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Abstract

Dengue is among the fastest-spreading vector-borne infectious disease, with outbreaks

often overwhelm the health system and result in huge morbidity and mortality in its endemic

populations in the absence of an efficient warning system. A large number of prediction

models are currently in use globally. As such, this study aimed to systematically review the

published literature that used quantitative models to predict dengue outbreaks and provide

insights about the current practices. A systematic search was undertaken, using the Ovid

MEDLINE, EMBASE, Scopus and Web of Science databases for published citations, with-

out time or geographical restrictions. Study selection, data extraction and management pro-

cess were devised in accordance with the ‘Checklist for Critical Appraisal and Data

Extraction for Systematic Reviews of Prediction Modelling Studies’ (‘CHARMS’) framework.

A total of 99 models were included in the review from 64 studies. Most models sourced cli-

mate (94.7%) and climate change (77.8%) data from agency reports and only 59.6% of the

models adjusted for reporting time lag. All included models used climate predictors; 70.7%

of them were built with only climate factors. Climate factors were used in combination with

climate change factors (13.4%), both climate change and demographic factors (3.1%), vec-

tor factors (6.3%), and demographic factors (5.2%). Machine learning techniques were

used for 39.4% of the models. Of these, random forest (15.4%), neural networks (23.1%)

and ensemble models (10.3%) were notable. Among the statistical (60.6%) models, linear

regression (18.3%), Poisson regression (18.3%), generalized additive models (16.7%) and

time series/autoregressive models (26.7%) were notable. Around 20.2% of the models

reported no validation at all and only 5.2% reported external validation. The reporting of

methodology and model performance measures were inadequate in many of the existing

prediction models. This review collates plausible predictors and methodological

approaches, which will contribute to robust modelling in diverse settings and populations.

PLOS NEGLECTED TROPICAL DISEASES

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010631 February 13, 2023 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Leung XY, Islam RM, Adhami M, Ilic D,

McDonald L, Palawaththa S, et al. (2023) A

systematic review of dengue outbreak prediction

models: Current scenario and future directions.

PLoS Negl Trop Dis 17(2): e0010631. https://doi.

org/10.1371/journal.pntd.0010631

Editor: Husain Poonawala, Tufts Medical Center,

UNITED STATES

Received: July 5, 2022

Accepted: January 29, 2023

Published: February 13, 2023

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pntd.0010631

Copyright: © 2023 Leung et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

https://orcid.org/0000-0003-2604-9649
https://doi.org/10.1371/journal.pntd.0010631
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0010631&domain=pdf&date_stamp=2023-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0010631&domain=pdf&date_stamp=2023-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0010631&domain=pdf&date_stamp=2023-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0010631&domain=pdf&date_stamp=2023-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0010631&domain=pdf&date_stamp=2023-02-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0010631&domain=pdf&date_stamp=2023-02-24
https://doi.org/10.1371/journal.pntd.0010631
https://doi.org/10.1371/journal.pntd.0010631
https://doi.org/10.1371/journal.pntd.0010631
http://creativecommons.org/licenses/by/4.0/


Author summary

Dengue is considered as a major public health challenge and a life-threatening disease

affecting people worldwide. Over the past decades, numerous forecast models have been

developed to predict dengue incidence using various factors based on different geographi-

cal locations. Dengue transmission appears to be highly sensitive to climate variability and

change, however quantitative models used to assess the relationship between climate

change and dengue often differ due to their distribution assumptions, the nature of the

relationship and the spatial and/or temporal dynamics of the response. We performed a

systematic review to examine current literature surrounding existing quantitative models

based on development methodology, predictor variable used and model performance.

Our analysis demonstrates several shortcomings in current modelling practice, and advo-

cates for the use of real time primary predictor data, the incorporation of non-climatic

parameters as predictors and more comprehensive reporting of model development tech-

niques and validation.

This review collates methodological approaches adopted in the modelling practices in

the field across current literature. This will provide an evidence-based framework for

upgrading future modelling practice to develop more accurate predictive models with

robust techniques. In turn, this also provided an opportunity for the effective distribution

of limited public health resources to prepare for demand.

