddings were able to
capture the latent causes involved in dropout, outperforming
other disjoint and not embedded representations. Reference
[31] questioned the fact that dropout prediction focuses
on exploring di	erent feature representations and classi�-
cation architectures, comparing the accuracy of a standard
dropout prediction architecture with clickstream features,
classi�ed by logistic regression, across a variety of di	erent
training settings in order to better understand the trade-o	
between accuracy and practical deployability of the classi�er.
Finally, [32] focused on personalize student intervention
to compute the dropout probability of individual students
each week. A DL model was used to build dropout models
and further produce individual student dropout probabili-
ties. Instructors could use this information to personalize
and prioritize intervention for academically at-risk students.
�e results supported the bene�ts of DL for prediction
and personalized intervention design on a MOOC course
data.

Regarding the study of how engaged are students in their
learning, in [33] the students were observed through a live
feed that included the student’s facial video, the student’s gaze
superimposed in real time over a video capture of the screen,
and the student’s voice as recorded through a headset micro-
phone. To these end, a DL-based dialogue act classi�er that
utilizes these three data sources was implemented. Empirical
results suggested that DL models that utilize game trace
logs and facial action units achieved the highest predictive
accuracy. In [34] the assumption was that if educational
videos are not engaging, then students tend to lose interest in
the course content. �e authors combined audio and visual
information to predict the liveliness in a video using DL.�e
results demonstrated signi�cant improvement compared to
traditional state-of-the-art methods. �e work by [35] was
focused on the movements of gaze and pose to determine
the engagement intensity while watching online educational
courses videos. �e authors developed a DL framework that
accepted multiple input features (statistical characteristics,
facial descriptors, and action features) and evaluated how
di	erent modalities performed using this framework. Exper-
imental results demonstrated the e	ectiveness of the method
proposed. Another work addressing students engagement
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was developed by [36]. �ey identi�ed disengaged or dis-
tressed students, helping teachers to better recognize whether
they are paying attention to the right thing or the right
student in the classroom. A DL-based prototype system was
developed for automated eye gaze following, which estimated
for each person in the classroom where they were looking at.
�e proposed method could estimate the gaze target location
of each person in the image with accuracy substantially
better than chance and higher than other traditional baseline
methods.

Finally, the work by [37] proposed aDLmodel to evaluate
sociomoral reasoning maturity, a key social ability necessary
for adaptive social functioning. �is model was used in a
serious game to evaluate students, outperforming traditional
machine learning approaches in this context.

4.1.3. Generating Recommendation. �ere are two works
addressing the recommendation of learning items to assist
students. Both studies focused on generating personalized
searches based on their preferences and curriculumplanning.

Reference [38] proposed a hybrid recommendation sys-
tem (called LeCoRe) that recommended learning oppor-
tunities to students based on their (implicit or explicit)
preferences, allowing connecting them by similar interests
on the platform. LeCoRe combined both content-based and
collaborative �ltering techniques in its phases. �e learner
training step applied traditional collaborative �ltering algo-
rithms and content-based DL algorithms separately. �e
authors concluded that the proposed framework was able to
successfully model the learner’s preferences. In another work,
[39] focused on the less investigated problem of curriculum
planning for students, providing a novel approach to this
domain based on two components: a DL approach to sequen-
tial recommendations and a recommender to provide a per-
sonalized pathway to completion using sequence, constraint,
and contextual parameters.

4.1.4. Evaluation. Di	erent approaches have faced the chal-
lenge of providing evaluation tools to help teachers in the
grading process. �ese approaches can be broadly classi�ed
in two subtasks: automated essay scoring (AES) and automatic
short answer grading (ASAG).

AES systems are used to evaluate and score written
student essays based on a given prompt. Reference [40]
proposed a DL-based automated grading model. For each
possible score in the rubric, student responses graded with
the same scorewere collected and used as the grading criteria.
�e DL model learned to predict a score by computing the
relevance between the students response and the grading
criteria collected. In [41] the authors followed a DL approach
to identify the best feature representation to learn the relation
between an essay and its assigned score. Results showed
an improvement with respect to other approaches requiring
feature engineering.

ASAG systems automatically classify students answers as
correct or not, based on a previous set of correct answers.
Reference [42] studied answer-based, questions, and student
models features, both individually and combined, integrating

them in di	erent machine learning models. DL obtained the
best performance in their experiments. In [43], the authors
compared several features for the classi�cation of short open-
ended answers, such as n-gram models, entity mentions and
entity embeddings. �e authors obtained inconclusive results
regarding the bene�ts of using embeddings with respect to
traditional n-grams.

Other speci�c subtasks related to evaluation are also faced
in the DL for EDM literature. Reference [44] introduced
a temporal analytics framework for stealth assessment that
analyzed students’ problem-solving strategies in a game-
based learning environment. �e authors used a DL model
on a dataset of problem-solving behaviors, outperforming
baseline approaches with respect to stealth assessment pre-
dictive accuracy. Reference [45] explored how a DL-based
text analysis tool could help assess how students think
about di	erent moral aspects. �e model was not compared
in this case with traditional machine learning approaches.
Finally, [46] proposed a DLmethod to help estimate whether
students achieved skill mastery in a set of experiments using
A/B tests. �is proposal was not compared with traditional
machine learning methods.

4.2. Datasets. All these EDM related tasks need di	erent
types of educational datasets, both for training and for
evaluating the machine learning systems. Some of these
datasets are related to how students learn (for example, the
success of students developing di	erent types of exercises)
and others to how student interact with digital learning
platforms (e.g., clickstream or eye-tracking data inMOOCs).
�is section presents an overview of the main datasets
used for EDM in the reviewed papers, as well as other
datasets developed for speci�c studies. �ese datasets will
be related to the tasks identi�ed in the previous section.
�is information is summarized in the last two columns of
Table 2.

4.2.1. Predicting Student Performance. In order to predict
student performance it is necessary a dataset of exercises
with answers gathered from real students during a
period of time. �is is exactly the aim of ASSISTment
(https://sites.google.com/site/assistmentsdata/) [47, 48].
�is dataset is used in many papers to predict student
performance [10, 13, 16, 18, 19, 22, 29, 46, 49, 50]. It is
composed of a series of mathematics exercises o	ered to
middle-school students through the ASSISTment plat-
form (https://www.assistments.org/), including information
such as assignment and user identi�cation, whether the
answer is correct on the �rst attempt or not (a binary
�ag indicating if the student completed the exercise
correctly), the number of student attempts on a problem,
answer type, etc. (�e full list of features is available here:
https://sites.google.com/site/assistmentsdata/home/assistment-
2009-2010-data.) �e platform is currently up and running,
with new and updated datasets released occasionally
(see https://sites.google.com/site/assistmentsdata/home and
https://sites.google.com/view/edm-longitudinal-workshop/
home).

https://sites.google.com/site/assistmentsdata/
https://www.assistments.org/
https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data
https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data
https://sites.google.com/site/assistmentsdata/home
https://sites.google.com/view/edm-longitudinal-workshop/home
https://sites.google.com/view/edm-longitudinal-workshop/home
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�is dataset is o
en used jointly with others. For instance,
[10] combined ASSISTments 2009-2010 with another two
datasets: a sample of anonymized student usage interac-
tions on Khan Academy (https://www.khanacademy.org/)
(1.4 million exercises completed by 47,495 students across
69 di	erent exercises) and a dataset of 2,000 virtual
students performing the same sequence of 50 exercises
drawn from 5 skills. Reference [13] also combined
ASSISTments 2009-2010 dataset, in this case with KDD
Cup 2010, and with a dataset collected by the Woot
Math system (https://www.wootmath.com/). �e KDD
Cup 2010 dataset comes from an EDM Challenge in 2010
(http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp)
and comprises 100 skills from 574 students. �ese data
was extracted from the Cognitive Algebra Tutor system
during 2005 and 2006 [51]. �e dataset collected by the
Woot Math system, a startup that develops adaptive learning
environments for mathematics, consists of exercises and
the correctness or not of the answers (binary outcome).
Reference [18] used also ASSISTments 2009-2010, together
with ASSISTments 2014-2015 and KDDCup 2010. References
[16, 50] combined also these datasets and used in addition
data collected from the Knewton adaptive learning platform
(https://www.knewton.com/). �e work by [49] also
combined ASSISTments 2009-2010, in this case with the
OLI Engineering Statics dataset (https://pslcdatashop.web
.cmu.edu/Project?id=48), which included college-level en-
gineering statics. Reference [17] presented a large dataset
combining di	erent resources: the ASSISTments 2009-2010
dataset, a synthetic dataset developed by [10], a dataset of
578,726 trials from 182 middle-school students practicing
Spanish exercises (translations and simple skills such as verb
conjugation), and a dataset from a college-level engineering
statics course comprising 189,297 trials of 1,223 exercises
from 333 students [52] (https://pslcdatashop.web.cmu.edu/).

