
Information and Software Technology 52 (2010) 1–13
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
A systematic review of domain analysis tools

Liana Barachisio Lisboa a,*, Vinicius Cardoso Garcia a,b,d, Daniel Lucrédio a,c, Eduardo Santana de Almeida a,e,
Silvio Romero de Lemos Meira a,b, Renata Pontin de Mattos Fortes c

a RiSE, Reuse in Software Engineering, Recife, PE, Brazil
b Informatics Center, Federal University of Pernambuco, Recife, PE, Brazil
c Institute of Mathematical and Computer Science - University of São Paulo (ICMC/USP), São Carlos, SP, Brazil
d Caruaru Faculty of Science and Technology (FACITEC), Pernambuco University, Caruaru, PE, Brazil
e Federal University of Bahia, Salvador, BA, Brazil

a r t i c l e i n f o a b s t r a c t
Article history:
Received 12 September 2008
Received in revised form 15 May 2009
Accepted 16 May 2009
Available online 31 May 2009

Keywords:
Systematic review
Domain analysis
Tools
0950-5849/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.infsof.2009.05.001

* Corresponding author. Tel.: +55 713 346 4855.
E-mail address: lblisboa@gmail.com (L.B. Lisboa).
The domain analysis process is used to identify and document common and variable characteristics of
systems in a specific domain. In order to achieve an effective result, it is necessary to collect, organize
and analyze several sources of information about different applications in this domain. Consequently, this
process involves distinct phases and activities and also needs to identify which artifacts, arising from
these activities, have to be traceable and consistent. In this context, performing a domain analysis process
without tool support increases the risks of failure, but the used tool should support the complete process
and not just a part of it. This article presents a systematic review of domain analysis tools that aims at
finding out how the available tools offer support to the process. As a result, the review identified that
these tools are usually focused on supporting only one process and there are still gaps in the complete
process support. Furthermore, the results can provide insights for new research in the domain engineer-
ing area for investigating and defining new tools, and the study also aids in the identification of compa-
nies’ needs for a domain analysis tool.

� 2009 Elsevier B.V. All rights reserved.
Contents
1. Introduction . 2
2. Domain analysis concepts . 2
3. Related work. 2
4. Motivation . 3
5. Method . 3
5.1. Research question . 3
5.2. Search strategy . 3
5.3. Study selection . 4
5.4. Data extraction . 5
5.4.1. Data extraction procedure . 5
6. Results. 5
6.1. Tools selection . 5
6.2. Research question result . 6
6.2.1. Domain analysis support . 6
6.2.2. Main functionalities . 7
6.2.3. Tools development and usage . 9
6.2.4. Research question result summary . 9
6.2.5. Discussion and implications. 10

7. Functionalities priority. 10

7.1. Essential priority . 10
7.2. Important priority . 10
7.3. Low priority . 11
7.4. Priority support per tools . 11
ll rights reserved.

mailto:lblisboa@gmail.com
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

2 L.B. Lisboa et al. / Information and Software Technology 52 (2010) 1–13
8. Threats to validity . 11
9. Conclusion . 11

Acknowledgement . 12

Appendix A. Journals and conferences . 12

References . 12
1. Introduction

Nowadays, companies are seeking for ways to improve their
competitiveness, which involves less time-to-market and high
quality for the products. The adoption of software reuse [1] is an
option to obtain these benefits. Although the benefits of software
reuse are promising; it is a complex task to put it into practice. A
way to maximize these possible benefits is through the adoption
of a systematic reuse approach, which is domain focused, based
on a repeatable process, and concerned with reuse of higher level
life cycle artifacts [2].

Reuse can be obtained in all kinds of assets, such as require-
ments and use cases, architecture, frameworks. However, the most
common is the source code. On the other hand, reuse focused only
on source code libraries is insufficient and the key to successful re-
use lies in understanding and defining the application domain for a
collection of assets [3]. This can be obtained through a domain
analysis (DA), which identifies common and variable characteris-
tics of systems in a specific domain.

To achieve an effective result with this process, it is necessary to
collect, organize and analyze several sources of information about
different applications in the domain. This task involves distinct
phases and activities. The analysis of the existing products from
the domain and their correlation, to identify the domain scope, is
one example. These activities involve the management of interre-
lated artifacts that have to be kept traceable and consistent. Due
to this, using only human expertise in industrial projects without
automation can contribute to risks in a project, such as incomplete
information, lack of support for information management, project
delays, or degraded productivity. Thus, it is necessary to have tool
support to aid the organization’s domain analyst during the execu-
tion of the process [4–6].

Furthermore, tool support should assist the complete process,
and not just some functionalities, because it would lead to the need
to use several tools and information traceability among them
would, probably, have to be done manually by the domain analyst.
Therefore, it is necessary to evaluate the current domain analysis
tools in order to verify the degree to which they support the pro-
cess. This article presents a systematic review of domain analysis
tools conducted to address this goal.

This review also provides a starting point either for new re-
search aimed at developing new DA tools, or for investigating the
processes that follow domain analysis and make use of DA outputs
(e.g. domain design, implementation and application engineering).
In addition, the review should benefit companies interested in pur-
chasing a DA tool.

2. Domain analysis concepts

Domain analysis is part of the domain engineering process –
which is the activity of collecting, organizing and storing past
experience in building systems or parts of systems in a particular
domain in a form of reusable assets [7], and also encompasses do-
main design and domain implementation. The results of domain
engineering will be reused in application engineering, which is
the process of producing systems with the reusable assets devel-
oped during the domain engineering.
The term Domain Analysis was first defined by Neighbor’s [8] as
‘‘the activity of identifying objects and operations of a class of similar
systems in a particular problem domain”, where he compares single
system analysis with domain analysis. The main point is that single
systems analysis is concerned with actions and functionalities of
just one system while domain analysis is concerned with actions
and functionalities of several systems within an application area
[9].

Nowadays, several domain analysis processes have been cre-
ated – such as [10–14,6,15,16], providing different guidelines for
identifying common and variable characteristics of a domain. In
1994, Arango [17] performed a study of eight existing domain anal-
ysis processes. He presented, as his results, a set of activities that
are common to the analyzed processes:

� Domain scoping. Feasibility analysis and planning of the
domain.

� Data collection. Data collection from different sources, which
can vary from experts to documents.

� Data analysis. Descriptions of reusable elements, identifying the
similarities and differences between them.

� Classification. Refinement of the information, clustering similar
descriptions, abstracting relevant common features from the
descriptions in each cluster and a vocabulary construction.

� Evaluation of the domain model. Domain model evaluation,
and correction of any defects found.

Even though this evaluation was performed 15 years ago, our
review shows that the common activities are still relevant.

The next section describes some previous studies of domain
analysis tools.

3. Related work

Analysis of existing domain analysis tools has been performed
in previous studies, such as the ones detailed below.

Succi et al. [5] define some requirements for a domain analysis
tool, focusing on the functionalities that a tool should possess in
order to have a consistent environment, such as traceability, con-
sistency checking and tool integration. Later, they discuss how
existing domain analysis tools satisfy these requirements.

Gomaa and Shin [18] propose a set of requirements for effective
variability management in product lines. These define some views
that are responsible for specific functionalities, such as feature
model, metamodel, consistency checking and product derivation.
They also propose a multiple product line view and a product line
repository. Their requirements are not only for the domain analysis
phase, but for the whole domain and application engineering pro-
cesses. On the other hand, these requirements are not tested on
other tools, just on their prototype.

However, these studies need updating and they focus on ana-
lyzing only a pre-defined set of requirements. Furthermore, other
studies have looked at restricted aspects of the process, such as
variability modeling. These studies are described next.

Capilla et al. [19] describe a set of concepts for variability mod-
eling and management, and analyze several existing tools based on
these concepts. Their analysis focused on the complete software

L.B. Lisboa et al. / Information and Software Technology 52 (2010) 1–13 3
product line and domain engineering processes. As a result, they
defined the current limits of tool support for the processes and
what should be expected for the next generation of tools.

Sinnema and Deelstra [20] define criteria for comparing vari-
ability modeling notations and techniques and other criteria for
analyzing the tools. These were selected based on the process they
supported. However, the results focus on the techniques and not
on the tool support.