Introduction

Dengue fever is one of the fastest-spreading mosquitos-borne disease primarily of tropical and

subtropical regions and is caused by various dengue virus strains [1,2]. In 2017 alone, over 100

million people were estimated to have acquired the infection, contributing to a globally

increasing burden of disease [3]. Although most infections are mild, dengue shock syndrome

and dengue haemorrhagic fever are severe forms of infections and can be fatal [4,5]. The case-

fatality rate can be as high as 20% in the absence of prompt diagnosis and lack of specific anti-

viral drugs or vaccines [6,7], particularly in resource-limited settings. When an outbreak is

particularly large, the influx of severe dengue cases can overwhelm the health system and pre-

vent optimal care. Dengue also imposes an enormous societal and economic burden on many

of the tropical countries where the disease is endemic [8]. An accurate prediction of the size of

the outbreak and trends in disease incidence early enough can limit further transmission [5],

and is likely to facilitate planning the allocation of healthcare resources to meet the demand

during an outbreak.

Vector-borne pathogens characteristically demonstrate spatial heterogeneity—a result of

spatial variation in vector habitat, climate patterns and subsequent human control actions

[9–11]. The interplay of human, climate and mosquito dynamics give rise to a complex system

that determines the pattern of dengue transmission, which in turn influences the potential for

outbreak [12]. These relationships have been explored over the decades in the development of

predictive models worldwide. Models vary widely in their purposes [13–15] and settings

[16–21]. Many of these models excel at different tasks, however for a prediction model to be

efficient, it requires a systematic, self-adaptive and generalizable framework capable of identi-

fying weather and population susceptibility patterns across geographic regions. The scientific

community has not yet agreed upon a model that provides the best prediction. The selection of

predictors for the existing models is also quite heterogeneous. Some models rely solely on cli-

mate variables [16], some include vector characteristics [17,18] others use population
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characteristics [19–21]. A wide range of statistical techniques are used with varying degrees of

accuracy and robustness among the existing models [16–21].

Clarity in the documentation of the model development processes and model performance

are essential for ensuring the robustness of the prediction [22], which is scarce as many of the

existing models have not yet been systematically appraised. Given the disparate approaches, a

focused synthesis and appraisal of the existing models, along with their building techniques

and factor catchments, is required. Carefully establishing these details will provide the founda-

tion for updating and developing robust models in future. This study aimed to systematically

review all published literature that reported quantitative models to predict dengue outbreaks,

revealing several shortcomings in the usage of real time primary predictive data and non-cli-

matic predictors in the development of models, as well as inadequate reporting of techniques,

model and performance measure validation.

Methods

Search strategy and selection criteria

This systematic review’s aim, search strategy and study selection process were devised in accor-

dance with the seven items in the Checklist for Critical Appraisal and Data Extraction for Sys-

tematic Reviews of Prediction Modelling Studies (‘CHARMS’) framework [23]. CHARMS

framework is a systematic review tool, devised to facilitate and guide the methodological

aspects the systematic review of prediction modelling studies, ranging from question develop-

ment, appraisal of studies, and data extraction thereof. Detail of the CHARMS checklist can be

found elsewhere [23]. The review followed the Preferred Reporting Items for Systematic

Review and Meta-Analysis (‘PRISMA’) guidelines [24], and was registered in PROSPERO

(CRD42018102100).

A literature search was conducted from inception until October 2022 using the electronic

databases of Ovid MEDLINE, Embase, Scopus and Web of Science to obtain the information

on the statistical models for predicting the number of dengue cases based on climatic factors.

Google Scholar and the bibliography of included papers were also searched. The search strate-

gies were developed under the guidance of an information specialist from Monash University

Library. For the purposes of this study, dengue fever or dengue haemorrhagic fever or dengue

shock syndrome were considered as a single entity “dengue”. Search strategy included Medical

Subject Headings (‘MeSH’) and keyword terms including “dengue”, “severe dengue,”

“weather,” “climate change,” “model,” “predict,” and “forecast.” The detailed search strategy

and history are presented in S1 Table.