Besides this popular dataset, there are others that have
been compiled for speci�c analysis or experiments. All of
them are extracted from educational platforms or Intelligent
Tutoring Systems (ITS). Regarding educational platforms,
[26, 27] compiled several datasets with information about
30,000 students in Udacity (https://www.udacity.com). �is
data represents users taking a speci�c action such as watching
a video, reading a text page, taking a quiz, or receiving a
grade on a project at a certain time stamp. Another work
that leverages educational platforms is [20], which used
the Students’ Academic Performance Dataset from Kag-
gle (https://www.kaggle.com/aljarah/xAPI-Edu-Data). �is
dataset consists of 500 students records collected from a
learning management system (Kalboard 360) with 16 di	er-
ent features such as gender, nationality, place of birth, topic,
visited resource, discussion group, parent answering survey,
parent satisfaction, and student absent days. �is resource
was also used by [25].

In addition to educational platforms, di	erent works used
ITS to collect their datasets. Such is the case of [11]. �ey
extracted information from a ITS called Pyrenees. In this
case, the dataset contained information about the degree
of success of 524 students answering several tests about
probability. All the students received the same 12 training

problems in the same order. Pyrenees was also used in
[15] (68,740 data points from 475 students) together with
other dataset collected from a natural language physics ITS,
named Cordillera, that teaches students introductory college
physics (44,323 data points from 169 students). Another ITS
used in these works is Funtoot (https://www.funtoot.com/).
Reference [14] used this system to develop a dataset that
comprised information about knowledge tracing in online
courses, such as the scope of the question (e.g., subject, topic
and complexity), start time, total attempts allowed based on
the student’s performance, time taken, and attempts taken.

Finally, other studies used their own platforms to gather
the data. Reference [23] collected real world data from 100
junior high schools.�is data was a multilevel representation
of student related information: demographic data (e.g., gen-
der, age, health status, and family status), past studies, school
assessment data (e.g., school type and school ranking), study
data (e.g., middle-term exam, �nal-term exam, and average),
and personal data (e.g., personality, attention and psychology
related data). Reference [24] presented a speci�c dataset for
predicting �nal grades of students, including information
about reports, quiz answers, and logbooks of lectures of 108
students attending an Information Science course.

To sum up, either in isolation or in combination with oth-
ers, themain dataset used for predicting student performance
is 2009-2010 ASSITments. Other popular datasets are KDD
Cup 2010 and the datasets available at DataShop repository.
�e rest are speci�c datasets used in individual studies,
which extract data (mainly exercises with real answers) from
educational platforms or ITS such as Khan Academy, Woot
Math, Udacity, Knewton, Funtoot, and Cordillera.

4.2.2. Detecting Undesirable Student Behaviors. As shown
in the previous section, the most salient task for detecting
undesirable student behaviors is the study of student dropout
inMOOCplatforms.�ere is a set of general purpose datasets
that have been developed to address this task.

�e main dataset is the KDD Cup 2015 competition
(https://biendata.com/competition/kddcup2015/). �e chal-
lenge proposed in this competition was to predict student
dropout on XuetangX, one of the largest MOOC platforms
in China. �e dataset contains, among others, information
about which student enrolls in which course and activity
records of the students from 39 courses. Unfortunately, it
seems that the data is no longer available. �is dataset
was used in [29, 53]. �e largest dataset for the analy-
sis of student dropout was presented in [31]. �is corpus
comprises 40 MOOCs from HarvardX with information
about number of registered participants and number of
participants who certi�ed. It includes additional information
such as clickstream data about answers to quiz questions,
play/pause/rewind events on lecture videos, and reading and
writing to the discussion form. Reference [32] presented a
speci�c dataset for student dropout analysis created from
a project management MOOC course hosted by Canvas. It
included information about clicks (pages, sources visited,
etc.), data from the discussion forum, and quiz scores for
every student.

https://www.khanacademy.org/
https://www.wootmath.com/
http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp
https://www.knewton.com/
https://pslcdatashop.web.cmu.edu/Project?id=48
https://pslcdatashop.web.cmu.edu/Project?id=48
https://pslcdatashop.web.cmu.edu/
https://www.udacity.com
https://www.kaggle.com/aljarah/xAPI-Edu-Data
https://www.funtoot.com/
https://biendata.com/competition/kddcup2015/
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References [12, 30] used a corpus of programming exer-
cises (http://code.org/research) that contains 1,263,360 code
submissions about multiple concepts such as loops, if-else
statements and nested statements. It is important to note
that this dataset is focused on the knowledge of the student
(exercises and answers) rather than their behavior in the
MOOC platform.

Besides these datasets focused on student dropout, other
works have developed datasets for more speci�c tasks in the
context of detecting undesirable student behavior. Related
to multimodal interactions, [33] developed a dataset of
students interactions within a game-based virtual learning
environment called Crystal Island. Both game actions and
parallel sensor data were captured to collect cognitive and
a	ective features. �is dataset includes information about
student interactions in the virtual environment, but not
about the student’s body of knowledge. Reference [34] also
developed a multimedia corpus for the analysis of liveliness
of educational videos. �e dataset comprises 450 one-minute
video snippets featuring 50 di	erent instructors, 10 major
topics in engineering, and various accents of spoken English,
all of them annotated for liveliness by multiple annotators.
Reference [35] presented also a multimedia dataset for
engagement prediction. It includes more than 200 videos of
5 minutes long approximately, about 78 subjects (25 female
and 53 male) that have been collected in unconstrained
environments including o�ce, hotels, and open ground.

In order to detect PODS (privilege, oppression, diversity,
and social justice) issues in learning environments, [45] cre-
ated a domain-speci�c corpus of shortwritten responses from
students on PODS topic in a School of Social Work. From
this corpus, authors extracted a speci�c PODS vocabulary.
Finally, for the speci�c analysis of sociomoral reasoning
maturity, [37] developed a corpus of 691 texts in French
manually coded by experts, stating the level of maturity in a
range from 5 (highest) to 1 (lowest).

4.2.3. Generating Recommendations. Two datasets from the
papers reviewed fall in the category of generating recommen-
dation sequences for learning. �e �rst one was described in
[38] and presents a dataset of learner’s pro�le information
and the courses they have enrolled or completed. �e dataset
consists of 5,000 unique learners and 49,202 unique course
contents, resulting in a total of 2,140,476 enrollments. �e
second dataset addresses the curriculum planning problem.
Reference [39] developed a corpus with 10 years of university
student transcript records including 2.1 million transcript
results, 30 degrees, 14 majors, 400 courses and 72,000 grad-
uation records. In their research, the authors used a subset
containing only undergraduate Engineering and IT students
information.