Even though several tools were analyzed in these studies,
they were not the studies’ focus; in addition, these analyses were
also performed according to a pre-defined set of requirements.
4. Motivation

The available analyses of domain analysis tools - described in
Section 3 – did not intend to find out how the existing domain
analysis tools support the domain analysis process. Instead, they
define a set of functionalities and analyze the tools according to
them.

Another characteristic of previous studies is that they do not ex-
plain how the requirements were defined, if these requirements
are sufficient to fulfill a complete domain analysis process, nor if
they are focused just on a few functionalities, nor how the tools
were selected. In addition, the studies are usually described as a
way of introducing a new tool, like [5,18].

Therefore, this review intends to identify how the available
tools support the DA process in a systematic way, in order to dis-
cover if the available tools are fully supporting the process or if
there are still gaps.
5. Method

There are several reasons to perform a systematic review, and
the usual ones are [21,22]:

� To review existing evidences about a treatment or a technology;
� To identify gaps in current research;
� To provide a framework/background for new research activities;

and
� To support the generation of new hypotheses.

Based on the motivation described above, the second reason fits
the purpose of this review. Furthermore, the results achieved with
the review can also provide a background for new researchers
interested in domain analysis tools or work products to be ex-
pected in the following phases of the process (domain design and
implementation).

The systematic review described here was based on Kitchen-
ham and Charters’ [21] guidelines, which is divided in three main
phases:

� Planning the review. Has the goal of developing a protocol that
specifies the plan that the systematic review will follow to iden-
tify, assess, and collate evidence.

� Conducting the review. Responsible for executing the protocol
planned in the previous phase.

� Reporting the review. Responsible for relating the review steps to
the community and it is fulfilled with this review report.

Each of these phases contains a sequence of stages, but the exe-
cution of the overall process involves iteration, feedback, and
refinement of the defined process [21]. Furthermore, as it is de-
scribed next, some of these stages were adapted from Kitchenham
and Charters’ definition for more complete results.
5.1. Research question

As described before, the objective of this review is to find out
how the available tools for domain analysis are providing sup-
port to the process. However, this question is too generic for a
complete evaluation. Thus, it was further divided into sub-ques-
tions (SQ), focusing on specific aspects of the evaluation.

SQ1: Do the tools support a specific or a generic process? The
idea of not being focused in a specific domain analysis process
increases the chances of adopting a tool, since an organization
does not need to adopt a new process just to use the tool.
SQ2: What are the main functionalities of the tools? The sec-
ond SQ is concerned with how the tool supports the process
guidelines, identifying its characteristics. The analysis did not
focus on the strengths nor on the weaknesses of the tools,
because the goal was to identify what the tools do and compare
them. Thus, it is possible to map how the process is supported.
SQ3: Where the tools were developed and used? The last SQ
aims at identifying where the tools were developed and how
they have been used. Through these descriptions, it is possible
to map the current adoption of the tools.

According to the systematic review process [21], the question
structure is divided in four aspects (PICO):

� Population: people, projects and application types affected by
the intervention. They should be directly related to the question;

� Intervention: software technology, tool or procedure, which
generates the outcomes;

� Comparison: some other type of intervention – if applicable –
and,

� Outcomes: technology impact in relevant information terms for
practical professionals.

And, the structure for this research question is:
Population: this question refers to the support of the domain

analysis tools to the process. The population is composed by do-
main analysts and/or domain experts seeking a way to have a more
automated process support, and by researchers in domain engi-
neering/software product line areas aiming at the development
of new tools.

Intervention: this review must search for indications that the
domain analysis process can be fully supported.

Outcomes: the objective of this study is to map how tools are
supporting a domain analysis process and if the process is not fully
supported, i.e. there are many gaps in the existing tools, or if there
is a necessity of using several tools in the whole process, in which
cases the necessity for a new DA tool increases.
5.2. Search strategy

Based on the structure and the research question, some key-
words were extracted and used to search the primary study
sources. The initial set of keywords was: domain analysis, tool
and domain engineering. However, after a preliminary search,
which aimed at finding available systematic reviews and assessing
the volume of potentially relevant studies [21], other keywords
were added. Some of them were derived from concepts of the do-
main analysis, such as feature modeling and variability modeling,
while others were identified after the analysis of the preliminary
search results, like software product line and requirements.

Furthermore, sophisticated search strings could then be con-
structed using boolean AND and OR operators. Since the review
aims at identifying tools, the keyword tool was included in every

Table 1
Search documentation process.

Data source Documentation

Digital library Library name
Search string
Date

Research group Group name
Url
Date

4 L.B. Lisboa et al. / Information and Software Technology 52 (2010) 1–13
search string, because in the preliminary searches several results
referred only to processes and not tools. The main search strings
were ‘‘domain analysis AND tool” and ‘‘software product line AND
tool”, and also other keywords, such as ‘‘(feature modeling OR vari-
ability modeling) AND tool”, ‘‘software product lines AND require-
ments AND tool”, ‘‘(software product lines OR domain analysis) AND
tool”, ‘‘domain engineering AND tool” and ‘‘feature modeling AND var-
iability AND tool”.

The search for primary studies was based on the following dig-
ital libraries: ACM Digital Library,1 IEEE Computer Society Digital
Library,2 Science@Direct3 and Springer Link.4 These searches had
as target some journals and conferences, which are detailed in
Appendix A, but if relevant results from different journals or confer-
ences were found, they were not discarded. These libraries were cho-
sen because they are some of the most relevant sources in software
engineering [23,22].

Each search string was used in all digital libraries, and
the strings results in each digital library are detailed in the
web material at http://www.rise.com.br/research/personal/liana/
systematicreview.

Additionally, the described search engines are focused on aca-
demic results; given the fact that the goal was to find the largest
number of tools as possible, and these engines would not find com-
mercial tools (as long as they do not have any paper or journal pub-
lished), these keywords were also used in web search engines, such
as Google. In the web engines, the search was targeted at tools
information and their grey literature (i.e. technical reports, white
papers, manuals and works in progress).

Websites of researchers and research groups active in this area,
such as Alexandria,5 Fraunhofer IESE,6 RWTH Aachen7 and SEI,8

were also reviewed. In addition to the search in digital libraries
and web engines, the references of the primary studies were also
read in order to identify other tools.

Even though the contact with research groups and the use of
web search engines depart from a systematic process – thus mak-
ing it harder to replicate the review – they were necessary in order
to have a more complete set of information and references about
the tools.

Since the goal was to find tools that support the domain analy-
sis process, the availability of tools’ executables was also investi-
gated, such as prototypes and/or demos. Thus, a wider analysis of
the tools could be undertaken, especially for identifying the func-
tionalities. These executables, sometimes, had their download link
available in research papers, while others were found through a
search in web engines and some were found through research
groups’ websites or through the direct contact with the tool’s
developers.

After obtaining the documentation about all the tools (papers
and website), another search was performed on web engines with
the particular information of every tool in order to find more doc-
umentation and/or executables.

Based on these sources, there are two types of objects in this re-
view. The first is concerned with the executables, through which
the reviewers could test the functionalities of the tool; and the sec-
ond involves the written documentation found, for instance, con-
ference papers, manuals, white papers and journals.
1 http://portal.acm.org/.
2 http://ieeexplore.ieee.org/.
3 http://www.sciencedirect.com/.
4 http://springerlink.metapress.com/home/main.mpx.
5 http://www.theoinf.tu-ilmenau.de/riebisch/pld/index.html.
6 http://www.iese.fraunhofer.de/fhg/iese/index.jsp.
7 http://www-lufgi3.informatik.rwth-aachen.de.
8 http://www.sei.cmu.edu/sei-home.html.
At the end of the search, a total of 31 potentially relevant tools
were selected, of which four only had the information available on
the websites and their executables (i.e. no written reports).

These searches were performed in January, 2008 by a M.Sc. and
a Ph.D. students; the achieved results were crossed and then vali-
dated. All the results of the search process are documented in the
web material. Therefore, it is clear to others how thorough the
search was, and how they can find the same documents.

The adopted documentation template for the results is shown in
Table 1.

5.3. Study selection

Once the potentially relevant primary studies have been ob-
tained, they need to be assessed for their actual relevance. To
achieve that, criteria for inclusion and exclusion of the objects in
this review were defined.