The review included studies focused on (1) prognostic prediction models which aim to

review models predicting future events, (2) incidence of dengue fever or dengue haemorrhagic

fever cases, (3) models to be used to predict the number of cases prior to an outbreaks, (4)

models intended to inform public health divisions of future dengue outbreaks, (5) models with

no restrictions on the time span of prediction and (6) prediction model development studies

without external validation, or with external validation in independent data. Peer-reviewed

original articles that presented a model and were available as full-text articles were considered

eligible if they focused on predicting the number of dengue cases or an outbreak based on

number of dengue incidence. Articles that focused on updating previously developed models

were only included if they presented an updated version of the model. Articles which dealt

exclusively with dengue in international travellers, or which only analyse the correlation

between climate parameters and dengue cases without presenting a prediction model were

excluded. Furthermore, articles which used models for predicting the population of dengue

vectors (e.g., Aedes aegypti or Aedes albopictus) as well as articles which only offer susceptible-
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infected-recovered modelling stochastic or transmission rates modelling were excluded. Arti-

cles which presented a model only dealing with spatial or temporal components of dengue risk

were considered ineligible. Conference proceedings, book chapters, abstracts or letters were

also excluded. Titles and abstracts of the retrieved articles were screened independently by two

reviewers (RMI, MMA). Two review team members (LM, XYL) then retrieved the full text of

those potentially eligible studies and independently assessed their eligibility. Disagreements

were resolved by a third reviewer (MNK). A detailed study selection process is illustrated in

the PRISMA flow diagram (Fig 1) [24].

Data analysis

Based on the data extraction fields of the CHARMS framework [23], a standardised table was

developed to extract data from the selected studies for assessment of quality and evidence syn-

thesis. The data extraction table consists of eleven domains, each with a specific item, that

extract data from the reports of the primary forecasting model. Key information extracted

from the included articles were period and geographical region, sources of data, outcomes to

be predicted, modelling covariates variables, sample size, statistical techniques, model perfor-

mances, model evaluation, and key findings. Information regarding handling and/or reporting

of missing data was also extracted. Each paper was independently reviewed by two reviewers

(MMA, XYL) and discrepancies were resolved through discussion with each other or with a

third reviewer (SP) where necessary.

Extracted data from the selected studies were summarised and the key information about

the methodological characteristics of these models were tabulated. Descriptive statistics were

generated based on model characteristics and comparative methodological features such as

outcome types, target population, data sources and predictor selection techniques. All statisti-

cal analyses were performed using Stata (version 17.0).

Results

The initial search yielded 6553 studies. After duplicates were removed, 3244 studies were

screened for titles and abstracts. This led to 153 studies for full text review, and 64 that strictly

met the inclusion criteria (Fig 1), 16 of these studies reported multiple models. A total of 99

models from 64 selected studies were identified. Characteristics of the models including, year,

country and source of data used, predictors and outcome of the models, overall model devel-

opment technique and model performance related variables are summarised in Table 1

[14,15,17–21,25–81].

Table 2 presents the sources of data used for modelling. Most of the models (90.7%) sourced

dengue incidence data from surveillance and 44.3% used registry data, while 34.0% also used

hospital or laboratory data. While most (94.7%) of the models used climate data from govern-

ment agency reports, only around 22.1% of the models used data from the meteorological sta-

tions in real-time. Climate change data was also sourced mostly (77.8%) from government

agency reports, only 11.1% used international environmental agency data and 22.2% used

local environmental agency report. Half (50.0%) of the models used vector data from entomo-

logical surveillance and 25.0% used vector data from laboratory sources. Around 83.8% of the

models were built based on the sample from general population, 16.2% used only urban sam-

ples. Around 46.9% of the models used monthly aggerate data, over a third (29.3%) used

weekly aggregate data and 23.2% used daily aggregated data of the predictors. The majority

(59.6%) of the models incorporated reporting time lag adjustment. Although 17.2% of the

models addressed the missing data, 30.3% did not address the issue, while the majority (52.5%)

did not specifically report the missing value. Around 80.8% of the models were intended to
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Fig 1. PRISMA flow diagram illustrating study selection process.

https://doi.org/10.1371/journal.pntd.0010631.g001
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predict the number of dengue cases and 19.2% focused on predicting dengue outbreaks, based

on predetermined case number threshold.