4.2.4. Evaluation. As mentioned in Section 4.1.4, the task of
evaluation comprises two main subtasks: automated essay
scoring and automatic short answer grading. �e essay
scoring subtask requires real essays, written by students and
graded by teachers, in order to develop systems that are able
to score text essays automatically. For this purpose, theKaggle

platform has been used to obtain datasets for automated
essay scoring. In fact, there were a speci�c competition for
this task called ASAP (https://www.kaggle.com/c/asap-aes)
whose dataset has been used in di	erent works [21, 40, 54]. It
consists of essayswritten inEnglish by students (fromGrade 7
to Grade 10), including a score for each one.�e essays length
is between 150 and 550 words. Reference [21] combined the
Kaggle ASAP dataset with clickstream data from a BerkeleyX
MOOC from Spring 2013. �is is an interesting dataset
since it combines content-based resources that show student
knowledge with data about student behavior in an online
educational platform.

�e subtask of automatic short answer grading requires
datasets of questions and answers from real students. Refer-
ence [42] gathered a corpus from the ITS Cordillera (already
mentioned above as a resource for predicting students perfor-
mance). �is dataset includes 16,228 short answers selected
from a total of 27,868 dialogues about physics. 61.66% of
the corpus is labeled as “correct” while the rest is labeled
as “incorrect”. Reference [43] presented a corpus of short
answer question responses from students, but in this case
the topic of the course was human biology. Speci�cally, the
authors used six questions in which students were expected
to explain or describe the knowledge obtained during the
course in their own words. �e answers were manually
evaluated by experts with labels like “correct”, “incorrect”,
“incomplete”, or “don’t-know”, among others. Finally, [44]
presented a dataset of 244 middle-school students’ problem-
solving behaviors collected from interactions within a game-
based learning environment. �e topic of these problems was
computational thinking.

5. Deep Learning

DL is undoubtedly the most trending research area in the
�eld of arti�cial intelligence nowadays. DL is a sub�eld of
machine learning that uses neural network architectures to
model high-level abstractions in data. �ese architectures
consist of multiple layers with processing units (neurons)
that apply linear and nonlinear transformations to the input
data. Di	erent DL architectures have been developed and
successfully applied to di	erent supervised and unsupervised
tasks in the broad �elds of natural language processing and
computer vision [55].

DL algorithms learn multiple levels of data representa-
tions, where higher-level features are derived from lower
level features to form a hierarchy. For instance, in an image
classi�cation task, the DL model can take pixel values in
the input layer and assign labels to the objects in the image
in the output layer. Between these layers there are a set
of transformation (hidden) layers that construct successive
higher-order features that are less sensitive to conditions such
as lighting and the position of the objects.

�e “deep” in DL refers to the multiple transformation
layers and levels of representation that lie between the
network inputs and outputs. �ere is no de facto standard in
the number of layers that makes a neural network “deep”, but

http://code.org/research
https://www.kaggle.com/c/asap-aes
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Figure 3: Simple arti�cial neuron.

most research in the �eld considers that there must be more
than two intermediate transformation layers [56].

Many concepts of DL were developed thirty years ago,
and some of them long before. However, the most important
achievements of DL have taken place in the last ten years.
Although there are many factors to explain the raise of DL, it
is agreed that the two main causes are the availability of mas-
sive amounts of data and the advances in computing power
thanks to the use of Graphic Processing Units (GPU). In the
�rst case, big data facilitates DL algorithms to generalize well.
In the second case, GPUs allow massive parallel computing
to train bigger and deeper models. Another key factor in
the development of DL has been the emergence of so
ware
frameworks like TensorFlow, �eano, Keras, and PyTorch,
which have allowed researches to focus in the structure of the
models rather than in low-level implementation details (see
Section 5.5).

Another reason for DL success is that it avoids the need
for the feature engineering process. In traditional machine
learning, feature engineering is the process of selecting the
most representative features necessary for the algorithms
to work, discarding noninformative attributes. �is process
is di�cult and time-consuming since the correct choice of
features is fundamental to the performance of the system [57].
DL performs feature learning to automatically discover the
representations needed for the task at hand [58].

�e following sections describe the foundations of neural
networks, training process, main architectures, hyperparam-
eter tuning, and frameworks for developing DL models.
Besides providing a general introduction, all these topics will
be characterized within the EDM domain, relating them to
the papers reviewed.

5.1. Neural Networks. Neural networks are computational
models based on large sets of simple arti�cial neurons that try
tomimic the behavior observed in the axons of the neurons in
human brains. Each node in the network is a neuron, which
is the basic processing unit of a neural network.

�e form of a simple neuron is depicted in Figure 3. �e
components of the neuron are input data (�1, �2, ..., ��),
which can be the output of another neuron in the network;
bias (�0), a constant value that is added to the input of the
activation function of the neuron; the weights of each input

input

hidden

output

Figure 4: Basic structure of a neural network. Each circular node
represents a neuron. Arrows represent connections from the output
of one neuron to the input of another.

(�0, �1, �2, ..., ��), identifying the relevance of the neurons
in the model; and the output produced (�). �e output of the
neuron is computed following this equation:

� = �( �∑
�=0
�� ⋅ ��) , (1)

where � is the activation function of the neuron. �is
function provides �exibility to neural networks, allowing
to estimate complex nonlinear relations in the data and
providing a normalization e	ect on the neuron output
(e.g., bounding the resulting value between 0 and 1). �e
most widely used activation functions are sigmoid, tanh
(hyperbolic tangent), and ReLU (Recti�ed Linear Unit). Each
neuron is connected to many others and the links between
them can increment or inhibit the activation state of the
adjacent neurons.

Figure 4 shows the basic structure of a neural network.
�e�rst layer is the input layer, which is used to provide input
data or features to the network. �e output layer provides
the predictions of the model. Depending on the problem,
the activation function used in this layer di	ers: for binary
classi�cation, where output values are either 0 or 1, the
sigmoid function is used; formulticlass classi�cation, so�max
(a generalization of sigmoid to multiple classes) apply; for a
regression problem where there are no prede�ned categories,
a linear function can be used.

�e ReLU activation function is commonly used in
hidden layers. �e hidden layers can compute complex
functions by cascading simpler functions. �e type of hidden
layers de�nes the di	erent neural network architectures, such
as CNN, RNN, or LSTM (see Section 5.3). �e number
of hidden layers determines the depth of the network. In
general, networks with more hidden layers can learn more
complex functions. In DL architectures, usually dozens or
even hundreds of hidden layers are used, which can automat-
ically learn as the model is trained with data.
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5.2. Training Process. Any machine learning algorithm tries
to assign inputs (e.g., an image) to target outputs (e.g., the
“cat” label) by observing many input and output examples.
As mentioned before, DL does this mapping between inputs
and objective outputs (i.e., what the network is expected to
produce) using arti�cial neural networks composed of a large
number of layers forming a hierarchy.

�e network learns something simple in the initial layer
of the hierarchy and then sends this information to the next
layer.�is layer then takes this simple information, combines
it with something more complex, and sends it to a third layer.
�is process continues, each layer building something more
complex from the input received from the previous layer.�e
speci�cation of what each layer is doing to the input received
is stored in the weights of the layer. In order for the network
to learn, it is necessary to �nd the weights of each layer that
provides the best mapping between the input examples and
the corresponding objective outputs.

Training the neural network means �nding the right
parameters setting (weights) for each processing unit in the
network. �e problem is that DL networks may potentially
have millions of these parameters and �nding the correct val-
ues for all of them can be a really di�cult task. For example,
VGG16 [59], a popular neural network architecture applied
to image classi�cation, has 138 million parameters. Initially,
the weights of each neuron can be assigned randomly, or
follow some initialization strategy, including unsupervised
pretraining [60].