Since the goal of the review was on the tools, all the available
information achieved in the search – i.e. executables, papers, grey
literature and journals – were grouped according to the tool they
referred to. Due to this, it was possible for a tool to be discussed
in more than one paper. For the sake of simplicity, whenever the
word tool is used in the rest of the review, it means the written
documentation and the executable.

The inclusion criteria were:

(a) Tools that offer support to the domain analysis phase: the
encountered tools must support some functionality in the
DA process.9 If the tool supports functionalities that are
not from the DA process, these functionalities will not be
evaluated, but the tool might still be selected.

(b) Tools with available executables: with its prototype, demo
or finalized product, it is possible to test how the tool real-
izes the process.

(c) Tools with documentation describing their functional-
ities: if the written documentation of the tool’s functional-
ities was clear and useful, they were considered too.

Not all of these criteria must be present for every tool. However,
at least two of them, the DA support (a) and some other, are nec-
essary, because not every tool has the information from both (b)
and (c) available. If all criteria were mandatory, the number of se-
lected tools would decrease significantly.

The exclusion criteria were:

(a) Tools supporting functionalities that are from steps after
domain analysis: tools supporting only activities that are
not part of the domain analysis process, but that need its
results – such as product configuration and domain design
– were not considered in the review.
9 The only exception for this criterion is described in the second exclusion criterion,
because the existence of tools without supporting the commonalities identification
goes against the domain analysis definition.

http://www.rise.com.br/research/personal/liana/systematicreview
http://www.rise.com.br/research/personal/liana/systematicreview
http://portal.acm.org/
http://ieeexplore.ieee.org/
http://www.sciencedirect.com/
http://springerlink.metapress.com/home/main.mpx
http://www.theoinf.tu-ilmenau.de/riebisch/pld/index.html
http://www.iese.fraunhofer.de/fhg/iese/index.jsp
http://www-lufgi3.informatik.rwth-aachen.de
http://www.sei.cmu.edu/sei-home.html

Table 2
Number of tools selected in each category.

Category Number of tools selected

Written documentation + executable + websites 5
Written documentation + websites 3
Written documentation + executables 1
Written documentation 7
Executable + websites 3

L.B. Lisboa et al. / Information and Software Technology 52 (2010) 1–13 5
(b) Tools supporting only variability management: tools
focusing only on managing variabilities and not on support-
ing commonalities were not included, since the definition of
domain analysis involves the identification of what is com-
mon and what is variable in the systems of a specific domain
[8].

(c) Tools with written documentation with no usable
information: tools with written documentation that did
not have usable description about its functionalities were
discarded.

(d) Tools describing only a few functionalities: tools with only
written documentation that did not focus on explaining the
supported process and the functionalities, but only a singu-
lar functionality, were also discarded.

Also, tools with only white papers could not be selected,
because they usually contain just marketing material, therefore
another data source should exist in other to validate their
information.

5.4. Data extraction

The objective of this stage is to design data extraction forms to
accurately record the information obtained by the researchers
from the primary studies [21]. The form for data extraction pro-
vides some standard information:

� Name of the tool;
� Date of data extraction;
� Title, authors, journal, publication details (if available);
� Prototype information (if available);
� Website (if available); and
� A list of each conclusion and statement encountered for each

sub-question.

The template of the form can be found in the web material.10

Moreover, the form contains a specific space for each sub-ques-
tion, from SQ1 to SQ3. For SQ1, the expected answer was the name
of the process supported by the tool, or if it supported a generic
one. SQ2 is answered with a list of the identified functionalities,
while SQ3 was further divided with the information regarding
the name and type of the institution that developed the tool, and
where it was used.

In addition, extra information could also be included. These
pieces of information usually referred to the tools functionalities
that were not related to the domain analysis support.

5.4.1. Data extraction procedure
Every decision about including/excluding a tool was made after

the full reading of the written documentation (except for those
where the title and the abstract clearly indicated its content) and
conducting some tests with the executables.

One problem faced during the review was that, sometimes,
there were contradictions among the available information of the
tools. This happened when a tool had different sources with some
years between them. In this case the oldest sources were
discarded.

In cases when there was no agreement between the researchers
about a specific tool, there was a discussion in which the research-
ers related his/her reasons to include or not the tool. If even after
this discussion an agreement was not achieved, a third researcher
analyzed the available information about the tool and discussed
with the other reviewers in order to achieve a consensus.
10 http://www.rise.com.br/research/personal/liana/systematicreview.
This review protocol was revised by the Reuse in Software Engi-
neering (RiSE)11 group in its weekly discussions and seminars. This
group has over 30 members among Ph.D. and M.Sc. students and
more than 4 years of experience in state-of-the-art/practice in soft-
ware reuse.
6. Results

Based on the search results and on the inclusion and exclusion
criteria, a set of tools were selected, as described below.

6.1. Tools selection

The tool selection process was performed by a M.Sc., two Ph.D.
students and a Ph.D. in conjunction with the RiSE group. It in-
tended to improve the tools’ questionnaires completion and
analysis.

After the analyses of the inclusion and exclusion criteria, from
the 31 potentially relevant tools, 19 were selected. Among these
tools, 36 written reports, 9 executables and 11 websites were kept
for further analysis. The number of selected tools with each type
(written documentation, executables and websites) of available
information is described in Table 2.

A brief description about the selected tools is presented below
in alphabetical order and the available information about each tool
is depicted in Table 3.

001. The 001 tool was developed at Hamilton Technologies, Inc.
in 1986. The Software Engineering Institute (SEI) developed its
integration to domain analysis in 1993.

Ami Eddi. Ami Eddi was developed at the University of Applied
Sciences Kaiserslautern, Germany, in 2000.

ASADAL. ASADAL (A System Analysis and Design Aid Tool) was
developed at the Pohang University of Science and Technology,
Korea in 2003.

CaptainFeature. CaptainFeature was developed at the Fac-
hhochschule Kaiserslautern in Germany, 2002.

DARE. The Domain Analysis and Reuse Environment (DARE)
was developed in 1998 by the companies Reuse Inc. and Software
Engineering Guild, US. The tool is currently in its third prototype.

Decimal. Decimal was developed at the Iowa State University,
US in 2002.

Domain. In 1995 Loral federal Systems, US developed Domain
as part of a project sponsored by the US Department of Defense
(DoD) and the US air force.

DOORS extension. It is an extension to Telelogic’s DOORS.12 The
extension was developed in 2005 at the Institute for Computer Sci-
ence and Business Information Systems (ICB), University of Duis-
burg-Essen, Germany.

DREAM. The Domain REquirement Asset Manager in product
lines (DREAM) was developed by the Pusan National University,
Korea in 2004.
11 http://www.rise.com.br/research.
12 http://www.telelogic.com/products/doors/index.cfm.

http://www.rise.com.br/research/personal/liana/systematicreview
http://www.rise.com.br/research
http://www.telelogic.com/products/doors/index.cfm

Table 3
The analyzed information of each tool.

Name Documentation Executable Website

001 [24,25] No http://world.std.com/hti/Product/Product.htm
Ami Eddi No Yes http://www.generative-programming.org
ASADAL [26,27] Yes No
CaptainFeature No Yes https://sourceforge.net/projects/captainfeature
DARE [28–30,10] No No
DECIMAL [31–33] No No
Domain [34] No No
Doors Extension [35] No No
DREAM [36,6] No No
Feature Plugin [37,38] Yes http://gsd.uwaterloo.ea/projects/fmp-plugin/
FeaturelDE [39] Yes http://wwwiti.cs.uni-magdeburg.de/iti_ib/research/featureide/
GEARS [40–42] No http://www.biglever.com
Holmes [43–46] No http://world.std.com/hti/Product/Product.htm
Odyssey [47,48] Yes http://reuse.cos.ufrj.br/site/pt/index.php
Pluss Toolkit [49–51] No No
PuLSE-BEAT [52] No No
Pure::Variants [53–55] Yes http://www.pure-systems.com
RequiLine [56,57] Yes http://www-lufgi3.informatik.rwth-aachen.de/TOOLS/requiline/
XFeature No Yes http://www.pnp-software.com/XFeature/

Fig. 1. Selected tools timeline.

6 L.B. Lisboa et al. / Information and Software Technology 52 (2010) 1–13
FeaturePlugin. It was implemented at the University of Water-
loo, Canada in 2004.