Table 3 summarises the statistical methods adopted by the prediction models. Modelling

techniques were broadly categorised under two genres, statistical models (60.6%) and machine

learning (39.4%). The statistical models were broadly comprised of linear regression models

(18.3%), time series/autoregressive models (26.7%), Poisson regression models (18.3%) and

generalized additive models (16.7%). Neural networks models (23.1%), random forest models

(15.4%), and ensemble models (10.3%) were types of machine learning models used.

All theoretically plausible predictors were considered as candidate predictors in 71.7% of

models and pre-selection of predictors based on unadjusted association with the model out-

come was considered in 28.3% of models. Reporting of essential modelling techniques was

Table 2. Source of data used for modelling.

Sources of model data N (%) �

Dengue data source (n = 99)
Surveillance/notification 88(90.7)

Disease registry 43(44.3)

Hospital/laboratory 33(34.0)

Climate data source (n = 99)
Government agency report 90 (94.7)

Meteorology station 21 (22.1)

Research Institute/centre 4 (4.2)

Climate change data source (n = 18)
Government agency report 14 (77.8)

International environmental agency 2 (11.1)

Local environmental agency report 4 (22.2)

Vector data source (n = 8)
Surveillance/monitoring data 4 (50.0)

Laboratory data 2 (25.0)

Government agency report 3 (37.5)

Population source (n = 99)
General population 83 (83.8)

Metropolitan 16 (16.2)

Data aggregation unit (n = 98)
Daily aggregate 23 (23.2)

Weekly aggregate 29 (29.3)

Monthly aggregate 46 (46.9)

Lag time adjusted in model (n = 99)
No 40 (40.4)

Yes 59 (59.6)

Treatment of missing data (n = 99)

Yes 17 (17.2)

No 30(30.3)

Not reported 52 (52.5)

Prediction outcome (n = 99)

Dengue case count 80 (80.8)

Dengue outbreak 19 (19.2)

� The percentages may not add up to 100, due to multiple responses

https://doi.org/10.1371/journal.pntd.0010631.t002
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Table 3. Statistical methods used among models (n = 99).

Statistical methods N (%) �

Model building technique
Statistical models (n = 60, 60.6%)
Linear regression model 11 (18.3)

Non-linear regression model 5 (8.3)

Time series/autoregressive model 16 (26.7)

Poisson regression model 11 (18.3)

Generalized linear model (GLM) 2 (3.3)

Generalized additive model (GAM) 10 (16.7)

Others 5 (8.3)

Machine learning (n = 39, 39.4%)
Random forest 6 (15.4)

Neural network 9 (23.1)

Boosting algorithm 5 (12.8)

Support vector algorithm (SVA) 4 (10.3)

Ensemble models 4 (10.3)

Classification and regression tree (CART) 2 (5.1)

Long short-term memory (LSTM) 4 (10.3)

Others 5 (12.8)

Predictor selection for model (n = 99)

All theoretically plausible predictors 71 (71.7)

Pre-selection (unadjusted association) 28 (28.3)

Reporting model parameter (n = 99)

Model performance 84 (84.8)

Model calibration 58 (58.6)

Model discrimination 47 (47.5)

Model validation (n = 99)

External and internal validation 5 (5.2)

Internal validation 75 (75.8)

No validation 20 (20.2)

Model validation techniques (n = 79)

Split sample validation 16 (20.3)

Cross validation 32 (40.5)

Retrospective validation 5 (6.3)

Out of sample validation 3 (3.8)

Performance metrices only 23 (29.1)

Performance metrices reported

MAE (Mean Absolute Error) 7 (7.1)

RMSE (Root Mean Squared Error) 11 (11.1)

AIC/BIC (Akaike / Bayesian Information Criterion) 1 (1.0)

ROC (Receiver Operating Characteristic) 5 (5.1)

MAPE (Mean Absolute Percentage Error) 5 (5.1)

GCV (Generalized Cross Validation score) 2 (2.0)