In order to control the quality of the output of the
neural network, it is necessary to measure how close is
the obtained output from the expected output. �is task is
carried out by the loss function of the network. �is function
takes the predictions of the model and the objective values
and calculates how far the predicted outputs are from the
objective values. �e result of this function indicates how
well is working the model for the speci�ed examples. A
common loss function is the Mean Squared Error (MSE),
which measures the average of squared errors made by the
neural network over all the input instances.

�e goal of the training process is to �nd the weights
that minimize the loss function. �e error calculated by this
function is fed back through the network, usually by means
of backpropagation. �is information is used to adjust the
weights of each connection in the network in order to reduce
the error.�is process can be carried out by applying a general
method for nonlinear optimization called gradient descent,
in which the network computes the derivative of the loss
function with respect to the weights, changing them such that
the error decreases. �e amount by which the weights are
changed is determined by a parameter called learning rate (see
Section 5.4).

A
er a number of training cycles (known as epochs)
repeating this process, the model will usually converge to a
state where the error is small and the network is considered
to have learned the target function.

5.3. Architectures. Depending on the type of input (images,
text, audio, etc.) there are di	erent neural network archi-
tectures that are better suited to process that information.

�e number of architectures and algorithms that are used
in DL is wide and varied. In this section, the most popular
architectures, their common tasks, and their use in EDM
will be described. Table 3 summarizes the works in EDM
studied in this article (�rst column), the architectures imple-
mented (second column), the baseline methods employed
(third column), the evaluation measures used to compare
DL approaches and baseline methods (fourth), and the
performance achieved by DL methods in that comparison
(�
h).

�e architectures include MLP (Multilayer Perceptron),
LSTM (Long Short-Term Memory), WE (Word Embed-
dings), CNN (Convolutional Neural Networks) and variants
(VGG16 and AlexNet), FNN (Feedforward Neural Net-
works), RNN (Recurrent Neural Networks), autoencoder,
BLSTM (Bidirectional LSTM), andMN (MemoryNetworks).

�e baseline methods are SVD (Singular Value Decom-
position), SlopeOne, K-NN (K-Nearest Neighbors),Majority
class, RF (Random Forest), SVM (Support Vector Machine),
N-grams, Random guess, LinReg (Linear Regression), DT
(Decision Tree), NB (Näıve Bayes), LogReg (Logistic Regres-
sion), HMM (Hidden Markov Model), IOHMM (Input
Output HMM), BKT (Bayesian Knowledge Tracing), IBKT
(Intervention BKT), PFA (Principal Factor Analysis), Major-
ity voting, CRF (Computational RandomFields), LSA (Latent
Semantic Analysis), LDA (Latent Dirichlet Allocation), SVR
(Support Vector Regression), BLRR (Bayesian Linear Ridge
Regression), AdaBoost, GTB (Gradient Tree Boosting), GNB
(Gaussian Naı̈ve Bayes), IRT (Item Response �eory), TIRT
(Temporal IRT), and HIRT (Hierarchical IRT).

Finally, evaluation measures include MAE (Mean Abso-
lute Error), RMSE (Root Mean Square Error), Accuracy,
Precision, Recall, F-measure, AUC (Area Under the Curve),
Krippendor	 ’s alpha, Log Loss (Logarithmic Loss), �2,
Gini, MPCE (Mean per Class Error), and QWK (Quadratic
Weighted Kappa). �e last column of this table indicates
whether, in the experiments carried out in the paper, the
DL approach outperformed baseline methods (“>”), under-
performed (“<”), or obtained similar results, with higher
performance in some of the evaluations and lower perfor-
mance in others (“=”).�e symbol “−” represents approaches
that do not compare DL with traditional machine learning
techniques. Instead, they present comparisons of di	erent
DL architectures [19, 29, 35, 45, 50], comparisons of di	erent
hyperparameters for the same DL architecture [31, 46], or
proposals not evaluated yet [39].

5.3.1. Feedforward Neural Networks. FNNs represent the �rst
generation of neural networks. Nodes in these networks
do not form cycles, i.e., the information propagates always
forward in a single direction, from the input nodes to the
output nodes [61]. �e main representatives of this type of
networks are perceptron andMultilayer Perceptron (MLP).

Perceptrons are the simplest kind of neural network [62].
�ey consist of a single layer of output nodes, where inputs
are sent directly to the output via a series of weights. Each
node calculates the sum of the products of the weights and
the inputs. If the result is above a threshold, the neuron
activates; otherwise it takes the deactivated value. Single-layer
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Table 3: Deep Learning approaches in the EDM �eld: architectures employed, baseline methods, and evaluation measures. �e column
Performance indicates whether the approaches outperformed baseline methods (>), underperformed (<), or obtained similar results (=).

Reference Architecture Baseline Evaluation Performance

Abhinav et al., 2018 [38] MLP
SVD, Slope One,

K-NN
MAE, RMSE >

Akram et al., 2018 [44] LSTM
Majority class, RF,

SVM
Accuracy, Precision, Recall,

F1
>

Alam et al., 2018 [25] MLP
DT, RF, SVM,

KNN
Accuracy >

Alvarado et al., 2018 [43] WE N-grams
Precision, Recall,

F-measure
=

Aung et al., 2018 [36]
CNN,
VGG16,
AlexNet

Random guess,
LinReg

AUC >
Bendangnuksung and P.,
2018 [20]

FNN DT, NB, MLP Accuracy >
Choi et al., 2017 [45] WE - Krippendor	 ’s alpha −
Fei and Yeung, 2015 [28] RNN, LSTM

SVM, LogReg,
IOHMM

AUC >
Guo et al., 2015 [23] Autoencoder NB, SVM, MLP Accuracy >
Khajah et al., 2016 [17] LSTM BKT AUC =

Kim et al., 2018 [27] BLSTM LogReg AUC >
Kim et al., 2018 [26] BLSTM LogReg AUC >
Lalwani and Agrawal,
2017 [14]

LSTM PFA, BKT AUC =

Lin and Chi, 2017 [11] RNN, LSTM
Majority voting,

BKT
Accuracy, Precision, Recall,

F-measure
>

Mao et al., 2018 [15] LSTM BKT, IBKT
RMSE, Accuracy, Recall,

F-measure, AUC
=

Min et al., 2016 [33] LSTM CRF Accuracy =

Montero et al., 2018 [13] LSTM BKT AUC >
Okubo et al., 2017 [24] LSTM LinReg Accuracy >
Piech et al., 2015 [10] RNN, LSTM BKT AUC >
Sales et al., 2018 [46] LSTM - - −
Sharada et al., 2018 [22] MLP RF, LogReg

Log Loss, RMSE, R2, AUC,
Gini, MPCE

<

Sharma et al., 2016 [34]

CNN,
AlexNet,
VGG16,
LSTM

SVM, HMM Accuracy >
Taghipour and Ng, 2016
[41]

LSTM SVR, BLRR QWK >
Tang et al., 2016 [21] LSTM Majority class Accuracy =

Tato et al., 2017 [37] CNN
SVM, NB, LSA,
LDA, MLP

Accuracy, F-measure >
Teruel and Alemany,
2018 [29]

LSTM LSTM AUC, RMSE, R2 −
Wang et al., 2017 [30] CNN, RNN

SVM, LogReg, DT,
AdaBoost, GTB,

RF, GNB

Precision, Recall,
F-measure, AUC

=

Wang et al., 2017 [12] LSTM LogReg Accuracy >
Wang et al., 2017 [53] LSTM LogReg

Recall, Precission,
F-measure

=

Whitehill et al., 2017 [31] FNN - AUC −
Wilson et al., 2016 [50] RNN IRT, TIRT, HIRT Accuracy, AUC <
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Table 3: Continued.