FeatureIDE. Otto-von-Guericke-University Magdeburg, Ger-
many developed the FeatureIDE in 2005.

GEARS. GEARS was developed by BigLever, US, in 2001.
Holmes. Holmes was implemented by the University of Calgary,

Canada in 1999.
Odyssey. It is a software development environment whose goal

is to construct a reuse infrastructure based on domain models and
component based development. It was developed by the Federal
University of Rio de Janeiro, Brazil, in 2002.

Pluss toolkit. It is a set of extensions for the Telelogic DOORS
and the IBM-Rational Rose developed in 2005 by the Umes Univer-
sity and Land Systems HSgglunds, both from Sweden.

PuLSE-BEAT. Developed by the Institut Experimentelles
Software Engineering (IESE), Germany in 2000, the Product
Line Software Engineering – Basic Eco Assistance Tool
(PuLSE-BEAT) is part of the Product Line Software Engineering –
PuLSE methodology, which is an approach to product line
engineering.

Pure::Variants. Implemented by Pure-Systems’ company in
Germany in 2003, Pure::Variants has three kinds of license, a free
one and two paid ones: a professional and an enterprise. The anal-
ysis was done with its free license.

RequiLine. The Research Group Software Construction (RWTH),
Germany, developed it in 2005.

XFeature. It was developed in 2005 by an association of P&P
Software Company with Swiss Federal Institute of Technology
(ETH).
Fig. 1 details the selected tools in the chronological order.
Through this figure, it is possible to verify that the number of tools
offering support to domain analysis is increasing, with almost half
of them released in the last four years.

6.2. Research question result

After the selection and data extraction of the tools, each tool
analysis was confronted with the research question and similar
conclusions about the data were grouped.

For the rest of this section, the results of the systematic review
conducted with the objective of mapping how the available tools
for domain analysis are offering the support to the process are
presented.

Since the research question was further divided in three sub-
questions, each one of them has its conclusion presented first. After
the results of the SQs, a summary relating to the main question is
presented.

6.2.1. Domain analysis support
Based on the 19 tools analyzed, it was possible to identify that

the tools are usually developed to support a specific process, under
the justification that there are no tools supporting all functional-
ities of a specific process. These tools correspondent to more than
78% of the total (15 tools, as shown in Table 4).

Among the tools supporting specific processes, five support the
same process – the Feature Oriented Domain Analysis (FODA) pro-
cess [58]. This process defines several activities for domain analy-
sis, such as context model, feature model, entity-relationship,

http://world.std.com/hti/Product/Product.htm
http://www.generative-programming.org
http://sourceforge.net/projects/captainfeature
http://gsd.uwaterloo.ea/projects/fmp-plugin/
http://wwwiti.cs.uni-magdeburg.de/iti_ib/research/featureide/
http://www.biglever.com
http://world.std.com/hti/Product/Product.htm
http://reuse.cos.ufrj.br/site/pt/index.php
http://www-lufgi3.informatik.rwth-aachen.de/TOOLS/requiline/
http://www.pnp-software.com/XFeature/

Table 4
The type and name of the processes each tool supports.

Tool Process support Process name

001 Specific FODA [58]
Ami Eddi Specific FODA [58]
ASADAL Specific FODA Extension - FORM [59]
CaptainFeature Specific FODA [58]
DARE Specific DARE [10]
Decimal Specific Based on FAST [11]
Domain Specific DSSA [60]
DOORS Extension Specific Adaptation of [61]
DREAM Specific DREAM [6]
Feature Plugin Generic Generative Programming
FeatureIDE Generic Feature-Oriented processes
GEARS Specific Own Process [41]
Holmes Specific Sherlock [62]
Odyssey Specific Odyssey DE [48]
Pluss toolkit Specific Pluss [49]
PuLSE-BEAT Specific PuLSE [12]
Pure::Variants None –
RequiLine Specific FODA [58]
XFeature None –

L.B. Lisboa et al. / Information and Software Technology 52 (2010) 1–13 7
functional models and architectural models. Among these five
tools, three support only the feature model activity; while the
other two tools support the whole FODA process (one of them sup-
ports an extension of the FODA process – the Feature Oriented Re-
use Method [59]).

Feature Plugin and FeatureIDE tools support generic processes.
Their processes are based on a mix of several processes; however,
FeatureIDE describes that the supported process has to be feature-
oriented. Finally, Pure::Variants and XFeature do not specify which
process they support, but they do offer support to an activity sim-
ilar to feature modeling.

6.2.2. Main functionalities
Even though the tools’ developers justify the construction of a

new tool because the available ones do not support a specific do-
main analysis process, this review identified that the majority of
the analyzed tools have similar functionalities.

Moreover, the extracted functionalities have analogous goals, so
it was possible to group them. This classification matched the DA
Table 5
Functionalities each tool supports.
process subdivision that some processes have [12,15]. In this
review, the same names used in [15] were adopted. The groups
are:

� Planning: It is responsible for collecting the data needed to
define the domain scope. These data refer to information already
available from the domain being analyzed, such as legacy sys-
tems, experts and customer objectives. The collection of this
information aids at identifying the characteristics of the domain
towards the definition of its scope.

� Modeling: It represents the domain scope in another way,
which can be through diagrams, tables and others. It presents
commonalities and variabilities of the domain, and it is respon-
sible for creating the constraints between the domain’s
characteristics.

� Validation: This group refers to functionalities responsible to
validate the domain. These functionalities included documenta-
tion and reports.

The functionality of each group is detailed next. Table 5 shows
which functionalities each tool offers support to. The roman
numbers refer to the functionalities described next and the grey
columns separate each group of functionalities (Planning, Model-
ing, Validation and Extras, respectively). This table facilitates the
identification of the gaps in the selected tools, and, in addition, it
can help to discover which tool best satisfies the need of the
company.

Planning functionalities

The identified functionalities and their explanation are:

(i) Pre-analysis documentation: stores and retrieves the infor-
mation in order to help the identification of what character-
istics should be part of the domain. This information can be
obtained from stakeholders and market analysis, con-
straints, objectives definition and data collection.

(ii) Matrix of the domain: represents the relationship between
the characteristics of the domain, also called features, and
the applications included in the domain. It is represented
using rows and columns, where the former represents the

8 L.B. Lisboa et al. / Information and Software Technology 52 (2010) 1–13
features and the latter the applications. This matrix aids in
the identification of which features are common or variable
in the domain.

(iii) Evaluation functions: responsible for the process metrics.
They are divided into characterization and benefit functions.
The former evaluates characteristics for the applications,
while the latter uses the results of the former to decide the
best characteristics and best products for the domain analy-
sis to cover [12].

(iv) Scope definition: identifies the features that should be part
of the reuse infrastructure of the domain.

In accordance with the processes, this group consists of func-
tionalities that should be executed in a domain analysis first.

Modeling functionalities

The modeling group represents the domain scope defined in the
planning phase. Its functionalities are:

(v) Domain representation: represents the defined scope. This
representation can be through tables, models, trees and oth-
ers. This model attempts to formalize the variations in the
domain.

(vi) Variability: represents the variabilities a feature can
have. The possible types are optional – it can or not be
present in the product; alternative – from a group of fea-
tures only one feature will be in the product; and or – from
a group of features at least one feature will be in the prod-
uct.

(vii) Mandatory features: represent the features that will always
be in the products.

(viii) Composition rules: create restrictions in the domain for
representing and relating the features. They can be mutual
exclusion and dependency, regular expressions, or artificial
intelligence, among others.

(ix) Feature group identification: classifies the features accord-
ing to the type of information they represent. They can be
capability, domain technology, implementation techniques
and operation environment [63].

(x) Relationship types: provides different types of relationships
between the features. They can be composition, generaliza-
tion/specification and implementation.

(xi) Feature attributes: permits the inclusion of specific infor-
mation for each feature. It can also represent a variation
point, if the number of variants for it is too big, providing
a more concise feature model.

As it is seen in Table 5, almost every tool supports the first four
functionalities in this group; because of that, they were further
classified as ‘‘common functionalities”. This means that every do-
main analysis tool should always have them, even if the DA process
being supported does not.