MSE (Mean Squared Error) 7 (7.3)

� The percentages may not add up to 100 as studies used multiple methods

https://doi.org/10.1371/journal.pntd.0010631.t003

PLOS NEGLECTED TROPICAL DISEASES A systematic review of dengue outbreak prediction models

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010631 February 13, 2023 11 / 21

https://doi.org/10.1371/journal.pntd.0010631.t003
https://doi.org/10.1371/journal.pntd.0010631


heterogeneous– 84.8% of models reported model performance, 58.6% reported model calibra-

tion and 47.5% reported model discrimination. Among the performance metrices, Root Mean

Squared Error (‘RMSE’) (11.1%), Mean Squared Error (‘MSE’) (7.3%), Mean Absolute Percent-

age Error (‘MAPE’) (5.1%), and Receiver Operating Characteristic (‘ROC’) (5.1%) were notable.

Of these models, most (75.8%) reported the internal validation alone, only 5.2% reported both

internal and external validation and 20.2% reported no validation at all. The validation tech-

niques included: split sample validation (development and validation) (20.3%), cross validation,

which involves resampling of the derivation sample (40.5%) and performance metrics (29.1%).

Table 4 presents the factors used for prediction models. All of the models included in the

review used climate predictors in their model. Among the climate predictors: humidity

(77.4%), temperature (95.2%) and rainfall (81.0%), were used in most models. Windspeed and

direction (27.4%), precipitation (15.5%) and sunshine (10.7%) were among other notable cli-

mate factors. Considering the similarity of the description of factors, climate change and envi-

ronmental factors were collapsed in to one category under climate change. Overall, 18.2% of

the models used climate change and/or environmental predictors. El Nino-Southern Oscilla-

tion (‘ENSO’), Southern Oscillation Index (‘SOI’), Oceanic Nino Index (‘ONI’), hydric balance

and vegetation index were among the key climate change predictors. Vegetation Index and

enhanced vegetation index were among the key environmental factors reported.

Vector-related predictors were included in 8.1% of models, and the key vector related pre-

dictors were container index, Breteau index, adult productivity index, breeding percentage

and mosquito infection rate. Demographic predictors were included in 8.1% of models, and

key demographic predictors were, population size, population density, area under the urban

settlement, access to piped water, education coverage and GDP per capita (Table 4).

The combination of the predictors used in the model are depicted in Fig 2. While majority

(70.7%) of the models were built solely on climate predictors, none of the models used the

Table 4. Factors that appeared as predictors in the prediction models.

Climate factors (100.0%) Climate change and

environmental factors

(18.2%)

Entomological (Vector)

factors (8.1%)

Demographic factors

(8.1%)

Temperature (95.2%)
Minimum temperature

Mean temperature

Maximum temperature

Rainfall (81.0%)
Average rainfall

Accumulated rainfall

Number of rainy days

Humidity (77.4%)
Relative humidity

Absolute humidity

Sunshine (10.7%)
Sunshine duration

Insolation

Windspeed & direction
(27.4%)
Precipitation (15.5%)
Evaporation (8.3%)
Atmospheric pressure (2.4%)

El Nino-Southern
Oscillation (ENSO)
Southern Oscillation Index
(SOI)
Oceanic Nino Index (ONI)
Gini Index
Potential
evapotranspiration
Azores high sea-level
pressure
Dipole mode index
Hydric balance
Vegetation Index
Enhanced vegetation index
Equatorial Pacific Ocean
surface temperature

Ades albopictus count
Container index
Ades aegypti index
Breteau index
Adult productivity index
Weekly egg count in ovitrap
Breeding percentage
Mosquito infection rate
Minimum infection rate
Per man hour density
(PMHD)

Population size
Population density
Access to piped water
Education coverage
GDP per capita
Area under urban
settlement

� Figures in the parenthesis denotes the percentage of models included the predictor in the model and percentages

may not add up to 100 as models used multiple categories of predictors in combination

https://doi.org/10.1371/journal.pntd.0010631.t004
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combination of all four (climate, climate change, vector and demography) categories of predic-

tors. The combination of climate, climate change and demographic predictors was used in

3.1% of the models and the combination of climate and climate change predictors were used

in 13.4% models. Among other notable combinations were, climate and vector predictors

(6.3%) and climate and demographic predictor (5.2%).