Reference Architecture Baseline Evaluation Performance

Wilson et al., 2016 [16] LSTM - - −
Wong, 2018 [39] LSTM - - −
Xiong et al., 2016 [18] LSTM PFA, BKT AUC, R2 >
Xing and Du, 2018 [32] RNN DT, KNN, SVM Accuracy, AUC >
Yang et al., 2018 [35] LSTM - MSE −
Yeung and Yeung, 2018
[19]

LSTM - AUC −
Zhang et al., 2016 [42] DBN

NB, LogReg, DT,
Perceptron, SVM

Accuracy, AUC, Precission,
Recall, F-measure

>
Zhang et al., 2017 [49]

LSTM,
Autoencoder

LSTM AUC, R2 >
Zhao et al., 2017 [40] MN

FNN, SVR, BLRR,
LSTM

QWK >

perceptrons are only capable of learning linearly separable
patterns. Networks without hidden layers are quiet limited in
the patterns they can learn, and introducing more layers of
linear units does not overcome this limitation. It is therefore
necessary to introduce multiple layers of nonlinear hidden
units. MLP consists of multiple layers of neurons, where each
neuron in one layer has directed connections to the neurons
of the following layer. In many applications, the sigmoid
function is used as the activation function in these neurons.

FNNs are applicable to many areas where classical
machine learning techniques have been applied, although
major success have been achieved in computer vision [63]
and speech recognition applications [64]. FNNs are primarily
used for supervised learning tasks where the input data is
neither sequential nor time-dependent, o	ering good results
when the number of layers, neurons and training data is large
enough. One of the main problems of this architecture is the
possibility of ending up in a local minima of the loss function,
getting a suboptimal solution to the problem at hand.

In the area of EDM, FNNs have been used for predicting
students performance [20, 22] and for recommending learn-
ing opportunities to students based on their preferences [38].

Another type of FNN is autoencoders [65]. �is architec-
ture is similar to MLP, but in this case the output layer has
the same number of neurons as the input layer. �e goal is
to reconstruct its own inputs instead of predicting a target
value. �is is an example of unsupervised learning, since
no labeled data is required. Autoencoders (and its variants
stacked, sparse and denoising) are typically used to learn
compact representations of data [66]. Another application
of this architecture is pretraining a deep network: a stacked
autoencoder is trained in an unsupervised way and weights
are obtained. �en this weight can be used for the deep net-
work (with the same con�guration in terms of hidden layers,
number of neuros per layer, etc.) as a better choice rather
than using randomly initialized weights [67]. Focusing in
EDM, the work by [23] used a sparse autoencoder in the task
of predicting students performance. �ey pretrained hidden
layers of features using an unsupervised sparse autoencoder

from unlabeled data, and then used supervised training to
�ne-tune the parameters of the network.

5.3.2. Convolutional Neural Networks. CNNs are multilayer
neural networks particularly useful in image-processing
applications [68]. In this architecture, the �rst layers recog-
nize simple features in images (e.g., edges) and the last layers
combine these initial features into higher-level abstractions
(e.g., recognizing faces). CNNs are similar to FNNs in
di	erent aspects: they are composed of neurons where bias
and weights have to be learned, each neuron has some inputs,
performs a dot product, and applies an activation function,
and there is a loss function in the last (fully connected) layer
that measures the di	erence between the predicted and the
expected value.

In general, a CNN is formed by an structure that contains
three di	erent types of layers: a convolutional layer that
extracts features from the input (usually an image); a reduc-
tion (pooling) layer, which reduces the dimensionality of the
extracted features through down-sampling while retaining
the most important information (usually max pooling is
applied [69]); and a fully connected classi�cation layer, which
provides the �nal result at the end of the network. �e use
of deep layers of convolution, pooling and classi�cation, has
facilitated the emergence of new applications of CNN. In
addition to image processing [70], this type of networks has
been applied to video recognition [71], game playing [72], and
di	erent natural language processing tasks [73].

�e main advantage of CNNs is their accuracy in pattern
recognition tasks, such as image recognition, requiring con-
siderably fewer parameters than FNNs. On the negative side,
they have disadvantages such as the high computation cost,
the need for large amounts of training data, and the work
required to properly initialize the network according to the
problem addressed.

In the �eld of EDM, CNNs have been used in detecting
undesirable student behaviors usingVGG16 [59] andAlexNet
[70] architectures for video analysis [36], using also VGG16
and AlexNet architectures for audio and video analysis [34],
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performing text classi�cation [37], and predicting student
dropout [30].

5.3.3. Recurrent Neural Networks. A distinctive feature of
FNNs is that they do not provide persistence mechanisms.
RNNs address this problem by implementing a feedback
loop that allows for information to persist [74]. Instead
of completely feedforward connections, RNNs may have
connections that feed back previous or the same layer. �is
feedback allows RNNs to keep a memory of past inputs.

RNNs can be thought as networks with multiple copies
of themselves, in which each one passes a message to its
successor. �is structure makes them convenient for dealing
with sequences and lists, and thus one of their common uses
is modeling text. RNNs have been successfully applied to a
variety of problems such as speech recognition [75], language
modeling [76], andmachine translation [77]. One of themain
disadvantages of RNNs is the issue of vanishing gradients,
where the magnitude of the gradients (values used to update
the neural network weights) gets exponentially smaller (van-
ish) as the network back propagates, resulting in a very slow
learning of the weights in the lower layers of the RNN.
�is makes the training process di�cult in several ways: this
architecture cannot be stacked into very deep models and
cannot keep track of long-term dependencies. Another issue
of RNNs is that they require a high performance hardware to
train and run the models.

In the context of EDM, this type of networks has been
used in the task of anticipate students dropout [28, 30,
32], and in the task of predicting students performance for
learning gain predictions [11] and pro�ciency estimation [50].

�ere are di	erent RNN architectures (see LSTM in the
next section). �e key di	erence is the feedback mechanisms
within the network, which can manifest in a hidden layer, in
the output layer or in a combination of them. RNNs can be
trained with standard backpropagation or by using a variant
called backpropagation through time (BPTT) [78].

5.3.4. Long Short-Term Memory Networks. LSTMs are a spe-
cial type of RNN that has grown in popularity in recent years
[79].�is architecture introduces the concept ofmemory cell,
which allows to learn dependencies in the long term. �e
memory cell retains its value for a period of time as a function
of its inputs and contains three gates that control information
�ow into and out of the cell: the input gate de�nes when
new information can �ow into the memory; the forget gate
controls when the information stored is forgotten, allowing
the cell to store new data; the output gate decides when the
information stored in the cell is used in the output.

Each gate in thememory cell is also controlled byweights.
�e training algorithm (e.g., BPTT) optimizes these weights
based on the resulting network output error. Recently, a
simpli�cation of LSTM called Gated Recurrent Unit (GRU)
has been introduced [80]. �is recurrent unit has fewer
parameters than LSTMs, since it has two gates instead of
three, lacking an output gate.

As a type of recurrent network, LSTMs are especially
suitable for problems dealing with sequences. Several tasks

can be added to the list of tasks previously mentioned for
RNNs: text generation [81], question answering [82] and
action recognition in video sequences [83], among others. In
conjunction with CNNs, LSTMs have been used to produce
image [84] and video [85] captioning: the CNN implements
the image/video processingwhereas the LSTMconverts CNN
output into natural language. One of the main advantages of
LSTMs, compared to RNNs, is the extension of the memory
that allows this architecture to remember their inputs over
a long period of time. Unlike LSTMs, a RNN may leave out
important information from the beginning while trying to
process a paragraph of text to do predictions. LSTMs also
overcome the issue of the vanishing gradient described above
for RNNs. Finally, compared to this architecture, LSTMs
reduce the amount of training data required to build the
models.