Validation functionalities

The functionalities of the validation group are not dependent of
the previous groups, but they provide a greater understanding of
the domain. They are:

(xii) Domain documentation: provides documentation about
the domain, consisting of: description, context, depen-
dencies between systems in the domain, among others.
Each tool provides a different set of fields for documen-
tation.
(xiii) Feature documentation: provides documentation to every
feature of the domain, with information such as: descrip-
tion; rationale; priorities, etc. Each tool provides a different
set of fields for documentation.

(xiv) Requirements management: provides support for the
inclusion of requirements and/or use cases in the tool.

(xv) Relationship between features and requirements: relates
the existing features of a domain to the requirements
(functional or non-functional) and/or use cases defined.
Through this relationship it is possible to maintain the
traceability between the artifacts produced in the domain.

(xvi) Dictionary: identifies and defines the words com-
monly used in the domain and mostly found during pre-
analysis.

(xvii) Reports: generates reports about the information available
in the domain. The reports can represent, for example, the
number of possible combinations; the frequency in which fea-
tures appear in the product; the documentation of the
artifacts.

(xviii) Consistency check: verifies if the generated domain fol-
lows the composition rules created.

Since the consistency check is supported by most of the tools
(see Table 5), it was also classified as a common functionality.

Extra functionalities

In addition to the functionalities described in the previous
groups, which are intrinsic to domain analysis, two other function-
alities that refer to a step after the domain, i.e. the product deriva-
tion, were included. They are:

(xix) Product derivation: identifies the features that belong to a
product according to the features defined for the domain.

(xx) Product documentation: provides documentation to every
product with information such as product description and
domain version.

Even though they are not part of the domain analysis process,
the product derivation function is supported by the majority of
the analyzed tools.

Usability requirements

Through the analysis of the selected tools – considering only
the ones that had the executables available – some usability
requirements were identified. These requirements aim at provid-
ing an easier and more intuitive environment for the tool’s users.
However, they are not presented in Table 5, because not all tools
had executables and some of them were identified due to its
non-existence in the executables, making it harder to use the
tool.

The identified requirements are detailed next:

� Tutorial: the goal of the tutorial is to describe the first execu-
tion steps in the tool in order to support the domain analysis
process.

� Graphical user interface (GUI): the existence of a graphical
interface makes the environment more intuitive to the users.

� Help/manual: the help/manual existence, usually, provides a
detailed explanation of its functionalities.

� Example solutions: example solutions of domains already ana-
lyzed in the tool are useful to help in the process of identifying
the expected input and output, besides showing a real case to be
consulted.

Table 6
Where the tools were developed and used.

Tool Developed Used Report

001 A B –
Ami Eddi A A –
ASADAL A A –
Captain Feature A A –
DARE I B [28,10]
DECIMAL A B [31]
Domain I I –
Doors Extension A B [35]
DREAM A B [6]
Feature Plugin A A –
FeatureIDE A A –
GEARS I I [64]
Holmes A A –
Odyssey A B [48]
Pluss toolkit B B [51]
PuLSE-BEAT B B –
Pure::Variants I I http://www.pure-systems.com
RequiLine A B [56]
XFeature B B –

L.B. Lisboa et al. / Information and Software Technology 52 (2010) 1–13 9
� Import/export from/to other applications: imports and/or
exports the generated documentation to/from other file types,
such as XML, XMI, PDF, XLS, JPEG and GIF. Furthermore, it allows
the visualization of domain data in other tools.

The requirements Tutorial and Example solutions are mainly
important for users that do not have any kind of previous training
before the tool usage, because these requirements show how the
user can start domain analysis. And the lack of training was the
case of this review; therefore the tools with these requirements
were easily analyzed.

Functionalities summary

In Table 5, apart from the common functionalities, the other
identified functionalities are rarely implemented in the same tool.

In the planning group, the identified functionalities were avail-
able only in 4 tools, and the maximum number of functionalities
supported by one tool is 3. This suggests that many tools would
benefit from additional functionalities.

Although we identified that the common functionalities are
supported by almost every tool, the way these functionalities are
supported vary significantly from tool to tool. For example, the do-
main representation can vary from a descriptive visualization –
through a table view – to a diagram view – using the feature model
defined by [58]. The functionalities description details some of the
variabilities encountered. Apart from the common functionalities,
the remaining ones for the modeling group are also seldom sup-
ported; particularly the feature group identification, which is sup-
ported by a single tool.

Regarding the validation group, only one tool (Ami Eddi) does
not support any functionality, in spite of this, not all functionalities
are provided by a single tool. RequiLine provides most functional-
ities, but omits a dictionary. Otherwise, only 2 tools support more
than half of the requirements for this group.

6.2.3. Tools development and usage
Most of the selected tools were developed in the academic envi-

ronment – 12 – while 4 were developed exclusively in the industry
and the remaining three tools were developed in both environ-
ments, academic and industrial, as shown in Fig. 2.

However, for the second part of this sub-question – where the
tools were used? – there were some difficulties in finding this infor-
mation for some tools. For several tools, especially the ones from
the academia, this information was not available at all.

Since there was information in which environment the tool was
developed, it was assumed that the tool was used at least once in
this environment, even without a report detailing it. Table 6 shows
in which environments the tools were used, and it includes the re-
ports found confirming them. Whenever a dash appears in the re-
Fig. 2. Where the tools were developed.
port column, it means that the analyzed reports do not describe
any use of the tool.

The possible results for the used and the developed columns
(Table 6) are: Academia (A), Industry (I) and Both (B).

Even though the majority of the tools were developed in acade-
mia, five of them were also used in the industrial environment.
Furthermore, one of the tools that was developed in an industry
environment was also used in academia. The rest were used in
the same environment they were developed.

6.2.4. Research question result summary
In this section, the results of the review are summarized accord-

ing to the ones extracted from the sub-questions. As described in
SQ1, the development of a tool usually comes from the necessity
of supporting a specific process and not a generic one. However,
this usually obliges a company that wishes to use the tool to mod-
ify or adapt the process it already uses. Thus, the learning curve
and the impact it will cause to the company’s development life cy-
cle is higher.

Considering the functionalities in SQ2, the tools are mainly fo-
cused on the modeling phase due to the common functionalities
(see Table 5). However, considering only the functionalities not
classified as common, just three tools offer some kind of support
to the modeling phase. That is similar to the support rate of the
planning group functionalities, in which only the domain matrix
is supported by all the tools with functionalities in this group.
Regarding the common functionalities, from the 19 tools support-
ing the domain representation in the modeling phase, seven support
this functionality using feature models.

Analyzing Table 5, for the validation group, it is possible to ob-
serve that the tools do not provide much support to the documen-
tation activities, even though domain analysis is a process whose
results depend on the analysis and management of information
from various sources [65]. In addition, 13 tools support the product
derivation – among the extra functionalities – for the domain, but
only three offer support to product documentation.

Through the results obtained for SQ3, it is clear that, even with
the increasing adoption of software product lines and/or domain
engineering by organizations [4], the majority of tools are still
being developed and used in an academic environment. Although
there are other industrial tools that were excluded due to the de-
fined criteria or because they are developed and used only by their
companies [43,66], tools are still too focused on academic issues,
and this is not desirable if the tools are to achieve wider usage.

http://www.pure-systems.com

10 L.B. Lisboa et al. / Information and Software Technology 52 (2010) 1–13
6.2.5. Discussion and implications
Even though the majority of tools support a specific process,

analyzing the processes they support – along with the activities
– the Feature Model activity from the FODA process [58] stands
out. Excluding the 5 tools that support the FODA, two other tools
also have activities similar to the feature model. Although these re-
sults suggest that the feature model aspect of FODA is generic, this
does not imply that FODA itself is generic.

The idea that the feature model activity can be considered
generic is reinforced by the number of tools that implement
domain representation through feature models, as described in
the previous section.

Other conclusion can be drawn when comparing the black dots
in the validation group with the tools’ development year (detailed
in Section 6.1). It becomes clear that documentation functionalities
are being more explored in more recent tools.

Furthermore, based on Table 5, it is clear that there are
many functionalities that are supported by only a few tools.
No tool provides complete coverage of all functionalities in
each group, indicating that existing tools are functionally incom-
plete.

This lack of full support for DA has a potential impact on tool
adoption. Companies wanting tool support for DA may be forced
to use several different tools to automate the entire process. This
is exactly the scenario that must be avoided, since it probably
forces the domain analyst to manually perform the data traceabil-
ity, increasing the chances of errors in the analysis. There are
reports saying that the existence of different tools during the pro-
cess, without standardization on data format, increases staff effort
and reduces data traceability and consistency, therefore delaying
the project execution [67,68].