Discussion

This systematic review evaluated 99 dengue outbreak prediction models from 64 studies, pre-

dicting the number of dengue cases or outbreaks from a variety of settings and populations.

Our review identified, three major area of inadequacy in the current modelling practices.

Firstly, use of secondary predictor data—acquired from reports—were quite prevalent among

models. Secondly, as data for other non-climate variables were not included in the majority of

the models, they failed to capture a holistic view of dengue development in the prediction pro-

cess. Lastly, inadequacy in the reporting of methodology, model validation and performance

measures were quite prevalent in the existing prediction models. One positive aspect seen in

the current modelling practice is the shift toward robust modelling technique, such as use of

machine learning algorithm and autoregressive time series techniques.

While effective treatments and prevention measures are still being developed, an early

warning system for an epidemic has the potential to reduce the toll of severe disease on the

health system and population [82]. Developing a clearer understanding of the factors affecting

dengue transmission is an important step towards mitigating the impact of the disease on

health systems and on communities at large. Early prediction of dengue incidences or alerts

regarding impending outbreak may contribute to the health system preparedness through

Fig 2. Combinations of predictors used in the prediction models.

https://doi.org/10.1371/journal.pntd.0010631.g002
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effective resource mobilization and creating public awareness. Such predictions also have pol-

icy implications, as epidemiological evidence generated through modelling feeds the policy

making process and facilitates the prioritization of interventions, such as vector control and

environmental modification particularly in regard to climate change [83]. Considering dengue

is a mosquito-borne disease, the majority of outbreak prediction models focus on climate

dependency of mosquito breeding and dengue transmission [4–7]. While many models have

been successful in predicting relative cases of dengue in real settings, incorrect prediction

results have been observed in several included studies. For example, a model by Adde et al.

[26] was unable to forecast a dengue outbreak in 2001–2005 with the use of climate data from

1991–2000. One of the potential reasons for their inaccurate prediction is the geo-spatial varia-

tion of climate and environment within regions. In their study, the decision to include vastly

heterogenous geographical areas led to variation in model prediction, which—be due to exclu-

sion of non-climatic factors—may be the explanation of the poor performance in many of the

earlier prediction models could. An increasing number of later models appears to incorporate

a wide range of vector parameters as well as demographic parameters. Chang et al. pointed out

that, entomological (vector) factor combined with other meteorological (climate) factors, have

better prediction performance, and their prediction accuracy is often higher than that of cli-

mate predictors alone [21].

For dengue incidence data, the majority of the models relied on reports from government

organizations based on notifiable data. Notification involves passive surveillance, where there

is potential for systematic underreporting along with varying time lag. Modelling with data

from active surveillance or real-time study may minimize such limitations. A considerable

number of models did not consider the time lag affecting the prediction, which may be respon-

sible for possible delays in weather affecting mosquito vectors and subsequently viruses. Due

to the nature of dengue disease dynamics, failure to address time lag in model development is

likely to affect prediction accuracy. Critical points in the natural history of disease timeline

those may generate time lag may start with mosquito development, and subsequently also dur-

ing acquisition and amplification virus in mosquitoes, mosquito host behaviour (i.e. biting

and feeding pattern) and the incubation period of the virus in the human body [12,48]. Some

studies have found a positive correlation between climate variables with time-lags at several

points in the natural history of disease timeline [48,53]. Therefore, the adjustment for the time

lags while predicting dengue is indispensable, especially when meteorological data is used [12].

The majority of included models were built on conventional regression techniques. Accord-

ing to recent literature, the time series technique is particularly considered effective in predict-

ing the highly auto-correlated nature of dengue infection [84,85]. Machine learning techniques

are employed in around 40% of the included models, and is particularly prevalent among the

recently developed models. Batista et al. confirmed superiority with ML techniques demonstrat-

ing a lower error rate compared to the conventional statistics-based model in predicting dengue

cases. In the age of big data, this technique can leverage data availability and in addition to

being non-parametric in nature, can also provide some leeway in terms of strict assumption

[86]. Random forest, neural networks, gradient boosting and support vector algorithms are

notable subsets of machine learning algorithms, which have made significant contributions to

several areas of public health, particularly in the forecasting of infectious diseases like malaria

[87] and COVID-19 [88], and may have similar utility for making dengue outbreak predictions.