In the set of works studied in this article, LSTM has
been the most widely used architecture. In fact, it has been
applied to all the EDM tasks covered by DL approaches:
predicting students performance [21, 24, 53]; detecting unde-
sirable student behaviors by predicting students dropout [28],
predicting dialogue acts [33], modeling student behavior in
learning platforms [29], and predicting engagement intensity
[35]; generating recommendations [39]; and evaluation by
doing stealth assessment [44], improving casual estimates
from A/B tests [46], and automating essay scoring [41].

As already mentioned in Section 4.1.1, there is a con-
troversy between a set of studies, falling in the task of
predicting students performance, which have focused on
knowledge tracing, i.e., modeling the knowledge of students
as they interact with coursework. �e controversy arose
a
er the publication of Deep Knowledge Tracing (DKT) [10],
an LSTM-based model which signi�cantly outperformed
previous approaches that used BKT and PFA. A series of
works were published a
erwards that were for [11–13, 19] or
against [14–18] the claims in this paper. All these studies used
the LSTM implementation of DKT, although some of them
introduced their own variants.

5.3.5. Other Architectures. Apart from the architectures
already described, other network structures have been
employed in the literature reviewed on DL applied to EDM.
One of these architectures is Deep Belief Networks (DBN),
used in the task of evaluation [42]. �is type of neural
network has been used for image recognition, information
retrieval and natural language understanding, among other
tasks. �e DBN is a multilayer network where each pair of
connected layers is a Restricted Boltzmann Machine (RBM)
[86]. Training in DBN occurs in two steps: unsupervised
pretraining and subsequent supervised �ne-tuning. In the
unsupervised phase, each RBM is trained to reconstruct its
input using the previous hidden layer output [87].

Memory networks (MN) have also been used in the task
of evaluation [40]. MN are a new class of models designed to
address the problem of learning long-term dependencies in
sequential data, including a long-term memory component
that can be read and written to provide an explicit memory
representation for each token in the sequence [88].
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Finally, bidirectional LSTM (BLSTM) is employed in the
work developed for the task of predicting student perfor-
mance [26, 27]. �e di	erence with conventional LSTMs is
that these networks only preserve information from the past,
whereas BLSTMs run inputs in two ways: one from past to
future and other from future to past, preserving information
from the future in the backward run [89].

5.4. Hyperparameters Tuning. DL models include hyper-
parameters, which are variables set before optimizing the
parameters (weights and bias) of the models. Hyperparam-
eters can be set by hand, selected by a search algorithm
(e.g., grid search or random search), or optimized applying
a model-based method [90].

�is section describes hyperparameters typically found
when building neural networks. �ey have been classi�ed
in two types: those related to the training process and those
related to the model itself. Although not all the studies ana-
lyzed in this article provide details about the hyperparameters
used, references are provided when available.

5.4.1. Training. �e hyperparameters described here that
a	ect the training process are learning rate, batch size,
momentum, weight update, and stopping criteria.

Learning Rate. �e learning rate controls how much the
weights of the network are adjusted with respect to the loss
gradient. �e lower the value is, the slower the algorithm
traverses the downward slope. �is helps to avoid missing
local minima, but on the downside it takes a long time to
converge and arrive at the best accuracy of the model.

�e learning rate employed in the works studied ranges
from a minimum of 0.0001 [34, 36] to a maximum of 0.1 [31],
with other values such as 0.00025 [23] and 0.01 [19, 29, 35, 41].

Batch Size. �e batch size de�nes the number of training
instances that are propagated through the neural network.
For instance, a set of 1000 training samples could be split in
10 batches of 100 samples. Using a batch size lower than the
number of all samples has some bene�ts, such as requiring
less memory (the network is trained using fewer samples in
each propagation) and training faster (weights are updated
a
er each propagation). �e disadvantage of using a batch
instead of all samples is that the smaller the batch size, the
less accurate the estimate of the gradient.

Batch sizes used in the works reviewed include 10 [31, 38],
32 [19, 27, 33, 41], 48 [25], 100 [10, 11, 18], 500 [37], and 512
[23].

Momentum. Momentum is a popular extension of backprop-
agation that helps to prevent the network from falling into
local minima. �is technique adds a fraction of the previous
weight update to the current weight.When the gradient keeps
pointing in the same direction, this increases the size of
the steps taken towards the minimum. When the gradient
keeps changing direction, momentum will smooth out the
variations.

Only three papers in EDM explicitly stated the use of
momentum, all of them with a value of 0.9 [23, 35, 36].

Weight Update. DL models usually employ stochastic gradient
descent (SGD) in the training phase. Although this is an easy
to implement approach, it is di�cult to tune and parallelize,
making it challenging to debug and scale up DL networks.
�ere are more sophisticated optimization methods such
as limited memory Broyden–Fletcher–Goldfarb–Shanno (L-
BFGS) and conjugate gradient (CG) that can speed up the
process of training DL algorithms [91].

Most of the papers reviewed used SGD in the training
phase [10, 18–20, 22, 27, 31–33, 36, 40, 41, 49, 50]. Other works
used Adam [25, 38], an e�cient gradient descent algorithm
[92]. Finally, as an alternative to backpropagation in the
training process, some studies used BPTT to train RNNs
[28, 29, 34].

Stopping Criteria. �ere are di	erent ways to determine
the number of epochs employed to train the algorithms. If
training and validation errors are high, the system is probably
under�tting (it can neither model the training data nor
generalize to new data), and the number of epochs can be
increased. Early stopping is a form or regularization used
to avoid over�tting. It updates the network so as to make
it better �t the training data with each iteration, improving
also the model performance on the validation dataset. At a
certain point, improving the model �t to the training data
increases generalization errors. Early stopping rules provide
a guide to identify how many iterations can be run before
over�tting.

Most of the works studied established a �xed number of
epochs to train the algorithms: 22 [22], 50 [20, 38, 41, 49],
60 [35], 100 [11], 150 [21], and 250 [37]. In [25] the authors
employed 50,000 epochs, but considering a very limited
number of input features. Reference [36] used a validation set
for early stopping, whereas [33] de�ned a strategy consisting
in stopping the training if there is no improvement in the last
15 epochs (with a maximum of 100 epochs).

5.4.2. Model. �e hyperparameters listed here, related to the
model architecture, are depth and width of the network,
initial weights, and dropout.

Depth andWidth.�ese hyperparameters refer to the number
of hidden layers (depth) and the number of hidden units
(width) in the network. �ere is no analytical approach to
setting these two parameters and choosing the best con�g-
uration for a task is sometimes a matter of trial and error.
Whereas shallow neural networks (with a single hidden layer)
can in theory approximate any function (according to the
universal approximation theorem [93])many empirical results
in di	erent tasks and domains demonstrate that adding more
hidden layers improves the performance of the network. A
possible explanation for this phenomenon is that the number
of units in a shallow network grows exponentially with
task complexity, requiring much more neurons than a deep
network to achieve the same performance [2].

Since these are two key elements of a network architec-
ture, most of the papers reviewed provide information about
the depth and width of their implementation. Regarding the
number of layers, most of the implementation ranges from
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1 to 6 layers: 1 hidden layer [10, 13, 14, 17–19, 24, 32, 49, 50,
53], 2 hidden layers [11, 15, 20, 21, 34, 44], 3 hidden layers
[22], 4 hidden layers [23, 26, 27, 37, 40, 41], 5 hidden layers
[25, 31], and 6 hidden layers [30, 38]. In [35] the authors set
2 hidden layers for each modality feature (e.g., eye gaze and
head pose), adding up to 8 hidden layers. �e work by [36]
de�ned 16 (since it employs the VGG16 architecture). Refer-
ence [33] implemented an LSTM with 64 layers (obtaining
better results than with 32 layers). Finally, [29] experimented
with di	erent con�gurations of layers: 20, 50, 100, and
200.