Another outcome for this review, based on the functionalities
identified, is the definition of the priority to be given to different
functionalities. The priorities for different functionalities are dis-
cussed below.
7. Functionalities priority

After identifying the functionalities that are supported by the
tools, it was clear that not all of them are necessary for domain
analysis. Therefore, the following priority categories were used to
classify each functionality:
Fig. 3. Number of tools
� Essential. It represents the indispensable and high-priority
requirements that must be carried out. The lack of these func-
tionalities means the application is unable to support domain
analysis at all.

� Important. It represents the medium-priority requirements that
are strongly advisable for better usage of the tool.

� Low. It represents the low-priority requirements that are
required for particular situations but are not essential for a use-
ful DA tool.

This categorization was based on the experience of the partici-
pants involved in the review and on the number of tools support-
ing each functionality, which is depicted in Fig. 3. Therefore, the
largest number of tools support should indicate that the function-
ality is mandatory in every domain analysis project.

In Fig. 3, the functionality ‘‘relationship between feature and
requirements” had to be renamed to ‘‘feature and requirements”
due to the lack of space in the graph.

Fig. 3 and the priority classifications provide a prioritized list of
functionalities that should be useful for DA tool developers,
researchers and companies looking for DA tool support.

7.1. Essential priority

The first functionalities to be defined as essential are the ones
defined as common, because the majority of tools already support
them and they are also present in many domain analysis processes
[17,29,69,70]. Additionally, other functionalities, from planning
and validation, were set as essential, because they are key func-
tions in the domain analysis process.

The complete set of essential functionalities is: Domain Matrix,
Domain Representation, Variability, Mandatory, Composition Rules,
Consistency Check and Domain Documentation.

Even though the Product Derivation functionality is supported
by 13 out of 19 tools; this activity is not a part of the domain anal-
ysis process, therefore, it was not defined as essential, but as an
important priority.

7.2. Important priority

In addition to the Product Derivation, the other important func-
tionalities are: Scope Definition, Feature Documentation, Require-
ments Management, Dictionary, Reports and Product Documentation.
per functionalities.

Table 7
Functionalities each tool support per priority.

Tool Essential Important Low

Holmes 7 2 1
RequiLine 6 5 3
XFeature 6 3 1
001 6 3 0
Pure::Variants 6 3 0
PuLSE-BEAT 5 3 1
Feature Plugin 5 2 1
Pluss toolkit 5 2 1
GEARS 5 2 0
ASADAL 5 1 2
DARE 5 1 1
Doors Extension 5 1 1
Captain Feature 5 1 0
DECIMAL 5 1 0
FeatureIDE 5 1 0
DREAM 4 2 2
Odyssey 4 1 1
Ami Eddi 3 1 0
Domain 2 2 0

L.B. Lisboa et al. / Information and Software Technology 52 (2010) 1–13 11
Moreover, the Tutorial and GUI functionalities from the usability
requirements were also considered as important priorities, because
they are directly related to the tool usage, and CASE tools should
provide an easy-to-learn interface [71].

7.3. Low priority

The remaining functionalities had their priority defined as Low.
It does not mean that these functionalities do not aggregate value
to the domain analysis process, however their results do not have a
major impact on the final artifacts of domain analysis.

The complete set of low functionalities is: Pre Analysis Documen-
tation, Evaluation Functions, Feature Group Identification, Relation-
ship Types, Feature Attributes, Relationship between Requirements
and Features, and the usability functionalities Example Solutions,
Import/Export and Help/Manual.

7.4. Priority support per tools

After the definition of which tools support the functionalities
and their priority, it was possible to compare the number of prior-
ity functionalities each tool delivers. This is depicted in Table 7, in
which the tools are ordered according to the number of essential
priorities they support. However, this table does not include
usability functionalities, i.e. it has only the functionalities shown
in Table 5.

The first two rows refer to the tools that fulfill more require-
ments – RequiLine and Holmes. Since this report did not focus on
comparing how the functionalities are implemented, the evalua-
tion only refers to the number of functionalities they support.

8. Threats to validity

The main threats to validity identified in the review are de-
scribed next:

Missing important primary studies. The search for the tools
information was conducted in several digital libraries and on
web search engines and it was focused not only on journals but
also on conferences. According to [23,22], the selected digital li-
braries are some of the most relevant sources in software engineer-
ing. In addition, the web search engines were included in order to
provide a more complete set of information and references about
the tools, specially the ones in the industrial environment.

Tools selection. A possible threat in such review is to exclude
some relevant tool. In order to reduce this possibility, the selection
of tools was based on a strict search strategy described in Section 5.
Furthermore, the defined criteria intended to select relevant tools
to the domain analysis process support and not just tools support-
ing a few requirements. The only tools we have knowingly omitted
are those with inadequate documentation (e.g. marketing white
papers). So we do not believe that we have omitted any tools were
capable of being analyzed.

Reviewers reliability. All the reviewers of this study are
researchers in the software reuse field, focused on the domain
engineering and software product line, and none of the tools infor-
mation was written/developed by us. Therefore, we are not aware
of any bias we may have introduced during the analyses, but it
might be possible that the conclusions might have been affected
by our personal interest and opinions.

Data extraction. Another threat for this review refers to how
the data were extracted from the tools, since not all the informa-
tion was obvious to answer the questions and some data had to
be interpreted. Therefore, in order to ensure the validity, multiple
sources of data were analyzed, i.e. papers, prototypes, technical re-
ports, white papers and manuals, in addition to the tools’ executa-
bles. Furthermore, in the event of a disagreement between the two
primary reviewers, a third reviewer acted as an arbitrator to ensure
full agreement was reached.

Functionality fulfillment. Even though the support of function-
alities is the main goal of this review, it was not verified how they
are fulfilled by the tools. In spite of that, the functionality descrip-
tions include some of the ways that they vary among the tools,
such as: the domain representation can be implemented through a
table, tree or model. Consequently, the functionalities fulfillment
can be verified in a future review.

Quality assessment. A quality assessment was not performed
in this review because its inclusion could restrict even more the
available tools and the goal of the review was to identify the tool
support to the process, especially their functionalities. However,
we are aware that the quality assessment can provide more in-
sights and explanations to the findings of the review; therefore
they should be included in a future review.
9. Conclusion

The execution of a domain analysis process without a tool sup-
port can lead to an unsuccessful result, due to the complexity of
interrelated activities and work products. However, the use of
any tool will not necessarily lead to an effective result. A useful tool
must assist the whole process, and not just some individual sub-
processes.

Thus, aiming to define the first step for identifying what support
a tool should provide for the domain analysis process, this paper
presented a systematic review of domain analysis tools. It was
done according to the defined main question and its sub-questions,
which involved the identification of external characteristics about
the tools and of the functionalities they support.

Several of the functionalities identified in this review were also
identified in previous studies; however other researchers first de-
fined the functionalities to be analyzed in each tool to later verify
if the tools supported them. This type of approach restricts a com-
plete mapping of the tool support scenario, such as the one re-
ported here.

Through the results obtained in this review, it is clear that the
tools differ in process and functionalities being supported, and
confirms that there are gaps in the support for domain analysis
process in all the tools we investigated. Such gaps in functionality
can make it difficult for industry to adopt a DA tool or to have a
successful result in the DA process. Thus our review suggests that
there are opportunities for the development of new tools and/or

12 L.B. Lisboa et al. / Information and Software Technology 52 (2010) 1–13
extending existing tools, and both identifies and prioritizes the re-
quired functionalities.

This study, along with RiSE’s group expertise, was the rationale
for the development of a domain analysis tool called ToolDAy13

[72] in a cooperation project between CESAR14 and the Federal Uni-
versity of Pernambuco. This tool is currently being used in an indus-
trial case inside CESAR.
Acknowledgement

We thank Barbara Kitchenham’s help for her comments about
the report. This work was partially supported by the National Insti-
tute of Science and Technology for Software Engineering (INES15),
funded by CNPq and FACEPE, Grants 573964/2008-4 and APQ-
1037-1.03/08 and Brazilian Agency (CNPq process number 475743/
2007-5).