Although machine learning in gaining popularity, future modelling in this area may benefit

from using mechanistic models [89]. This modelling technique have played an essential role in

shaping public health policy over the past decades [90]. Mechanistic models have the potential

to provide additional insight regarding precise dynamics of the transmission and infection of
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dengue. As these models highlight underlying processes that drive the patterns. These models

can particularly aid in the prediction through incorporating the observed trajectory of vectors.

In the modelling process, generating an algorithm or equation is only part of the process. It

is not complete unless its performance has been assessed considering discrimination [91] and

calibration [92], both internally and using the population outside of what it is developed from,

respectively. Among the existing models examined, reporting of the discrimination and cali-

bration is very low. Without knowledge of model performance through validation in both

source populations and populations other than where it was developed, objective evaluation of

models is difficult [93]. Predictive models can be of great value only if there is certainty of its

accuracy, that is, how precisely the model can predict an outcome in real world [94]. In the

majority of the published models, real-world validation has not been performed or reported.

Generally, models are unlikely to predict as well in real-world samples as it would in the deri-

vation sample; this validity shrinkage can often be quite substantial. Hence, future models

should report a mechanism of estimating and reporting potential validity shrinkage as well as

predictive validity in real world data [95, 96].

In a substantial proportion of the models that reported validation, the original dataset was

randomly split into the development and validation subset. Although this approach is widely

used in many model validation settings, there are some setbacks when using smaller opera-

tional sample sizes, as split-sample analyses give overly pessimistic estimates of model perfor-

mance and are accompanied by large variability [97]. Bootstrapping is generally considered to

be the preferred internal validation method in predictive models [98, 99]. Interestingly, boot-

strapping was not used in any of the models in included studies, instead cross-validation tech-

nique was adopted in most of them. External validation, on the other hand, was used only in

very few included studies. This is despite the fact that external validation is considered pivotal

to model development and a key indicator of model performance through highlighting appli-

cability to participants, centres, regions or environments [23]. The external validation is partic-

ularly essential for model redevelopment, where the original model is adjusted, updated, or

recalibrated based on validation data to improve performance [100]. This update may include

adjusting the baseline risk (interception or hazard) of the original model, adjusting the weight

or regression coefficient of the predictor, adding new predictors, or removing existing predic-

tors from the model.

This review has a number of strengths–specifically, the use of the CHARMS checklist [23],

designed for the assessment of the applicability of the prediction models. In addition, inclusion

and exclusion criteria were strictly followed, and database searches were conducted by an expert

librarian. However, there are a few limitations of the review–the models in this review are not

explicitly rated based on quality or performance due to the lack of accepted criteria for rating the

quality of forecasting models. In addition, although calibration was reported in several studies,

calibration measures lack clarification, which may impact the overall evaluation of the model per-

formance. The model performance could not be compared across methodological approaches in

quantitative synthesis because of a lack of model performance data, and those that did provide

data are mostly generated from internal validation data which may result in overfitting.

Conclusion

In conclusion, failure to use of real time primary predictor data, failing to incorporate non-cli-

matic parameters as predictor and insufficient reporting of model development techniques,

model validation and performance measure were the major inadequacies identified in the cur-

rent modelling practice. The paradigm shift towards robust modelling techniques, such as the

use of machine learning algorithms and autoregressive time series, is a significant positive

PLOS NEGLECTED TROPICAL DISEASES A systematic review of dengue outbreak prediction models

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010631 February 13, 2023 15 / 21

https://doi.org/10.1371/journal.pntd.0010631


trend in contemporary model practices. The findings of this review have the potential to lay

the groundwork for improved modelling practices in the future. These findings will contribute

to robust modelling in different settings and populations and have important implications for

the planning and decision-making process for early dengue intervention and prevention.
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