With respect to the number of units per hidden layer, the
most common value in the papers reviewed is 200 [10, 11, 14,
15, 17–19, 49], followed by 100 [22, 40, 50], 64 [33, 35], 128
[21, 27], and 256 [26, 34]. Other con�gurations include 5 [31],
15 [44], 20 [28], 40 [37], and 300 [20]. Some works tested
di	erent ranges of width values in their implementation: 10
to 200 [13], 50 to 300 [41], and 64 to 512 [36].

InitialWeights.�e initial values assigned to theweights of the
network play an important role in �nding the global minima
of the cost function in a deep neural network [94]. Oneway to
do this initialization is assigning randomvalues, although this
method can potentially lead to two issues: vanishing gradient
(the weight update is minor and the optimization of the loss
function is slow) and exploding gradient (oscillating around
the minima). �ere are more sophisticated approaches
such as using unsupervised stacked RBMs to choose these
weights.

�e most common initialization procedure in the papers
reviewed is to randomly select the initial weights: Gaussian
distribution with zeromean and small variance [19], uniform
weights in the range [−0.1, 0.1] [20, 28, 44], and uniform
weights in the range [−0.05, 0.05] [13]. A sparse autoencoder
was used for pretraining in [23]. Transfer learning [95] was
used in [36] to initialize CNNs with weights pretrained
on ImageNet. Finally, [31] used Net2Net, a technique to
accelerate transfer learning from a previous network to a new
one [96].

Dropout.Dropout is a regularization technique used in neural
networks to prevent over�tting. �e core of this approach is
to randomly select neurons that will be ignored (“dropped
out”) during the training process. �eir contribution to the
activation of neurons in the next layer is temporally removed
on the forward pass and weight updates are not applied
to the neuron on the backward pass [97]. As neurons are
randomly dropped out during training, other neurons have
to handle the representation required to make predictions
for the missing units. �e result is that the neural network is
less sensitive to speci�c weights of neurons achieving better
generalization.

Some of the works studied reported dropout values in
their network con�gurations. �e most repeated values are
0.2 [11, 27, 34] and 0.5 [19, 23, 41], followed by 0.3 [29, 36].
Other values reported are 0.25 [50], 0.4 [49], 0.6 [13], and
0.7 [33]. �ere are three works that used dropout in their
networks but did not reported the speci�c value of this
hyperparameter [10, 18, 38].

5.5. Frameworks. Nowadays there are a large set of frame-
works available for fast prototyping DL models that can
e�ciently run in parallel taking advantage of GPU infrastruc-
tures. In this way, researchers can focus on the architecture
of the model and overlook low-level details. �is section
introduces the frameworks used in theDL for EDM literature,
including some additional popular frameworks that have not
yet been used in this domain. Note that not all the papers
reviewed provide implementation details.

Keras (https://keras.io/) is themost popular framework in
the articles reviewed. It was used in their implementation by
[11, 14, 17, 25, 31, 38, 41, 44]. Keras provides a Python interface
to facilitate the rapid prototyping of di	erent deep neural
networks, such asCNNs andRNNs,which can be executed on
top of other more complex frameworks such as TensorFlow
and�eano (see below).�e code produced using Keras runs
seamlessly on both CPUs and GPUs.

TensorFlow (https://www.tensor�ow.org/) is the second
most popular framework in this list. It is available for both
desktop and mobile applications, and supports developing
DL models using languages such as Python, C++ and R.
�e framework includes TensorBoard, a tool to visualize
data modeling and network performance. It is supported by
Google and by a large community of developers that provide
numerous documentation, tutorials and guides.�eworks in
EDM using this framework are [13, 18–20, 25, 29, 49].

�ird in the list is �eano (http://deeplearning.net/so
-
ware/theano/). It was the most widely used library for DL
before the arrival of other competitors such as Tensor�ow,
Ca	e, and PyTorch. It is a low-level library supporting both
CPU and GPU computation. A
er launching the release
of version 1.0, it was announced that the development and
support for this tool would be discontinued. �e works by
[23, 30, 50] used this framework.

Ca	e (http://ca	e.berkeleyvision.org/) is a library written
inC++ that includes a Python interface. It is specialized in the
development of CNNs for image-processing tasks. One of the
biggest bene�ts of using this library is the ability to access
out-of-the-box pretrained networks from the Ca	e Model
Zoo (http://ca	e.berkeleyvision.org/model zoo.html). It was
used by [36] for automatic eye gaze following in the
classroom.

Torch (http://torch.ch/) is a relatively old machine learn-
ing library, since it was �rst released �
een years ago. �e
primary programming language is Lua, although there is
an implementation in C. It contains both DL and other
traditional machine learning algorithms, supporting CUDA
for parallel computation. It was used by [10, 12] to develop
their DL models using Lua for the task of knowledge tracing.
�ere is an open-source machine learning library for Python
based on Torch, called PyTorch (https://pytorch.org/), which
has gained increasing attention from theDL community since
its release in 2016. �is library was used in the work by [35].

Other relevant frameworks for DL, not used in any of the
presented works, are Ca	e2 (https://ca	e2.ai/), Deeplearn-
ing4j (https://deeplearning4j.org/),MXNet (urlhttps://mxnet
.apache.org/), Microso
 Cognitive Toolkit (https://www
.microsoft.com/en-us/cognitive-toolkit/), andChainer (https://
chainer.org/).

https://keras.io/
https://www.tensorflow.org/
http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/model_zoo.html
http://torch.ch/
https://pytorch.org/
https://caffe2.ai/
https://deeplearning4j.org/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://chainer.org/
https://chainer.org/
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Some works described in this article use word embed-
dings to reduce the dimensionality of the input space.
Word embeddings are used in the area of natural language
processing to map words (or phrases) to vectors of real
numbers. �is mapping can be done using neural network
approaches [98]. �ey aim to identify semantic similarities
between words based on their cooccurrence with other
words in large samples of texts. �e frameworks chosen
for this task in the EDM �eld are word2vec [29, 45]
and Glove (https://nlp.stanford.edu/projects/glove/) [40, 43].
Other popular frameworks to work with word embeddings
are fastText (https://fasttext.cc/), although none of the works
described here used it in their implementation.

6. Discussion

�e �rst question to analyze in this section is the current
status of EDM tasks with respect to the use of DL models.
Based on the taxonomy of EDM applications de�ned by
[8], the papers reviewed on the present study were catego-
rized according to the problem addressed. �is classi�cation
revealed that only 4 of the 13 tasks de�ned in that taxonomy
have been faced using DL approaches: predicting students
performance, detecting undesirable student behaviors, gener-
ating recommendations, and automatic evaluation. �e other
9 tasks remain as an opportunity for researchers in the �eld
to explore the application of DL techniques.

In the task of predicting student performance, a large
sample of the papers analyzed were devoted to compare
the performance of BKT (probabilistic) and DKT (deep
learning) models, resulting in an interesting discussion
between traditional and deep learning approaches (see Sec-
tion 5.3.4). While DKT usually obtained better performance,
BKT o	ered better interpretation of its predictions. Since DL
is a very active research topic, it is expected that advances
in DL will provide in a future theoretical understanding and
interpretability of the models generated, and these �ndings
will bene�t all the �elds where DL is applied, including EDM.

�e prediction of dropping out in MOOC platforms
is the subtask that has gained more attention in detecting
undesirable student behaviors. Most of these studies focused
on predicting student’s dropout at a given point in time.
�ese studies performed video analysis to identify the loss
of interest in the contents of the course, extracting features
such as the student’s gaze. Including multimodal features to
trainDLmodels, such as behavioral traits (e.g., asking for help
in the classroom or cheating in tests), could bene�t future
approaches to this task.