Appendix A. Journals and conferences

The target journals were:

� ACM Computing Survey;
� Annals of Software Engineering;
� Automated Software Engineering;
� IEEE Software;
� IEEE Transactions on Software Engineering;
� Information and Software Technology;
� Journal of Systems and Software;
� Software and System Modeling;
� Software Process: Improvement and Practice; and
� Software Practice and Experience;

And the target conferences were:

� Computer Software and Applications Conference (COMPSAC);
� Generative Programming and Component Engineering (GPCE);
� International Conference on Software Engineering (ICSE);
� International Conference on Software Reuse (ICSR);
� Object-Oriented Programming, Systems, Languages, and Appli-

cations (OOPSLA);
� Software Product-Family Engineering (PFE);
� Software Product Line Conference (SPLC);
� Variability Modeling of Software-intensive Systems (VaMoS).

References

[1] C.W. Krueger, Software reuse, ACM Computing Surveys 24 (2) (1992) 131–
183.

[2] W.B. Frakes, S. Isoda, Success factors of systematic reuse, IEEE Software 11 (5)
(1994) 14–19.

[3] T.J. Biggerstaff, An assessment and analysis of software reuse, Advances in
Computers 34 (1992) 1–57.

[4] L. Bass, P. Clements, S.G. Cohen, L. Northrop, J. Withey, Product line practice
workshop report, Tech. Rep., Technical Report CMU/SEI-97-TR-003, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, 1997.

[5] G. Succi, J. Yip, E. Liu, Analysis of the essential requirements for a domain
analysis tool, in: ICSE 2000 Workshop on Software Product Lines: Economics,
Architectures and Implications, 2000.

[6] M. Moon, K. Yeom, H.S. Chae, An approach to developing domain requirements
as a core asset based on commonality and variability analysis in a product line,
IEEE Transactions on Software Engineering 31 (7) (2005) 551–569.

[7] K. Czarnecki, U. Eisenecker, Generative Programming: Methods, Tools, and
Applications, Addison-Wesley, 2000.

[8] J. Neighbors, Software construction using components, Ph.D. Thesis, University
of California, US, 1981.
13 http://www.rise.com.br/english/products_toolday.php.
14 Recife Center of Advanced Studies and Systems – http://www.cesar.org.br.
15 INES – http://www.ines.org.br.
[9] R. Prieto-Dfaz, Domain analysis: an introduction, ACM SIGSOFT Software
Engineering Notes 15 (2) (1990) 47–54.

[10] W.B. Frakes, R. Prieto-Diaz, C.J. Fox, Dare: domain analysis and reuse
environment, Annals of Software Engineering 5 (1998) 125–141.

[11] D. Weiss, C.T.R. Lai, Software Product-Line Engineering: A Family-Based
Software Development Process, Addison-Wesley, 1999.

[12] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schimd, T. Widen, J.-M.
DeBaud, Pulse: a methodology to develop software product lines, in:
Symposium on Software Reusability, ACM Press, Los Angeles, California,
United States, 1999, pp. 122–131.

[13] M. Kim, H. Yang, S. Park, A domain analysis method for software product lines
based on scenarios, goals and features, in: Asia-Pacific Software Engineering
Conference (APSEC), Thailand, 2003, pp. 126–136.

[14] H. Mei, W. Zhang, F. Gu, A feature oriented approach to modeling and reusing
requirements of software product lines, in: International Conference on
Computer Software and Applications (COMPSAC), IEEE Computer Society,
USA, 2003, pp. 250–256.

[15] E.S. Almeida, J.C.C.P. Mascena, A.P.C. Cavalcanti, A. Alvaro, V.C. Garcia, S.R.L.
Meira, D. LucrTdio, The domain analysis concept revisited: a practical
approach, in: M. Morisio (Ed.), International Conference on Software Reuse
(ICSR), Turin, Italy, 2006, pp. 43–57.

[16] D. LucrTdio, R.P.M. Fortes, E.S. Almeida, S.R.L. Meira, Performing domain
analysis for model-driven software reuse, in: 10th International Conference on
Software Reuse (ICSR), Lecture Notes in Computer Science, Beijing, China,
Springer-Verlag, 2008, pp. 200–211.

[17] G. Arango, Domain analysis methods, in: E. Horwood (Ed.), Software
Reusability, Chichester, England, 1994, pp. 17–49.

[18] H. Gomaa, M.E. Shin, Tool support for software variability management and
product derivation in software product lines, in: Workshop on Software
Variability Management for Product Derivation, Software Product Line
Conference (SPLC), Boston, USA, 2004, pp. 73–84.

[19] R. Capilla, A. Sánchez, J.C. Dueñas, An analysis of variability modeling and
management tools for product line development, in: Software and Service
Variability Management Workshop – Concepts, Models, and Tools, Helsinki,
Finland, 2007, pp. 32–47.

[20] M. Sinnema, S. Deelstra, Classifying variability modeling techniques,
Information and Software Technology 49 (2007) 717–739.

[21] B.A. Kitchenham, S. Charters, Guidelines for performing systematic literature
reviews in software engineering, Tech. Rep. EBSE-2007-01, Keele University,
EBSE Technical Report, 2007.

[22] G.H. Travassos, J. Biolchini, Systematic review applied to software engineering,
in: Brazilian Symposium on Software Engineering (SBES) – Tutorials, Jopo
Pessoa, Brazil, 2007, p. 436.

[23] P. Brereton, B.A. Kitchenham, D. Budgen, M. Turner, M. Khalil, Lessons from
applying the systematic literature review process within the software
engineering domain, Journal of Systems and Software 80 (2007) 571–583.

[24] M.H. Hamilton, 001: A full life cycle systems engineering and software
development environment development before the fact in action, December
15, 2007, 1991. <http://world.std.com/hti/Articles/Full_Life_Cycle.htm>.

[25] R.W. Krut, Jr., Integrating 001 tool support in the feature-oriented domain
analysis methodology, Tech. Rep. CMU/SEI-93-TR-11, ESC-TR-93-188, SEI,
1993.

[26] Postech, ASADAL/FORM Tool, User guide, Software Engineering Laboratory, 08/
02/2006, 2003.

[27] K. Kim, H. Kim, M. Ahn, M. Seo, Y. Chang, K.C. Kang, Asadal: a tool system for
co-development of software and test environment based on product line
engineering, in: International Conference on Software Engineering (ICSR), ACM
Press, New York, NY, USA, 2006, pp. 783–786.

[28] R. Prieto-Dfaz, W.B. Frakes, B. Gogia, Dare – a domain analysis and reuse
environment, Tech. Rep., Reuse, Inc., August 1992.

[29] W.B. Frakes, R. Prieto-Diaz, C. Fox, Dare-cots, a domain analysis support tool,
in: Proceedings of the 17th International Conference of the Chilean Computer
Science Society (SCCC’97), IEEE Computer Society, 1997, p. 73.

[30] W.B. Frakes, Automating domain engineering, in: Workshop on
Institutionalizing Software Reuse (WIRS), 1997.

[31] P. Padmanabhan, Decimal: a requirements engineering tool for product
families, Ph.D. Thesis, Iowa State University, US, 2002.

[32] P. Padmanabhan, R.R. Lutz, Tool-supported verification of product line
requirements, Automated Software Engineering 12 (4) (2005) 447–465.

[33] J. Dehlinger, M. Humphrey, L. Suvorov, P. Padmanabhan, R. Lutz, Decimal and
plfaultcat: from product-line requirements to product-line member software
fault trees, in: Companion to the proceedings of the 29th International
Conference on Software Engineering, IEEE Computer Society, 2007, pp. 49–50.

[34] W. Tracz, L. Coglianese, A DSSA domain analysis tool, Tech. Rep. ADAGE-LOR-
94-13, Loral Federal System, Owego, US, 1995.

[35] S. Buhne, K. Lauenroth, P. Klaus, Modelling requirements variability across
product lines, in: IEEE International Conference on Requirements Engineering,
2005, pp. 41–52.

[36] J. Park, M. Moon, K. Yeom, Dream: domain requirement asset manager in
product lines, in: International Symposium on Future Software Technology
(ISFST), Xian, China, 2004.