�e third task studied, generating recommendations,
was the target of two papers that focused on generating
personalized searches based on the students’ preferences and
curriculum planning. An open challenge for future research
is the recommendation of learning resources in an informal
setting.�e problem in this case would be the impossibility to
manually structure the large amount of data that comes from
sources such as expert communities and educational blogs.

Finally, in the evaluation task di	erent frameworks were
built to help teachers in the grading process, primarily

focused on automatic essay scoring and short answer grading.
�e use of game-based environments and A/B testing has
demonstrated its bene�ts as an automatic evaluation tools,
and either would be an interesting line of research for future
works.

�e second relevant aspect of this work is the study of
existing datasets used by DL models in educational contexts.
As shown in Section 4.2, several datasets have been developed
for predicting student performance and student behaviors in
online platforms. Although only some of them are available
(e.g., ASSISTment and KDD cup 2010 for predicting student
performance, and KDD Cup 2015 for predicting student
dropout), there are many online learning platforms, ITSs and
MOOCs that can provide large amounts of information to
train EDM systems.

Based on the literature reviewed, it seems necessary to
develop speci�c datasets for two tasks: educational recom-
mender systems based on data mining and automatic essay
scoring.�emain problem for the �rst task is that there is not
a single “correct” sequence of learning items to recommend
to a student, and this recommendation largely depends on the
background knowledge, abilities, and goals of the learner. For
this reason, it is necessary not only datasets with coherent
sequences of learning (such as the sequences that can be
found in a MOOC), but also to know which sequences
are appropriate for each student pro�le. �e second task,
automatic essay scoring, is a hard challenge that requires a
deep linguistic analysis to achieve automatic evaluations of
texts. Although there are successful machine learning based
natural language processing tools, automatic essay scoring
requires a �ne and deep semantic analysis in order to identify
the topic of the essay, the main idea, arguments for and
against, and, in general, the reasoning process carried out by
the student. Unfortunately, there is no dataset available today
that comprises this type of complex linguistic information
that would bene�t DL approaches in this task.

Finally, the last point studied in this review is the di	erent
DL models and con�gurations used in the EDM literature.
Regarding DL architectures, LSTMs have been the most
used approach, both in terms of frequency of use (59%
of the papers used it) and variety of tasks covered, since
it was applied in the four EDM tasks addressed by the
works analyzed. In principle, this could be considered a good
starting point to develop a system in any of the tasks covered.
In the case of other architectures, Vanilla RNNswere used for
predicting students performance and detecting undesirable
student behaviors, FNNs were constrained to predicting stu-
dents performance and CNNs to detect undesirable student
behaviors. Other proposals considered the use of MLP, DBN,
MN, and autoencoders.

�e main hyperparameters of DL models were also
reviewed in the previous section. Given the empirical nature
of the development process of DL models, there is no one-
size-�ts-all solution to set the best con�guration for a speci�c
architecture, and the hyperparameters chosen will depend
on the input data available and the task at hand. Among
those analyzed, learning rate, batch size, and the stopping
criteria (number of epochs) are considered to be critical
to model performance. In theory, larger batch sizes imply

https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/
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more stable gradients, facilitating higher learning rates. A
larger batch sizes is also more computationally e�cient, as
the number of samples processed in each iteration increases.
Nevertheless, a general advice with deep neural networks is to
take many small steps (smaller batch sizes and learning rates)
instead of fewer larger ones, although this is a design trade-
o	 that requires experimentation. �e third hyperparameter
mentioned, the number of epochs, must also be properly
adjusted to avoid the problem of over�tting. Another aspect
to take into account is the size of the network. Adding more
layers (depth) and neurons (width) can lead tomore powerful
models, but these architectures are also easier to over�t. A
model with a large number of parameters requires also a large
number of samples to achieve generalization. In this respect,
more training data means almost always better DL models.

Manually choosing these hyperparameters is time-con-
suming and error-prone. As the models change, previous
choices may no longer be the best ones. To avoid this draw-
back, there are a number of techniques to automatically pick
the best hyperparameters (such as grid search).�e summary
provided in Section 5.4 can give a hint of the starting point
and suitable ranges of values for these hyperparameters in the
development of new architectures. In this regard, the most
commonly used con�guration values were: 0.0001 and 0.01
learning rate; 32 and 100 batch size; 0.9 momentum; SGD
weighting update; 50 epochs stopping criteria; 1 or 2 hidden
layers depth; 100 or 200 hidden units per layer width; random
weight initialization; and 0.2 dropout.

It should be noted that the limited number of hidden
layers inmost of theseworks, with 79%of the implementation
using 5 or less hidden layers. Indeed, according to [56],
54% of the works reviewed could be considered “shallow”
neural networks, since they only include 1 or 2 hidden layers
in their architectures. �is suggests that there is room for
applying more complex and deep architectures in the �eld of
EDM. Popular techniques and architectures, such as trans-
fer learning, reinforcement learning, Generative Adversarial
Networks, and uni�ed frameworks, are almost unexplored in
the EDM domain.

With respect to the performance of DL techniques in
these works, leaving aside the papers that do not o	er a
comparison between DL and traditional machine learning
techniques, 67% of the works reported that DL outperformed
the existing baselines, 27% showed inconclusive results (DL
performed better only in some of the experiments), and
only 6% reported a lower performance of DL techniques.
�ese �gures are not surprising given the successful results
of DL techniques in many di	erent domains. Nevertheless,
these results are not exempt from controversy. Out of the
�eld of EDM, there are detractors who claim that the inner
mechanisms of the DL models generated are so complex that
researchers o
en cannot explain why a model produces a
particular output from a set of inputs. �is controversy has
also arisen in EDM, with the aforementioned arguments for
and against DKT and BKT.

Taking into account the current DL techniques applied to
EDM, there are many open paths to explore new approaches
to this �eld, such as the use or transfer learning for initial-
ization of the neural networks (only used in [36]), the use of

reinforcement learning [99], a promising learning technique
that reduces the need for training data, and the application
of architectures such as MN, DBN, and generative adversarial
networks (GAN), in taskswhere language or image generation
are required [100].

7. Conclusions

�is study has reviewed the emergence of DL applications to
EDM, a trend that started in 2015 with 3 papers published,
increasing its presence every year so far with 17 papers
published in 2018. A
er a systematic search, 41 works were
retrieved in this area. It is worth mentioning the presence of
these approaches in relevant EDM forums such as the annual
International Conference in Educational Data Mining, with
7 papers published in the last edition (for a total of 16 in the
last three years).

Based on the taxonomy of EDM applications de�ned by
[8], only 4 of the 13 tasks proposed in that study have been
addressed by DL techniques. �is reveals that there are many
open opportunities for the use of DL in unexplored EDM
tasks, moreover taking into account the promising results
obtained by thesemodels in theworks reviewed (67% of them
reported that DL outperformed the “traditional” machine
learning baselines in all their experiments).

�e study carried out also included a revision of the
main datasets used in the EDM tasks covered. As in other
research areas, some of them are publicly available for the
scienti�c community, which allows for reproducibility of
the experiments, whereas others were developed ad hoc for
speci�c studies. In the EDM �eld, an additional problem that
exists to make the datasets freely available is the existence of
sensitive information concerning (underage) students. �is
problem could be overcome with proper anonymization of
the data.

A thorough study of DL techniques were also provided in
this work, starting with an introduction to the �eld, an analy-
sis of the types of DL architectures used in every task, a review
of the most common hyperparameter con�gurations, and a
list of the existing frameworks to help in the development of
DL models. Since de�ning a DL architecture relays mostly in
an empirical process, the information provided in this study
can serve as a basis for starting future developments of DL
applications in EDM.

Given the increasing adoption of DL techniques in EDM,
this work can provide a valuable reference and a starting
point for researches in both DL and EDM �elds that want to
leverage the potential of these techniques in the educational
domain.
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