[37] M. Antkiewicz, K. Czarnecki, Featureplugin: feature modeling plug-in for
eclipse, in: OOPSLA Workshop on Eclipse Technology Exchange, ACM Press,
New York, NY, USA, 2004, pp. 67–72.

[38] K. Czarnecki, M. Antkiewicz, C.H.P. Kim, S. Lau, K. Pietroszek, fmp and
fmp2rsm: eclipse plug-ins for modeling features using model templates, in:

http://world.std.com/hti/Articles/Full_Life_Cycle.htm
http://www.rise.com.br/english/products_toolday.php
http://www.cesar.org.br
http://www.ines.org.br

L.B. Lisboa et al. / Information and Software Technology 52 (2010) 1–13 13
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), ACM, San Diego, CA, USA, pp. 200–201.

[39] T. Leich, S. Apel, L. Marnitz, G. Saake, Tool support for feature-oriented
software development: featureide: an eclipse-based approach, in: Proceedings
of the 2005 OOPSLA Workshop on Eclipse Technology Exchange, ACM, San
Diego, California, 2005, pp. 55–59.

[40] BigLever, Gears user’s guide, Tech. Rep., BigLever, 2005.
[41] C.W. Krueger, Software Mass Customization, Biglever, technical white paper

ed., 13/04/2006, 2005.
[42] C.W. Krueger, Biglever software gears and the 3-tiered spl methodology, in:

Object Oriented Programming Systems and Applications (OOPSLA), ACM,
Montreal, Quebec, Canada, 2007, pp. 844–845.

[43] G. Succi, A. Eberlein, J. Yip, K. Luc, M. Nguy, Y. Tan, The design of holmes: a tool
for domain analysis and engineering, in: IEEE Pacific Rim Conference, Victoria,
BC, Canada, 1999, pp. 365–368.

[44] G. Succi, J. Yip, E. Liu, W. Pedrycz, Holmes: a system to support software
product lines, in: International Conference on Software Engineering (ICSE),
ACM, Limerick, Ireland, 2000, p. 786.

[45] G. Succi, W. Pedrycz, J. Yip, I. Kaytazov, Intelligent design of product lines in
holmes, in: Electrical and Computer Engineering, vol. 1, Canada, 2001, pp. 75–
80.

[46] G. Succi, J. Yip, W. Pedrycz, Holmes: an intelligent system to support software
product line development, in: International Conference on Software
Engineering (ICSE), Toronto, Ontario, Canada, 2001, pp. 829–830.

[47] R.M.M. Braga, C. Werner, M. Mattoso, Odyssey: a reuse environment based on
domain models, in: IEEE Symposium on Application-Specific Systems and
Software Engineering and Technology (ASSET), Richardson, Texas, 1999, pp.
49–57.

[48] R.M.M. Braga, Components search and retrieval in software reusable
environments, Ph.D. Thesis, UFRJ – Federal University of Rio de Janeiro,
Brazil, 2000 (in Portuguese).

[49] M. Eriksson, J. Börstler, K. Borg, The pluss approach – domain modeling with
features, use cases and use case realizations, in: Software Product Lines
Conference, Lecture Notes in Computer Science, vol. 3714, Rennes, France,
2005, pp. 33–44.

[50] M. Eriksson, H. Morast, J. Borstler, K. Borg, The pluss toolkit – extending
telelogic doors and ibm-rational rose to support product line use case
modeling, in: Proceedings of the 20th IEEE/ACM International Conference on
Automated Software Engineering, ACM, Long Beach, CA, USA, 2005, pp. 300–
304.

[51] M. Eriksson, H. Morast, J. Borstler, K. Borg, An empirical evaluation of the pluss
toolkit, Tech. Rep. UMINF-06.31, Department of Computing Science, Umea
University, 2006.

[52] K. Schmid, M. Schank, Pulse-beat – a decision support tool for scoping product
lines, in: Software Architectures for Product Families, International Workshop
IW-SAPF-3, Las Palmas de Gran Canaria, Spain, 2000, pp. 65–75.

[53] D. Beuche, O. Spinczyk, Variant management for embedded software product
lines with pure::consul and aspectc++, in: Companion of the 18th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, ACM, Anaheim, CA, USA, 2003, pp. 108–109.

[54] Pure-systems, Variant Management with Pure::Variants, Pure-systems, 02/02/
2006, 2004.
[55] O. Spinczyk, D. Beuche, Modeling and building software product lines with
eclipse, in: Companion to the 19th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems Languages, and Applications, ACM,
Vancouver, BC, Canada, 2004, pp. 18–19.

[56] T.V.D. Massen, H. Lichter, Requiline: a requirements engineering tool for
software product lines, in: International Workshop on Product Family
Engineering (PFE), Springer-Verlag, Siena, Italy, 2003, pp. 168–180.

[57] RWTH-Aachen, The RequiLine User Manual, Germany, January 2005.
[58] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, A.S. Peterson, Feature-

oriented domain analysis (foda) feasibility study, Tech. Rep. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon
University, 1990.

[59] K.C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, M. Huh, Form: A feature-oriented reuse
method with domain-specific reference architectures, Annals of Software
Engineering 5 (1998) 143–168.

[60] W. Tracz, DSSA (domain-specific software architecture): pedagogical example,
SIGSOFT Software Engineering Notes 20 (3) (1995) 49–62.

[61] K. Pohl, G. Bockle, F. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques, Springer-Verlag,
New York, 2005.

[62] G. Succi, A. Valerio, T. Vernazza, M. Fenaroli, P. Predonzani, Framework
extraction with domain analysis, ACM Computing Surveys (2000) 12. <http://
dx.doi.org/http://doi.acm.org/10.1145/351936.35194>.

[63] K. Lee, K.C. Kang, W. Chae, B.W. Choi, Feature-based approach to object-
oriented engineering of applications for reuse, Software Practice and
Experience 30 (9) (2000) 1025–1046.

[64] C.W. Krueger, Data from soliton’s software product line initiative, Tech. Rep.
2002-07-08-1, Biglever, US, 2002.

[65] J. Bayer, D. Muthig, T. Widen, Customizable domain analysis, in: International
Symposium on Generative and Component-Based Software Engineering,
Springer-Verlag, 1999, pp. 178–194.

[66] M. Jaring, J. Bosch, Representing variability in software product lines: a case
study, in: Software Product Line Conference (SPLC), San Diego CA, 2002, pp.
15–36.

[67] M. Steger, C. Tischer, B. Boss, A. Mnller, O. Pertler, W. Stolz, S. Ferber,
Introducing pla at Bosch gasoline systems: experiences and practices, in:
Software Product Lines (SPLC), Boston, MA, USA, 2004, pp. 34–50.

[68] E.S. Almeida, A. Alvaro, V.C. Garcia, D. LucrTdio, R.P.M. Fortes, S.R.D.L.
Meira, An experimental study in domain engineering, in: IEEE EUROMICRO
Conference on Software Engineering and Advanced Applications (SEAA),
Component-Based Software Engineering Track, Lubeck, Germany, 2007, pp.
93–100.

[69] D.M. Weiss, Commonality analysis: a systematic process for defining families,
in: Proceedings of the Second International ESPRIT ARES Workshop on
Development and Evolution of Software Architectures for Product Families,
Springer-Verlag, London, UK, 1998, pp. 214–222.

[70] E.S. Almeida, Ride: the rise process for domain engineering, Ph.D. Thesis,
Federal University of Pernambuco, Brazil, 2007.

[71] A. Fuggetta, A classification of case technology, Computer 26 (12) (1993)
25–38.

[72] L.B. Lisboa, Toolday – a tool for domain analysis, Master’s Thesis, Federal
University of Pernambuco, Recife, Brazil, January 2009.

http://dx.doi.org/http://doi.acm.org/10.1145/351936.35194
http://dx.doi.org/http://doi.acm.org/10.1145/351936.35194

	A systematic review of domain analysis tools
	Introduction
	Domain analysis concepts
	Related work
	Motivation
	Method
	Research question
	Search strategy
	Study selection
	Data extraction
	Data extraction procedure

	Results
	Tools selection
	Research question result
	Domain analysis support
	Main functionalities
	Tools development and usage
	Research question result summary
	Discussion and implications

	Functionalities priority
	Essential priority
	Important priority
	Low priority
	Priority support per tools

	Threats to validity
	Conclusion
	Acknowledgement
	Journals and conferences
	References

